
Denise Koessler Gosnell & 
 Matthias Broecheler

The Practitioner’s 
Guide to Graph 
Data
Applying Graph Thinking and Graph 
Technologies to Solve Complex Problems





Denise Koessler Gosnell and Matthias Broecheler

The Practitioner’s Guide to
Graph Data

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-492-04407-9

[LSI]

The Practitioner’s Guide to Graph Data
by Denise Koessler Gosnell and Matthias Broecheler

Copyright © 2020 Denise Gosnell and Matthias Broecheler. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell
Developmental Editor: Jeff Bleiel
Production Editor: Nan Barber
Copyeditor: Arthur Johnson
Proofreader: Josh Olejarz

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2020:  First Edition

Revision History for the First Edition
2020-03-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492044079 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Practitioner’s Guide to Graph Data,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and DataStax. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492044079
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

1. Graph Thinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Why Now? Putting Database Technologies in Context                                                2

1960s–1980s: Hierarchical Data                                                                                   3
1980s–2000s: Entity-Relationship                                                                                4
2000s–2020s: NoSQL                                                                                                     5
2020s–?: Graph                                                                                                               7

What Is Graph Thinking?                                                                                                 9
Complex Problems and Complex Systems                                                               10
Complex Problems in Business                                                                                  10

Making Technology Decisions to Solve Complex Problems                                     12
So You Have Graph Data. What’s Next?                                                                    15
Seeing the Bigger Picture                                                                                            19

Getting Started on Your Journey with Graph Thinking                                             20

2. Evolving from Relational to Graph Thinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Chapter Preview: Translating Relational Concepts to Graph Terminology            21
Relational Versus Graph: What’s the Difference?                                                        22

Data for Our Running Example                                                                                 23
Relational Data Modeling                                                                                               25

Entities and Attributes                                                                                                 26
Building Up to an ERD                                                                                                27

Concepts in Graph Data                                                                                                 28
Fundamental Elements of a Graph                                                                            28
Adjacency                                                                                                                      29
Neighborhoods                                                                                                             30
Distance                                                                                                                         30

iii



Degree                                                                                                                            31
The Graph Schema Language                                                                                        33

Vertex Labels and Edge Labels                                                                                   33
Properties                                                                                                                      34
Edge Direction                                                                                                              35
Self-Referencing Edge Labels                                                                                      38
Multiplicity of Your Graph                                                                                          38
Full Example Graph Model                                                                                         41

Relational Versus Graph: Decisions to Consider                                                        43
Data Modeling                                                                                                              43
Understanding Graph Data                                                                                        43
Mixing Database Design with Application Purpose                                               44

Summary                                                                                                                           44

3. Getting Started: A Simple Customer 360. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Chapter Preview: Relational Versus Graph                                                                  48
The Foundational Use Case for Graph Data: C360                                                     48

Why Do Businesses Care About C360?                                                                    50
Implementing a C360 Application in a Relational System                                        51

Data Models                                                                                                                  51
Relational Implementation                                                                                         54
Example C360 Queries                                                                                                58

Implementing a C360 Application in a Graph System                                               61
Data Models                                                                                                                  62
Graph Implementation                                                                                                63
Example C360 Queries                                                                                                70

Relational Versus Graph: How to Choose?                                                                  75
Relational Versus Graph: Data Modeling                                                                 75
Relational Versus Graph: Representing Relationships                                            76
Relational Versus Graph: Query Languages                                                             76
Relational Versus Graph: Main Points                                                                      77

Summary                                                                                                                           78
Why Not Relational?                                                                                                    79
Making a Technology Choice for Your C360 Application                                     79

4. Exploring Neighborhoods in Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Chapter Preview: Building a More Realistic Customer 360                                      81
Graph Data Modeling 101                                                                                              82

Should This Be a Vertex or an Edge?                                                                         83
Lost Yet? Let Us Walk You Through Direction                                                        86
A Graph Has No Name: Common Mistakes in Naming                                        89
Our Full Development Graph Model                                                                        91

iv | Table of Contents



Before We Start Building                                                                                             93
Our Thoughts on the Importance of Data, Queries, and the End User               94

Implementation Details for Exploring Neighborhoods in Development                95
Generating More Data for Our Expanded Example                                               97

Basic Gremlin Navigation                                                                                               97
Advanced Gremlin: Shaping Your Query Results                                                     106

Shaping Query Results with the project(), fold(), and unfold() Steps                107
Removing Data from the Results with the where(neq()) Pattern                       110
Planning for Robust Result Payloads with the coalesce() Step                            112

Moving from Development into Production                                                             115

5. Exploring Neighborhoods in Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117
Chapter Preview: Understanding Distributed Graph Data in Apache

Cassandra                                                                                                                    119
Working with Graph Data in Apache Cassandra                                                      120

The Most Important Topic to Understand About Data Modeling: Primary
Keys                                                                                                                           120

Partition Keys and Data Locality in a Distributed Environment                        121
Understanding Edges, Part 1: Edges in Adjacency Lists                                       126
Understanding Edges, Part 2: Clustering Columns                                              128
Understanding Edges, Part 3: Materialized Views for Traversals                        132

Graph Data Modeling 201                                                                                            136
Finding Indexes with an Intelligent Index Recommendation System               140

Production Implementation Details                                                                           142
Materialized Views and Adding Time onto Edges                                                142
Our Final C360 Production Schema                                                                       144
Bulk Loading Graph Data                                                                                         146
Updating Our Gremlin Queries to Use Time on Edges                                        149

Moving On to More Complex, Distributed Graph Problems                                 152
Our First 10 Tips to Get from Development to Production                                152

6. Using Trees in Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
Chapter Preview: Navigating Trees, Hierarchical Data, and Cycles                       155
Seeing Hierarchies and Nested Data: Three Examples                                             156

Hierarchical Data in a Bill of Materials                                                                   156
Hierarchical Data in Version Control Systems                                                      157
Hierarchical Data in Self-Organizing Networks                                                    157
Why Graph Technology for Hierarchical Data?                                                    158

Finding Your Way Through a Forest of Terminology                                              159
Trees, Roots, and Leaves                                                                                            159
Depth in Walks, Paths, and Cycles                                                                          160

Understanding Hierarchies with Our Sensor Data                                                   162

Table of Contents | v



Understand the Data                                                                                                  163
Conceptual Model Using the GSL Notation                                                           170
Implement Schema                                                                                                    171
Before We Build Our Queries                                                                                   174

Querying from Leaves to Roots in Development                                                      174
Where Has This Sensor Sent Information To?                                                      175
From This Sensor, What Was Its Path to Any Tower?                                          178
From Bottom Up to Top Down                                                                                184

Querying from Roots to Leaves in Development                                                      184
Setup Query: Which Tower Has the Most Sensor Connections So That We

Could Explore It for Our Example?                                                                     185
Which Sensors Have Connected Directly to Georgetown?                                 186
Find All Sensors That Connected to Georgetown                                                 187
Depth Limiting in Recursion                                                                                    189

Going Back in Time                                                                                                       190

7. Using Trees in Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Chapter Preview: Understanding Branching Factor, Depth, and Time on

Edges                                                                                                                            191
Understanding Time in the Sensor Data                                                                    192

Final Thoughts on Time Series Data in Graphs                                                     200
Understanding Branching Factor in Our Example                                                   200

What Is Branching Factor?                                                                                       201
How Do We Get Around Branching Factor?                                                         202

Production Schema for Our Sensor Data                                                                   203
Querying from Leaves to Roots in Production                                                         205

Where Has This Sensor Sent Information to, and at What Time?                      205
From This Sensor, Find All Trees up to a Tower by Time                                    206
From This Sensor, Find a Valid Tree                                                                       209
Advanced Gremlin: Understanding the where().by() Pattern                             211

Querying from Roots to Leaves in Production                                                         213
Which Sensors Have Connected to Georgetown Directly, by Time?                 214
What Valid Paths Can We Find from Georgetown Down to All Sensors?        215

Applying Your Queries to Tower Failure Scenarios                                                  218
Applying the Final Results of Our Complex Problem                                          223

Seeing the Forest for the Trees                                                                                     223

8. Finding Paths in Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225
Chapter Preview: Quantifying Trust in Networks                                                    226
Thinking About Trust: Three Examples                                                                     226

How Much Do You Trust That Open Invitation?                                                  226
How Defensible Is an Investigator’s Story?                                                             227

vi | Table of Contents



How Do Companies Model Package Delivery?                                                     228
Fundamental Concepts About Paths                                                                          229

Shortest Paths                                                                                                             230
Depth-First Search and Breadth-First Search                                                        232
Learning to See Application Features as Different Path Problems                     233

Finding Paths in a Trust Network                                                                               234
Source Data                                                                                                                 234
A Brief Primer on Bitcoin Terminology                                                                 236
Creating Our Development Schema                                                                       236
Loading Data                                                                                                               237
Exploring Communities of Trust                                                                             238

Understanding Traversals with Our Bitcoin Trust Network                                   240
Which Addresses Are in the First Neighborhood?                                               240
Which Addresses Are in the Second Neighborhood?                                           241
Which Addresses Are in the Second Neighborhood, but Not the First?           242
Evaluation Strategies with the Gremlin Query Language                                    244
Pick a Random Address to Use for Our Example                                                 245

Shortest Path Queries                                                                                                    246
Finding Paths of a Fixed Length                                                                              247
Finding Paths of Any Length                                                                                    250
Augmenting Our Paths with the Trust Scores                                                        253
Do You Trust This Person?                                                                                       259

9. Finding Paths in Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
Chapter Preview: Understanding Weights, Distance, and Pruning                       262
Weighted Paths and Search Algorithms                                                                     262

Shortest Weighted Path Problem Definition                                                          263
Shortest Weighted Path Search Optimizations                                                      264

Normalization of Edge Weights for Shortest Path Problems                                  267
Normalizing the Edge Weights                                                                                 267
Updating Our Graph                                                                                                 272
Exploring the Normalized Edge Weights                                                                273
Some Thoughts Before Moving On to Shortest Weighted Path Queries           277

Shortest Weighted Path Queries                                                                                  277
Building a Shortest Weighted Path Query for Production                                   278

Weighted Paths and Trust in Production                                                                   288

10. Recommendations in Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
Chapter Preview: Collaborative Filtering for Movie Recommendations              292
Recommendation System Examples                                                                           292

How We Give Recommendations in Healthcare                                                   292
How We Experience Recommendations in Social Media                                    293

Table of Contents | vii



How We Use Deeply Connected Data for Recommendations in Ecommerce  294
An Introduction to Collaborative Filtering                                                               295

Understanding the Problem and Domain                                                              295
Collaborative Filtering with Graph Data                                                                297
Recommendations via Item-Based Collaborative Filtering with Graph Data   298
Three Different Models for Ranking Recommendations                                     299

Movie Data: Schema, Loading, and Query Review                                                   303
Data Model for Movie Recommendations                                                             303
Schema Code for Movie Recommendations                                                          305
Loading the Movie Data                                                                                            307
Neighborhood Queries in the Movie Data                                                             311
Tree Queries in the Movie Data                                                                               314
Path Queries in the Movie Data                                                                               316

Item-Based Collaborative Filtering in Gremlin                                                         318
Model 1: Counting Paths in the Recommendation Set                                         318
Model 2: NPS-Inspired                                                                                              319
Model 3: Normalized NPS                                                                                        322
Choosing Your Own Adventure: Movies and Graph Problems Edition            324

11. Simple Entity Resolution in Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
Chapter Preview: Merging Multiple Datasets into One Graph                               325
Defining a Different Complex Problem: Entity Resolution                                    326

Seeing the Complex Problem                                                                                   328
Analyzing the Two Movie Datasets                                                                             329

MovieLens Dataset                                                                                                     329
Kaggle Dataset                                                                                                            336
Development Schema                                                                                                339

Matching and Merging the Movie Data                                                                     340
Our Matching Process                                                                                               340

Resolving False Positives                                                                                               343
False Positives Found in the MovieLens Dataset                                                   343
Additional Errors Discovered in the Entity Resolution Process                         344
Final Analysis of the Merging Process                                                                    346
The Role of Graph Structure in Merging Movie Data                                          347

12. Recommendations in Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349
Chapter Preview: Understanding Shortcut Edges, Precomputation, and

Advanced Pruning Techniques                                                                                350
Shortcut Edges for Recommendations in Real Time                                                350

Where Our Development Process Doesn’t Scale                                                   351
How We Fix Scaling Issues: Shortcut Edges                                                           352
Seeing What We Designed to Deliver in Production                                            353

viii | Table of Contents



Pruning: Different Ways to Precompute Shortcut Edges                                     354
Considerations for Updating Your Recommendations                                        356

Calculating Shortcut Edges for Our Movie Data                                                      357
Breaking Down the Complex Problem of Precalculating Shortcut Edges         357
Addressing the Elephant in the Room: Batch Computation                                362

Production Schema and Data Loading for Movie Recommendations                  363
Production Schema for Movie Recommendations                                               364
Production Data Loading for Movie Recommendations                                     365

Recommendation Queries with Shortcut Edges                                                       366
Confirming Our Edges Loaded Correctly                                                              367
Production Recommendations for Our User                                                         368
Understanding Response Time in Production by Counting Edge Partitions   372
Final Thoughts on Reasoning About Distributed Graph Query Performance 375

13. Epilogue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377
Where to Go from Here?                                                                                              378

Graph Algorithms                                                                                                      378
Distributed Graphs                                                                                                    379
Graph Theory                                                                                                             380
Network Theory                                                                                                         380

Stay in Touch                                                                                                                  382

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  383

Table of Contents | ix





Preface

Think about the last time you searched for someone on a social media platform.

What did you look at on the results page?

Most likely, you started scanning down the names in the list of profile results. And
you probably spent most of your time inspecting the “shared friends” section to
understand how you knew someone.

Our innate human behavior of reasoning about our shared friends on social media is
what inspired us to write this book. Though, our shared inspiration generated two
very different reasons behind why we wrote this book.

First, have you ever stopped to think about how an app creates the “shared friends”
section?

The engineering required to deliver your “shared friends” in search results creates an
intricate orchestration of tools and data to solve an extremely complex, distributed
problem. We have either built those sections or created the tools that deliver them.
Our passion for understanding and teaching others from our collective experiences is
the first reason we chose to write this book together.

The second reason is that anyone who uses social media intuitively derives personal
context directly from the “shared friends” section. This process of reasoning and
thinking about relationships within data is called graph thinking, and that is what we
name the human approach to understanding life through connected data.

How did we all learn to do this?

There wasn’t a specific point in time when we all were taught this skill. Processing
relationships among people, places, or things is just how we think.

It is the ease with which people infer context from relationships, be it in real life or
from data, that has ignited the wave of graph thinking.

xi



And when it comes to understanding graph thinking, most people fall into one of two
camps: those who think graphs are about bar charts, or those who think graphs are
way too complicated. Either way, these thought processes apply legacy approaches to
thinking about data and technology. The problem is that the art of the possible has
changed, our tools have improved, and there are new lessons to learn.

We believe that graphs are powerful and deployable. Graph technology can make you
more productive; we have worked with teams that told us so.

This book brings these two mindsets together.

Graph thinking closes the gap between how we humans operate/see/live and how we
use data to inform a decision. Imagine seeing your whole world as a spreadsheet with
rows and columns of data and trying to make sense of it all. For the majority of us,
the exercise is unnatural and counterproductive.

This is because relationships are how people navigate and reason about life. It is com‐
puters that need databases and operate in the world of rows and columns of data.

Graph thinking is a way to solve complex problems by taking a relationship-centric
approach. Graph technology bridges the gap between “relationships” and the linear
memory constraints of modern computer infrastructure.

As more people learn how to build with graph technology by applying graph think‐
ing, imagine what the next wave of innovation will bring.

Who Should Read This Book
This book aims to teach you two things. First, we will teach you about graph thinking
and the graph mindset through asking questions and reasoning about data. Second,
we will walk you through writing code that solves the most common, complex graph
problems.

These new concepts are intertwined within the tasks commonly performed across a
few different engineering functions.

Data engineers and architects sit at the heart of transitioning an idea from develop‐
ment into production. We organized this book to show you how to resolve common
assumptions that can occur when moving from development into production with
graph data and graph tools. Another benefit to the data engineer or data architect will
be learning the world of possibilities that come from understanding graph thinking.
Synthesizing the breadth of problems that can be solved with graph data will also help
you invent new patterns for their use in production applications.

Data scientists and data analysts may most benefit from reasoning about how to use
graph data to answer interesting questions. All the examples throughout this text
were constructed to apply a query-first approach to graph data. A secondary benefit

xii | Preface



for a data scientist or analyst will be to understand the complexity of using dis‐
tributed graph data within a production application. We teach and build upon the
common development pitfalls and their production resolution processes throughout
the book so that you can formulate new types of problems to solve.

Computer scientists will learn how to use techniques in functional programming and
distributed systems to query and reason about graph data. We will outline fundamen‐
tal approaches to procedurally traversing graph data and step through their applica‐
tion with graph tools. Along the way we will learn about distributed technologies, too.

We will be working within the intersection of graph data and distributed, complex
problems; a fascinating combination of engineering topics with something to learn
for any technologist.

Goals of This Book
The first goal of this book is to create a new foundation that exists at a very diverse
intersection. We will be working with concepts from graph theory, database schema,
distributed systems, data analysis, and many other fields. This unique intersection
forms what we refer to in this book as graph thinking. A new application domain
requires new terms, examples, and techniques. This book serves as your foundation
for understanding this emerging field.

From the past decade of graph technology emerged a common set of patterns for
using graph data in production applications. The second goal of this book is to teach
you those patterns. We define, illustrate, build, and implement the most popular ways
teams use graph technology to solve complex problems. After studying this book, you
will have a set of templates for building with graph technology to solve this common
set of problems.

The third goal of this book is to transform how you think. Understanding and apply‐
ing graph data to your problem introduces a paradigm shift into your thought pro‐
cesses. Through many upcoming examples, we aim to teach you the common ways
that others think and reason about graph data within an application. This book
teaches you what you need to know to apply graph thinking to a technology decision.

Navigating This Book
This book is organized roughly as follows:

• Chapter 1 discusses graph thinking and provides detailed processes for its appli‐
cation to complex problems.

• Chapters 2 and 3 introduce fundamental graph concepts that will be used
throughout the rest of the book.

Preface | xiii



• Chapters 4 and 5 apply graph thinking and distributed graph technology to
building a Customer 360 banking application, the most popular use case for
graph data today.

• Chapters 6 and 7 into the world of hierarchical data and nested graph data
through a telecommunications use case. Chapter 6 sets the stage for a common
error that is resolved in Chapter 7.

• Chapters 8 and 9 discuss pathfinding across graph data in detail, using an exam‐
ple of quantifying trust in social transaction networks via paths.

• Chapters 10 and 12 teach you how to use collaborative filtering on graph data to
design a Netflix-inspired recommendation system.

• Chapter 11 can be thought of as a bonus chapter that illustrates how to apply
entity resolution to the merging of multiple datasets into one large graph for col‐
lective analysis.

Each chapter pair (4 and 5, 6 and 7, 8 and 9, 10 and 12) follows the same structure.
The first chapter in each pair introduces new concepts and a new example use case in
a development environment. The second chapter delves into the details of production
issues, such as performance and scalability, that need to be addressed for real-world
deployments.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xiv | Preface



This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/datastax/graph-book.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

You can also follow us on Twitter: https://twitter.com/Graph_Thinking

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “The Practitioner’s Guide
to Graph Data by Denise Koessler Gosnell and Matthias Broecheler (O’Reilly). Copy‐
right 2020 Denise Gosnell and Matthias Broecheler, 978-1-492-04407-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Preface | xv

https://github.com/datastax/graph-book
mailto:bookquestions@oreilly.com
https://twitter.com/Graph_Thinking
mailto:permissions@oreilly.com
http://oreilly.com


Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
9781492044079.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank the incredible group of people who donated their time and
expertise to advising us and to reading, and correcting this book.

We had the honor of working with an world-class editing team led by Jeff Bleiel. Our
technical editing team of Alexey Ott, Lorina Poland, and Daniel Kuppitz applied their
seasoned experience in creating, building, and writing about graph technologies.
Their direct contributions elevated this book to a level that we could have reached
only with their assistance. We are humbled that they went above and beyond to
improve the quality and correctness of this text. Thank you.

xvi | Preface

http://oreilly.com
http://www.oreilly.com/catalog/9781492044079
http://www.oreilly.com/catalog/9781492044079
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


We also would like to thank DataStax for its sponsorship and for encouraging our
teams to collaborate on creating this book. We are very grateful for the support and
review by the DataStax Graph Engineering team and for the product changes they
made as we created our work together: Eduard Tudenhoefner, Dan LaRocque, Justin
Chu, Rocco Varela, Ulises Cerviño Beresi, Stephen Mallette, and Jeremiah Jordan. We
are especially grateful to Bryn Cooke, who coordinated and implemented a nontrivial
amount of extra work to support the ideas in this book.

Many additional people transcended their obligations to make time to support us, as
is the DataStax way. We would like to thank Dave Bechberger, Jonathan Lacefield, and
Jonathan Ellis for their expert contributions and advocacy for this work. To Daniel
Farrell, Jeremy Hanna, Kiyu Gabriel, Jeff Carpenter, Patrick McFadin, Peyton Casper,
Matt Atwater, Paras Mehra, Kelly Mondor, and Jim Hatcher: our conversations
throughout the creation of this work had more of an impact than you realize, so
thank you.

All of the stories and examples throughout this text were inspired by our collabora‐
tions and experiences with colleagues around the world. To that end, we would like to
recognize the graph heroes who spoke with us and helped shape this book’s narrative:
Matt Aldridge, Christine Antonsen, David Boggess, Sean Brandt, Vamsi Duvvuri, Ilia
Epifanov, Amy Hodler, Adam Judelson, Joe Koessler, Eric Koester, Alec Macrae, Pat‐
rick Planchamp, Gary Richardson, Kristin Stone, Samantha Tracht, Laurent Weich‐
berger, and Brent Woosley. The time that we spent speaking with each of you and the
information you shared made its way into the stories that we have the privilege of
sharing in this text. Thank you for lending your voices, experiences, and ideas.

Denise would also like to extend her personal gratitude to those who mentored her
throughout this journey. To Teresa Haynes and Debra Knisley: you ignited my pas‐
sion for graph theory that continues to drive me every day; I wouldn’t have started
this journey without you. To Mike Berry: you taught me how to get things done and
to never stop reaching for my next big idea; thank you. To Ted Tanner: you opened a
door and showed me what it means to build with passion and deliver with excellence;
timing and execution are everything. To Mike Canzoneri: whether you know it or
not, you were the boot that kicked me over the line to write this; thank you. And
most importantly, to Ty, the unofficial “third author” who was with me every step of
the way: thank you for your never-ending positivity.

Preface | xvii





CHAPTER 1

Graph Thinking

Think about the first time you learned about graph technology.

The scene probably started at the whiteboard where your team of directors, archi‐
tects, scientists, and engineers were discussing your data problems. Eventually, some‐
one drew the connections from one piece of data to another. After stepping back,
someone noted that the links across the data built up a graph.

That realization sparked the beginning of your team’s graph journey. The group saw
that you could use relationships across the data to provide new and powerful insights
to the business. An individual or a small group was probably tasked with evaluating
the techniques and tools available for storing, analyzing, and/or retrieving graph-
shaped data.

The next major revelation for your team was likely that it’s easy to explain your data
as a graph. But it’s hard to use your data as a graph.

Sound familiar?

Much like this whiteboard experience, earlier teams discovered connections within
their data and turned them into valuable applications we use everyday. Think about
apps like Netflix, LinkedIn, and GitHub. These products translate connected data into
an integral asset used by millions of people around the world.

We wrote this book to teach you how they did it.

As both tool builders and tool users, we have had the opportunity to sit on both sides
of the whiteboard conversation hundreds of times. From our experiences, we collec‐
ted a core set of choices and subsequent technology decisions to accelerate your jour‐
ney with graph technology.

1



This book will be your guide in navigating the space between understanding your
data as a graph and using your data as a graph.

Why Now? Putting Database Technologies in Context
Graphs have been around for centuries. So why are they relevant now?

And before you skip this section, we ask you to hear us out. We are about to go into
history here; it isn’t long, and it isn’t involved. We need to do this because the suc‐
cesses and failures of our recent history explain why graph technology is relevant
again.

Graphs are relevant now because the tech industry’s focus has shifted over the last few
decades. Previously, technologies and databases focused on how to most efficiently
store data. Relational technologies evolved as the front-runner to achieve this effi‐
ciency. Now we want to know how we can get the most value out of data.

Today’s realization is that data is inherently more valuable when it is connected.

A little bit of historical context on the evolution of database technologies sheds a lot
of light on how we got here, and maybe even on why you picked up this book. The
history of database technology can loosely be divided into three eras: hierarchical,
relational, and NoSQL. The following abbreviated tour explores each of these histori‐
cal eras, with a focus on how each era is relevant to this book.

The following sections provide you with an abridged version of the
evolution of graph technology. We are highlighting only the most
relevant parts of our industry’s vast history. At the very least, we are
saving you from losing your valuable time down the rabbit hole of
a self-guided Wikipedia link walking tour—though ironically, the
self-guided version would be walking through today’s most accessi‐
ble knowledge graph.

This brief history will take us from the 1960s to today. Our tour will culminate with
the fourth era of graph thinking that is on our doorstep, as shown in Figure 1-1. We
are asking you to take this short journey with us because we believe that historical
context is one of the keys to unlocking the wide adoption of graph technologies
within our industry.

2 | Chapter 1: Graph Thinking



1 T. William Olle, The CODASYL Approach to Data Base Management (Chichester, England: Wiley-Interscience,
1978). No. 04; QA76. 9. D3, O5.

Figure 1-1. A high-level timeline showing the historical context on the evolution of data‐
base technology to illustrate the emergence of graph thinking

1960s–1980s: Hierarchical Data
Technical literature interchangeably labels the database technologies of the 1960s
through the 1980s as “hierarchical” or “navigational.” Irrespective of the label, the
thinking during this era aimed to organize data in treelike structures.

During this era, database technologies stored data as records that were linked to one
another. The architects of these systems envisioned walking through these treelike
structures so that any record could be accessed by a key or system scan or through
navigating the tree’s links.

In the early 1960s, the Database Task Group within CODASYL, the Conference/
Committee on Data Systems Languages, organized to create the industry’s first set of
standards. The Database Task Group created a standard for retrieving records from
these tree structures. This early standard is known as “the CODASYL approach” and
set the following three objectives for retrieving records from database management
systems:1

1. Using a primary key
2. Scanning all the records in a sequential order
3. Navigating links from one record to another

Why Now? Putting Database Technologies in Context | 3



2 Rudolph Bayer and Edward McCreight, “Organization and Maintenance of Large Ordered Indexes,” in Soft‐
ware Pioneers, ed. Manfred Broy and Ernst Denert (Berlin: Springer-Verlag, 2002), 245–262.

3 Edgar F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the ACM 13,
no. 6 (1970): 377-387.

CODASYL was a consortium formed in 1959 and was the group
responsible for the creation and standardization of COBOL.

Aside from the history lesson, there is an ironic point we are building up to. At the
inception of this approach, the technologists of CODASYL envisioned retrieving data
by keys, scans, and links. To date, we have seen significant innovation in and adop‐
tion of two of these three original standards: keys and scans.

But what happened with the third goal of CODASYL’s retrieval standardization: to
navigate links from one record to another? Storing, navigating, and retrieving records
according to the links between them describes what we refer to today as graph tech‐
nology. And as we mentioned before, graphs are not new; technologists have been
using them for years.

The short version of this part of our history is that CODASYL’s link-navigating tech‐
nologies were too difficult and too slow. The most innovative solutions at the time
introduced B-trees, or self-balancing tree data structures, as a structural optimization
to address performance issues. In this context, B-trees helped speed up record
retrieval by providing alternate access paths across the linked records.2

Ultimately, the imbalance among implementation expenditures, hardware maturity,
and delivered value resulted in these systems being shelved for their speedier cousin:
relational systems. As a result, CODASYL no longer exists today, though some of the
CODASYL committees continue their work.

1980s–2000s: Entity-Relationship
Edgar F. Codd’s idea to separate the organization of data from its retrieval system 
ignited the next wave of innovation in data management technologies.3 Codd’s work
founded what we still refer to as the entity-relationship era of databases.

The entity-relationship era encompasses the decades when our industry polished the
approach for retrieving data by a key, which was one of the objectives set by the early
working groups of the 1960s. During this era, our industry developed technology that
was, and still is, extremely efficient at storing, managing, and retrieving data from
tables. The techniques developed during these decades are still thriving today because
they are tested, documented, and well understood.

4 | Chapter 1: Graph Thinking



The systems of this era introduced and popularized a specific way of thinking about
data. First and foremost, relational systems are built on the sound mathematical
theory of relational algebra. Specifically, relational systems organize your data into
sets. These sets focus on the storage and retrieval of real-world entities, such as peo‐
ple, places, and things. Similar entities, such as people, are grouped together in a
table. In these tables, each record is a row. An individual record is accessed from the
table by its primary key.

In relational systems, entities can be linked together. To create links between entities,
you create more tables. A linking table will combine the primary keys of each entity
and store them as a new row in the linking table. This era, and the innovators within
it, created the solution for tabular-shaped data that still thrives today.

There are volumes of books and more resources than one can mention on the topic of
relational systems. This book does not intend to be one of them. Instead, we want to
focus on the thought processes and design principles that have become widely
accepted today.

For better or for worse, this era introduced and ingrained the mentality that all data
maps to a table.

If your data needs to be organized in and retrieved from a table, relational technolo‐
gies remain the preferred solution. But however integral their role remains, relational
technologies are not a one-size-fits-all solution.

The late ’90s brought early signs of the information age through the popularization of
the web. This stage during our short history hinted at volumes and shapes of data that
were previously unplanned and unused. At this time in database innovation, incom‐
prehensible volumes of data in diverse shapes began to fill the queues of applications.
A key realization at this point was that the relational model was lacking: there was no
mention of the intended use for the data. The industry had a detailed storage model,
but nothing for analyzing or intelligently applying that data.

This brings us to the third and most recent wave of database innovation.

2000s–2020s: NoSQL
The development of database technologies from the 2000s to the 2020s, approxi‐
mately, is characterized as the advent of the NoSQL (non-SQL or “not only SQL”)
movement. The objective of this era was to create scalable technologies that stored,
managed, and queried all shapes of data.

One way to describe the NoSQL era relates database innovation to the burgeoning of
the craft beer market in the United States. The process of fermenting the beer didn’t
change, but flavors were added and the quality and freshness of ingredients were ele‐
vated. A closer connection developed between the brew master and the consumer,

Why Now? Putting Database Technologies in Context | 5



4 Clair Brown and Greg Linden, Chips and Change: How Crisis Reshapes the Semiconductor Industry (Cam‐
bridge: MIT Press, 2011).

yielding an immediate feedback loop on product direction. Now, instead of three
brands of beer in your supermarket, you likely have more than 30.

Instead of finding new combinations for fermentation, the database industry experi‐
enced exponential growth in choices for data management technologies. Architects
needed scalable technologies to address the different shapes, volumes, and require‐
ments of their rapidly growing applications. Popular data shapes that emerged during
this movement were key-value, wide-column, document, stream, and graph.

The message of the NoSQL era was quite clear: storing, managing, and querying data
at scale in tables doesn’t work for everything, just like not everyone wants to drink a
light pilsner.

There were a few motivations that led to the NoSQL movement. These motivations
are integral to understanding why and where we are within the hype cycle of the
graph technology market. The three we like to call out are the need for data serializa‐
tion standards, specialized tooling, and horizontal scalability.

First, the rise in popularity of web-based applications created natural channels for
passing data between these applications. Through these channels, innovators devel‐
oped new and different standards for data serialization such as XML, JSON, and
YAML.

Naturally, these standardizations led to the second motivation: specialized tooling.
The protocols for exchanging data across the web created structures that were inher‐
ently not tabular. This demand led to the innovation and rise in popularity of key-
value, document, graph, and other specialized databases.

Last, this new class of applications came with an influx of data that put pressure on
system scalability like never before. Derivatives and applications of Moore’s law pre‐
dicted the silver lining of this era as we saw the cost of hardware, and thus the cost of
data storage, continue to decrease. The effects of Moore’s law enabled data duplica‐
tion, specialized systems, and overall computation power to become less expensive.4

Together, the innovations and new demands of the NoSQL era paved the way for the
industry’s migration from scale-up systems to scale-out systems. A scale-out system
adds physical or virtual machines to increase the overall computational capacity of a
system. A scale-out system, generally referred to as a “cluster,” appears to the end-user
as a single platform; the user has no idea that their workload is actually being served
by a collection of servers. On the other hand, a scale-up system procures more pow‐
erful machines. Out of room? Get a bigger box, which is more expensive, until there
are no bigger boxes to get.

6 | Chapter 1: Graph Thinking



5 Geoffrey A. Moore and Regis McKenna, Crossing the Chasm (New York: HarperBusiness, 1999).

Scaling out means adding more resources to spread out a load, typ‐
ically in parallel. Scaling up means making a resource bigger or
faster so that it can handle more load.

Given these three motivations, this versatile tool set for building scalable data archi‐
tectures for nontabular data evolved to be the most important deliverable of the
NoSQL era. Now development teams have choices to evaluate when designing their
next application. They can select from a suite of technologies to accommodate differ‐
ent shapes, velocities, and scalability requirements of their data. There are tools that
manage, store, search, and retrieve document, key-value, wide-column, and/or graph
data at any scale. With these tools, we began working with multiple forms of data in
ways previously unachievable.

What can we do with this unique collection of tools and data? We can solve more
complex problems faster and at a larger scale.

2020s–?: Graph
We promised you that our history tour would be brief and purposeful. This section
delivers on that promise by connecting the important moments from our condensed
tour. Together, the connections we see across our industry’s history set the stage for
the fourth era of database innovation: the wave of graph thinking.

This era in innovation is shifting from efficiency of the storage systems to extracting
value from the data the storage systems contain.

Why the 2020s?
Before we can outline our perspective on the graph era, you might be wondering why
we are starting the era of graph thinking in 2020. We want to take a brief moment to
explain our position on the timing of the graph market.

Our callout to the general timeline of 2020 comes from the intersection of two trains
of thought. At this intersection, we are crossing Geoffrey Moore’s popular adoption
model5 with the timing observed during the past three eras of database innovation.

Why Now? Putting Database Technologies in Context | 7



6 Everett M. Rogers, Diffusion of Innovations (New York: Simon and Schuster, 2010).

Like CODASYL, the technology adoption life cycle commonly
attributed to Moore originated in the 1950s. See Everett Roger’s
1962 book Diffusion of Innovations.6

Specifically, there is a proven and observable time lag between early adopters and the
wide adoption of new technologies. We saw this time lag in “1980s–2000s: Entity-
Relationship” on page 4 with relational databases during the 1970s. There was a 10-
year lag between the first paper and corresponding viable implementations of
relational technology. You can find examples of the same time lag within each of the
other eras.

History has shown us that every era prior to the graph era contained a niche period
that saw wide adoption years later. By looking to the 2020s, we are making this same
assumption about the state of the graph market. History has also shown us that this
doesn’t mean that the existing tools are going to go away.

However you would like to measure it, this is not a stock market prediction where we
are nailing down a date. Our outlook ultimately describes a new era of technology
adoption that is being driven by an evolution of value. That is, value is shifting from
efficiency to being derived from highly connected data assets. These changes take
time and do not run on schedules.

Connecting the dots
Recall the three patterns of retrieval envisioned by the CODASYL committee in the
1960s: accessing data by keys, scans, and links. Extracting a piece of data by its key, in
any shape, remains the most efficient way to access it. This efficiency was achieved
during the entity-relationship era and remains a popular solution.

As for the second goal of the CODASYL committee, accessing data through scans, the
NoSQL era created technologies capable of handling large scans of data. Now we have
software and hardware capable of processing and extracting value from massive data‐
sets at immense scale. That is to say: we have the committee’s first two goals nailed
down.

Last on the list: accessing data by traversing links. Our industry has come full circle.

The industry’s return to focusing on graph technologies goes hand in hand with our
shift from efficiently managing data to needing to extract value from it. This shift
doesn’t mean we no longer need to efficiently manage data; it means we have solved

8 | Chapter 1: Graph Thinking



one problem well and are moving on to address the harder problem. Our industry
now emphasizes value alongside speed and cost.

Extracting value from data can be achieved when you are able to connect pieces of
information and construct new insights. Extracting value in data comes from under‐
standing the complex network of relationships within your data.

This is synonymous with recognizing the complex problems and complex systems
that are observable across the inherent network in your data.

Our industry’s and this book’s focus looks toward developing and deploying technol‐
ogies that deliver value from data. As in the relational era, a new way of thinking is
required to understand, deploy, and apply these technologies.

A shift in mindset needs to occur in order to see the value we are talking about here.
This mindset is a shift from thinking about your data in a table to prioritizing the
relationships across it. This is what we call graph thinking.

What Is Graph Thinking?
Without explicitly stating it, we already walked through what we call graph thinking
during the whiteboard scene at the beginning of this chapter.

When we illustrated the realization that your data could look like a graph, we were
recreating the power of graph thinking. It is that simple: graph thinking encompasses
your experience and realizations when you see the value of understanding relation‐
ships across your data.

Graph thinking is understanding a problem domain as an inter‐
connected graph and using graph techniques to describe domain
dynamics in an effort to solve domain problems.

Being able to see graphs across your data is the same as recognizing the complex net‐
work within your domain. Within a complex network, you will find the most com‐
plex problems to solve. And most high-value business problems and opportunities
are complex problems.

This is why the next stage of innovation in data technologies is shifting from a focus
on efficiency to a focus on finding value by specifically applying graph technologies.

What Is Graph Thinking? | 9



Complex Problems and Complex Systems
We have used the term complex problem a few times now without providing a specific
description. When we talk about complex problems, we are referring to the networks
within complex systems.

Complex problems
Complex problems are the individual problems that are observable and measura‐
ble within complex systems.

Complex systems
Complex systems are systems composed of many individual components that are
interconnected in various ways such that the behavior of the overall system is not
just a simple aggregate of the individual components’ behavior (called “emergent
behavior”).

Complex systems describe the relationships, influences, dependencies, and interac‐
tions among the individual components of real-world constructs. Simply put, a com‐
plex system describes anything where multiple components interact with each other.
Examples of complex systems are human knowledge, supply chains, transportation or
communication systems, social organization, earth’s global climate, and the entire
universe.

Most high-value business problems are complex problems and require graph think‐
ing. This book will teach you the four main patterns—neighborhoods, hierarchies,
paths, and recommendations—used to solve complex problems with graph technol‐
ogy for businesses around the world.

Complex Problems in Business
Data is no longer just a by-product of doing business. Data is increasingly becoming a
strategic asset in our economy. Previously, data was something that needed to be
managed with the greatest convenience and the least cost to enable business opera‐
tion. Now it is treated as an investment that should yield a return. This requires us to
rethink how we handle and work with data.

For example, the late stage of the NoSQL era saw the acquisitions of LinkedIn and
GitHub by Microsoft. These acquisitions gave measurement to the value of data that
solves complex problems. Specifically, Microsoft acquired LinkedIn for $26 billion on
an estimated $1 billion in revenue. GitHub’s acquisition set the price at $7.8 billion on
an estimated $300 million in revenue.

Each of these companies, LinkedIn and GitHub, owns the graph to its respective net‐
works. Their networks are the professional and the developer graphs, respectively.
This puts a 26× multiplier on the data that models a domain’s complex system. These

10 | Chapter 1: Graph Thinking



two acquisitions begin to illustrate the strategic value of data that models a domain’s
graph. Owning a domain’s graph yields significant return on a company’s valuation.

We do not want to misrepresent our intentions with these statistics. Observing high
revenue multiples for fast-growing startups isn’t a novelty. We specifically mention
these two examples because GitHub and LinkedIn found and monetized value from
data. These revenue multiples are higher than those valuations for similarly sized and
similarly growing startups because of the data asset.

By applying graph thinking, these companies are able to represent, access, and under‐
stand the most complex problem within their domain. In short, these companies built
solutions for some of the largest and most difficult complex systems.

Companies that have a head start on rethinking data strategies are those that built
technology to model their domains’ most complex problems. Specifically, what do
Google, Amazon, FedEx, Verizon, Netflix, and Facebook all have in common? Aside
from being among today’s most valued companies, each one owns the data that mod‐
els its domain’s largest and most complex problem. Each owns the data that con‐
structs its domain’s graph.

Just think about it. Google has the graph of all human knowledge. Amazon and
FedEx contain the graphs of our global supply chain and transportation economies.
Verizon’s data builds up our world’s largest telecommunications graph. Facebook has
the graph of our global social network. Netflix has access to the entertainment graph,
modeled in Figure 1-2 and implemented in the final chapters of this book.

Figure 1-2. One way to model Netflix’s data as graph and the final example you will
implement in this book: collaborative filtering at scale

What Is Graph Thinking? | 11



Going forward, those companies that invest in data architectures to model their
domains’ complex systems will join the ranks of these behemoths. The investment in
technologies for modeling complex systems is the same as prioritizing the extraction
of value from data.

If you want to get value out of your data, the first place to look is within its intercon‐
nectivity. What you are looking for is the complex system that your data describes.
From there, your next decisions center around the right technologies for storing,
managing, and extracting this interconnectivity.

Making Technology Decisions to Solve Complex Problems
Whether or not you work at one of the companies previously mentioned, you can
learn to apply graph thinking to the data in your domain.

So where do you get started?

The difficulty with learning and applying graph thinking begins with recognizing
where relationships do or do not add value within your data. We use the two images
in this section to simplify the stops along the way and illustrate the challenges ahead.

Though simple, Figure 1-3 challenges you to evaluate pivotal questions about your
data. This first decision requires your team to know the type of data your application
requires. We specifically start with this question because it is often overlooked.

Other teams before yours have overlooked the choices shown in Figure 1-3 because
the lure of the new distracted them from following established processes for building
production applications. This strain between new and established caused early teams
to move too quickly through a critical evaluation of their application’s goals. Because
of this, we saw many graph projects fail and be shelved.

Let’s step through what we mean in Figure 1-3 to keep you from repeating the com‐
mon mistakes of early adopters of graph technologies.

12 | Chapter 1: Graph Thinking



Figure 1-3. Not every problem is a graph problem—the first decision you need to make

Question 1: Does your problem need graph data?
There are many ways of thinking about data. This first question in the decision tree
challenges you to understand the shape of data that your application requires. For
example, the mutual connections section on LinkedIn is a great example of a “yes”
answer to question 1 in Figure 1-3. LinkedIn uses relationships between contacts so
you can navigate your professional network and understand your shared connec‐
tions. Presenting a section of mutual connections to an end user is a very popular way
that graph shaped data is also used by Twitter, Facebook, and other social networking
applications.

When we say “shape of data,” we are referring to the structure of the valuable infor‐
mation you want to get out of your data. Do you want to know the name and age of a
person? We would describe that as a row of data that would fit into a table. Do you
want to know the chapter, section, page, and example in this book that shows you
how to add a vertex to a graph? We would describe that as nested data that would fit
into a document or hierarchy. Do you want to know the series of friends of your
friends that connect you to Elon Musk? Here you are asking for a series of relation‐
ships that best fit into a graph.

Making Technology Decisions to Solve Complex Problems | 13



Thinking top-down, we advise that the shape of your data drive the decision about
your database and technology options. The types of data commonly used in modern
applications are shown in Table 1-1.

Table 1-1. An abbreviated summary of common data types, their shapes, and recommended
types of databases

Data Description Data Shape Usage Database
Recommendation

Spreadsheets or
tables

Relational Retrieved by a
primary key

RDBMS databases

Collections of files or
documents

Hierarchical or
nested

Root identified by
an ID

Document databases

Relationships or links Graph Queried by a
pattern

Graph databases

For the most interesting data problems today, you need to be able to apply all three
ways of thinking about your data. You need to be fluent in applying each to your data
problem and its subproblems. For each piece of your problem, you need to under‐
stand the shape of the data coming into, residing within, and leaving your application.
Each of these points, and any time in which data is in flight, drives the requirements
for technology choices in your application.

If you are unsure about the shape of data that your problem requires, the next ques‐
tion from Figure 1-3 challenges you to think about the importance of relationships
within your data.

Question 2: Do relationships within your data help you understand your problem?
The more pivotal question from Figure 1-3 asks whether relationships within your
data exist and bring value to your business problem. A successful use of graph tech‐
nology hinges on applying this second question from the decision tree. To us, there
are only three answers to this question: yes, no, or maybe.

If you can confidently answer yes or no, then the path is clear. For example, Linke‐
dIn’s mutual connection section exemplifies a clear “yes” for graph-shaped data
whereas LinkedIn’s search box requires faceted search functionality and is a clear
“no.” We can make these clear distinctions by understanding the shape of data
required to solve the business problem.

If relationships within your data help solve your business problem, then you need to
use and apply graph technologies within your application. If they do not, then you

14 | Chapter 1: Graph Thinking



need to find a different tool. Maybe a choice from Table 1-1 will be a solution for your
problem at hand.

The tricky part comes into play when you aren’t exactly sure whether relationships
are important to your business problem. This is shown with the “Maybe?” choice at
left in Figure 1-3. In our experience, if your line of thinking brings you to this deci‐
sion point, then you are likely trying to solve too large of a problem. We advise that
you break down your problem and start back at the top of Figure 1-3. The most com‐
mon problem we advise teams to break down is entity resolution, or knowing who-is-
who in your data. Chapter 11 details an example of when to use graph structure
within entity resolution.

Common missteps in understanding your data
Sometimes, seeing the shape of your data as a graph can subsume the importance of
the other two data shapes: nested and tabular. Teams commonly misinterpret this red
herring.

While you may think about your problem as a complex problem and therefore
employ graph thinking to make sense of it, that does not mean you have to apply
graph technologies to all data components of your problem. In fact, it may be advan‐
tageous to project certain components or subproblems onto tables or nested docu‐
ments.

It will always be useful to think in projections (to files or tables). So our thought exer‐
cise in Figure 1-3 is more than “Which is the best way to think about your data?” It is
above delving into a more agile thought process to break down complex problems
into smaller components. That is, we encourage you to consider the best way to think
about your data for the current problem at hand.

The shortest version of what we are trying to say in Figure 1-3 is: use the right tool for
the problem at hand. And when we say “tool” here, we are thinking very broadly. We
aren’t necessarily using that term to refer to the choice of databases; we are thinking
more broadly about the scope of data representation choices.

So You Have Graph Data. What’s Next?
The first question from Figure 1-3 challenges you to apply query-driven design to
your data representation decisions. There may be parts of your complex problem that
are best represented with tables or nested documents. That is expected.

But what happens when you have graph data and need to use it? This brings us to the
second part of our graph thinking thought process, shown in Figure 1-4.

Making Technology Decisions to Solve Complex Problems | 15



Figure 1-4. How to navigate the applicability and usage of graph data within your
application

Moving forward, we are assuming that your application benefits from understanding,
modeling, and using the relationships within your data.

Question 3: What are you going to do with the relationships in your data?
Within the world of graph technologies, there are two main things you will need to
do with your graph data: analyze it or query it. Continuing the LinkedIn example, the
mutual connections section is an example of when graph data is queried and loaded
into view. LinkedIn’s research team probably tracks the average number of connec‐
tions between any two people, which is an example of analyzing graph data.

The answer to this third question divides graph technology decisions into two camps:
data analysis versus data management. The center of Figure 1-4 shows this question
and the decision flow for each option.

16 | Chapter 1: Graph Thinking



When we say analyze, we are referring to when you need to exam‐
ine your data. Usually, teams spend time studying the relationships
within their data with the goal of finding which relationships are
important. This process is different from querying your graph data.
Query refers to when you need to retrieve data from a system. In
this case, you know the question you need to ask and the relation‐
ships required to answer the question.

Let’s start with the option that moves to the right: the cases when you know your end
application needs to store and query the relationships within your data. Admittedly,
this is the least likely path today, due to the stage and age of the graph industry. But in
these cases, you are primed and ready to move directly to using a graph database
within your application.

From our collaborations, we have found a common set of use cases in which data‐
bases are needed to manage graph data. Those use cases are the topics of the upcom‐
ing chapters, and we will save them for later discussion.

Most often, however, teams know that their problems require graph-shaped data, but
they do not know exactly how to answer their questions or which relationships are
important. This is pointing toward needing to analyze your graph data.

From here, we challenge you and your team to take one more step in this journey.
Our request is that you think about the deliverables from analyzing your graph data.
Creating structure and purpose around graph analysis helps your team make more
informed choices for your infrastructure and tools. This is the final question posed in
Figure 1-4.

Question 4: What do you need the results for?
Topics in graph data analysis can range from understanding specific distributions
across the relationships to running algorithms across the entire structure. This is the
area for algorithms such as connected components, clique detection, triangle count‐
ing, calculating a graph’s degree distribution, page rank, reasoners, collaborative fil‐
tering, and many, many others. We will define many of these terms in upcoming
chapters.

We most often see three different end goals for the results of a graph algorithm:
reports, research, or retrieval. Let’s dig into what we mean by each of those options.

We are going into detail for all three options (reports, research, and
retrieval) because this is what most people are doing with graph
data today. The remaining technical examples and discussion in
this book are focused primarily on when you have decided you
need a graph database.

Making Technology Decisions to Solve Complex Problems | 17



First, let’s talk about reporting. Our use of the word reports refers to the traditional
need for intelligence and insights into your business’s data. This is most commonly
referred to as business intelligence (BI). While debatably misapplied, the deliverables
of many early graph projects aimed to provide metrics or inputs into an executive’s
established BI pipeline. The tools and infrastructure you will need for augmenting or
creating processes for business intelligence from graph data deserve their own book
and deep dive. This book does not focus on the architecture or approaches for BI
problems.

Within the realm of data science and machine learning, you find another common
use of graph algorithms: general research and development. Businesses invest in
research and development to find the value within their graph-shaped data. There are
a few books that explore the tools and infrastructure you will need for researching
graph-structured data; this book is not one of them.

This brings us to the last path, labeled “retrieval.” In Figure 1-4, we are specifically
referencing those applications that provide a service to an end user. We are talking
about data-driven products that serve your customers. These products come with
expectations around latency, availability, personalization, and so on. These applica‐
tions have different architectural requirements than applications that aim to create
metrics for an internal audience. This book will cover these topics and use cases in
the coming technology chapters.

Think back to our mention of LinkedIn. If you use LinkedIn, you have likely interac‐
ted with one of the best examples we can think of to describe the “retrieval” path in
Figure 1-4. There is a feature in LinkedIn that describes how you are connected to
any other person in the network. When you look at someone else’s professional pro‐
file, this feature describes whether that person is a 1st-degree, 2nd-degree, or 3rd-
degree connection. The length of the connection between you and anyone else on
LinkedIn tells you useful information about your professional network. This
LinkedIn feature is an example of a data product that followed the retrieval path of
Figure 1-4 to deliver a contextual graph metric to the end users.

The lines between these three paths can be blurry. The difference lies between build‐
ing a data-driven product or needing to derive data insights. Data-driven products
deliver unique value to your customers. The next wave of innovation for these prod‐
ucts will be to use graph data to deliver more relevant and meaningful experiences.
These are the interesting problems and architectures we want to explore throughout
this book.

Break it down and try again
Occasionally you may respond to the questions throughout Figure 1-3 and Figure 1-4
with “I don’t know”—and that is OK.

18 | Chapter 1: Graph Thinking



Ultimately, you are likely reading this book because your business has data and a
complex problem. Such problems are vast and interdependent. At your problem’s
highest level, navigating the thought process we are presenting throughout Figure 1-3
and Figure 1-4 can seem out of touch with your complex data.

However, drawing on our collective experience helping hundreds of teams around the
world, our advice remains that you should break down your problem and cycle
through the process again.

Balancing the demands of executive stakeholders, developer skills, and industry
demands is extremely difficult. You need to start small. Build a foundation upon
known and proven value to get you one step closer to solving your complex problem.

What happens if you ignore making a decision? Too often, we have
seen great ideas fail to make the transition from research and
development to a production application: the age-old analysis para‐
lysis. The objective of running graph algorithms is to determine
how relationships bring value to your data-driven application. You
will need to make some difficult decisions about the amount of
time and resources you spend in this area.

Seeing the Bigger Picture
The path to understanding the strategic importance of your business’s data is synony‐
mous with finding where (and whether) graph technology fits into your application.
To help you determine the strategic importance of graph data for your business, we
have walked through four very important questions about your application develop‐
ment:

1. Does your problem need graph data?
2. Do relationships within your data help you understand your problem?
3. What are you going to do with the relationships in your data?
4. What do you need to do with the results of a graph algorithm?

Bringing these thought processes together, Figure 1-5 combines all four questions
into one chart.

Making Technology Decisions to Solve Complex Problems | 19



Figure 1-5. The decision process that sparked the creation of this book: how to navigate
the applicability and usage of graph technology within your application

We spent time walking through the entire decision tree for two reasons. First, the
decision tree depicts a complete picture of the thought process we use when we build,
advise on, and apply graph technologies. Second, the decision tree illustrates where
this book’s purpose fits into the space of graph thinking.

That is, this book serves as your guide to navigating graph thinking in the paths
throughout Figure 1-5 that end in needing a graph database.

Getting Started on Your Journey with Graph Thinking
When properly leveraged, your business’s data can be a strategic asset and an invest‐
ment that yields a return. Graphs are of particular importance here since network
effects are a powerful force that provides exquisite competitive advantage. Addition‐
ally, today’s design thinking encourages architects to view their business’s data as
something that needs to get managed with maximal convenience and minimal cost.

This mindset requires a rethinking of how we handle and work with data.

Changing a mindset is a long journey, and any journey begins with one step. Let’s take
that step together and learn the new set of terms we will be using along the way.

20 | Chapter 1: Graph Thinking



CHAPTER 2

Evolving from Relational to Graph Thinking

Together over the years, we have advised hundreds of teams on where and how to get
started with graph data and graph technologies. From our conversations with those
teams, we assembled the most common questions and advice for introducing graph
thinking and graph data into your business.

We want to start your journey toward graph thinking with the following three ques‐
tions that every team will encounter when evaluating graph technologies:

1. Is graph technology better for my problem than relational technology?
2. How do I think about my data as a graph?
3. How do I model a graph’s schema?

Those teams that spend the time up-front to understand these three topics are more
likely to successfully integrate graph technologies into their stack. Conversely, from
our experience, businesses shelved early-stage graph projects because their teams
skipped through collectively understanding these questions for their business.

Chapter Preview: Translating Relational Concepts to
Graph Terminology
The three questions in the opening section form the outline of this chapter.

We will start off with an abbreviated tour of the differences between relational and
graph technologies. Then we will walk through an abbreviated tour of relational data
modeling. From the model, we will translate the relational concepts to graph model‐
ing techniques and take a short tour of some fundamental terms from graph theory.

21



We will also introduce the Graph Schema Language (GSL), a language (or tool) that
helps you translate a visual graph schema into code. We created the GSL to help you
answer questions 2 and 3 from the beginning of the chapter. Throughout this book,
we will use the GSL as a teaching tool to translate a diagram into schema statements.

Inevitably, you are going to have to make some tough decisions about whether,
where, and how to introduce graph thinking and technology into your workflow. In
this chapter, we are going to introduce tools and techniques to help you navigate a
large pool of technical opinions. The foundations we provide here will help you eval‐
uate whether graph technology is the right choice for your next application.

The concepts and technology decisions introduced in this chapter will serve as the
foundational material for our future examples. We are using this chapter to clearly
illustrate the vocabulary that we will use to describe graph database schema and
graph data in the examples throughout this book.

The introduction of graph data into your application brings a new paradigm of think‐
ing about what is important within your data. Understanding the differences in these
principles starts with evolving your mindset from relational to graph thinking.

Relational Versus Graph: What’s the Difference?
So far we have mentioned two different technologies: relational and graph. When we
talk about relational systems, we are referring to organizing your data in a way that
focuses on the storage and retrieval of real-world entities such as people, places, and
things. When we talk about graph systems, we are referring to systems that focus on
the storage and retrieval of relationships. These relationships represent the connec‐
tions between real-world entities: people know people, people live in places, people
own things, and so on.

Both systems can represent entities and relationships alike, but are built and opti‐
mized for one over the other.

The line between selecting a relational system or selecting a graph system for your
application is gray; each choice has benefits and drawbacks. Choosing between a rela‐
tional database and a graph database typically generates a conversation about storage
requirements, scalability, query speed, ease of use, and maintainability. While any
aspect of such a conversation is worth discussing, we aim to shed light on the more
subjective criteria: ease of use and maintainability.

22 | Chapter 2: Evolving from Relational to Graph Thinking



Even though the words relational and relationships are very simi‐
lar, we use them explicitly to refer to two different types of technol‐
ogies. The word relational describes a type of database, like Oracle,
MySQL, PostgreSQL, or IBM Db2. These systems were created to
apply a specific field of mathematics to data organization and rea‐
soning—namely, relational algebra. On the other hand, we use the
word relationship solely in reference to graph data and graph tech‐
nologies. These systems were created to apply a different field of
mathematics to data organization and reasoning—namely, graph
theory.

Choosing between relational and graph technologies can be difficult because you can‐
not compare them at a feature-functionality level. Their differences can be traced to
their cores as a result of their being built on distinct mathematical theories: relational
algebra for relational systems and graph theory for graph systems. That means the
suitability of each technology depends to a large degree on the applicability of those
theories and their associated lines of thinking to your problem.

We are going to drill a little further into the differences between relational and graph
technologies in the following sections, for two reasons. First, since most people are
familiar with relational thinking, we can introduce graph thinking in contrast to rela‐
tional thinking. Second, we want to provide a response to the inevitable question,
“Why not just use an RDBMS?” Both of these reasons are important to explore in the
context of understanding graph technology because relational systems are very
mature and widely adopted.

Throughout this book, we will use data to illustrate concepts, examples, and new ter‐
minology. Let’s start with the data that we will be using in this chapter to illustrate the
differences between relational and graph concepts. You will see this data in the exam‐
ple that spans Chapters 3, 4, and 5.

Data for Our Running Example
We will use the data in Table 2-1 to construct relational and graph data models.

For our first use case, the data describes several customers’ assets in the financial
services industry. The customers can share accounts and loans, but a credit card can
be used by only one customer.

Let’s look at a few rows of the data. Table 2-1 displays data about five customers.
These five customers and their data will be used to build data models and illustrate
new concepts throughout this chapter and the next three chapters.

Relational Versus Graph: What’s the Difference? | 23



Table 2-1. A sample of the data created to illustrate the concepts, examples, and terminology
in the next two chapters

customer_id name acct_id loan_id cc_num
customer_0 Michael acct_14 loan_32 cc_17

customer_1 Maria acct_14 none none

customer_2 Rashika acct_5 none cc_32

customer_3 Jamie acct_0 loan_18 none

customer_4 Aaliyah acct_0 [loan_18, loan_80] none

There are five unique customers in the five rows of sample data shown in Table 2-1.
Some of these customers share accounts or loans to illustrate different types of users
we typically see in a financial services system.

For example, customer_0 and customer1, or Michael and Maria, represent a typical
parent-child relationship; Michael is the parent, and Maria is the child. The data
about customer_2, Rashika, indicates they are a sole user of this financial service. We
usually see the highest volume of this type of user in large applications; customers like
Rashika only have data that is unique to the customer and is not shared by anyone
else. Last, customer_3 and customer_4 (Jamie and Aaliyah) share an account and a
loan. This type of data typically indicates that the users are partners who have joined
their financial accounts.

If this were your company’s sample data, imagine the conversation you might have
with your coworker about modeling this data. In this scenario, you are sharing a
whiteboard, or other illustrative tool, and you are trying to map out the entities,
attributes, and relationships within the data. Whether or not you use a relational or
graph system, you likely would be having a discussion similar to the conceptual
model in Figure 2-1.

From Table 2-1, we find four main entities: customers, accounts, loans, and credit
cards. These entities each have relationships tied to the customer. Customers can
have multiple accounts, and those accounts can have more than one customer.
Customers can also have multiple loans, and those loans can have more than one cus‐
tomer. Finally, customers can have multiple credit cards, but each credit card is
unique to one customer.

24 | Chapter 2: Evolving from Relational to Graph Thinking



1 Carlo Batini, Stefano Ceri, and Shamkant B. Navathe, Conceptual Database Design: An Entity-Relationship
Approach, vol. 116 (Redwood City, CA: Benjamin/Cummings, 1992).

Figure 2-1. A conceptual description of the relationships observed in the data in
Table 2-1

Relational Data Modeling
Your transition from relational to graph thinking starts with data modeling. Under‐
standing data modeling in these two systems begins to illustrate why graph technolo‐
gies can be a better fit.

For anyone who has been a database practitioner, you’ve probably been introduced to
visual ways of modeling data in a relational system. The most popular choices for cre‐
ating relational data models are to use the unified modeling language (UML) or to use
entity-relationship diagrams (ERDs).

In this section, we will use the example data from Table 2-1 to complete an abbrevi‐
ated walk-through of relational data modeling with an ERD. We have included just
enough information in this section to provide a first step from relational to graph
thinking. This is not intended to be used as a full introduction into the world of rela‐
tional data modeling. We recommend the seasoned book by C. Batini et al.1 for com‐
plete details on relational data modeling. And for those of you who are very
comfortable with third normal form, you can skip this next bit and head directly to
“The Graph Schema Language” on page 33.

Relational Data Modeling | 25



Entities and Attributes
Generally speaking, data modeling techniques help you describe the real world by
describing the entities and their attributes within your data. Each of those concepts
has a specific meaning:

Entity
An entity is an object such as a person, place, or thing that you need to track in
your database.

Attribute
An attribute refers to a property of an entity such as names, dates, or other
descriptive features.

The traditional approach for relational data modeling starts with identifying the enti‐
ties (people, places, and things) in your data and the attributes (names, identifiers,
and descriptions) of those entities. Entities could be customers, bank accounts, or
products. Attributes are concepts such as a person’s name or bank account number.

For this exercise in data modeling, let’s start by modeling two entities from Table 2-1:
customers and bank accounts. In a relational system, we traditionally view the entities
as tables. This is illustrated in Figure 2-2.

Figure 2-2. The traditional approach to modeling the data within your application: iden‐
tifying the entities and their attributes

There are two main concepts shown in Figure 2-2: entities and their respective
attributes. There are two entities in this diagram: customers and accounts. For each
entity, there is a list of attributes that describe the entity. A customer can be described
by a unique identifier, name, birthdate, and so on. There are also descriptive
attributes for accounts: a unique account identifier and the date the account was
created.

In a relational database, each entity becomes a table. The rows of the table contain
sample data about that entity, and each column contains values for the descriptive
attributes.

26 | Chapter 2: Evolving from Relational to Graph Thinking



Building Up to an ERD
In the real world, customers own accounts. The next step in designing a relational
database would be to conceptually model this connection. We need to add to our
model a way to describe how a person owns a bank account. A popular method for
modeling the link from customers to accounts is shown in Figure 2-3.

Figure 2-3. An entity-relationship diagram for customers and bank accounts

One visual element that we added between Figure 2-2 and Figure 2-3 is the diamond
that connects the person and account entity tables. This connection indicates that
there is a link between customers and accounts in the database. Namely, customers
own accounts.

The image’s other visual details include the double lines between the person table and
the owns connection. Here we see an n, with an m on the opposite side of the owns
connection. This notation indicates that this is a many-to-many connection between
customers and accounts. Specifically, this translates to the idea that one person can
own many accounts and that one account can be owned by many customers.

The following nuance about the implementation details is important: links that are
shown in ERDs translate to tables or foreign keys. That is, the connections between
customers and their accounts are stored as a table within a relational system. This
means that the owns table essentially translates to another entity in the database.

Using tables to represent the connections within your data as enti‐
ties makes it more difficult to understand the links within your
data. The mental leap from natural understanding to tabular
retrieval is a significant mental hurdle to overcome. This is espe‐
cially true when you need to understand the connectedness of your
data.

Even though we have been forced to think this way for decades, there are better ways.

Let’s revisit the data from Table 2-1. However, this time we are going to use the data
to illustrate concepts in graph data, followed by how we will model the data in a
graph database.

Relational Data Modeling | 27



Concepts in Graph Data
We will use this section to introduce useful terminology from the graph theory com‐
munity. These terms are used to describe the connectivity of the graph data. Let’s vis‐
ualize the graph data about the first three people from our sample data.

The data visualized in Figure 2-4 will be used to illustrate the fundamental concepts
in the rest of this section. This data contains information about three people: Michael,
Maria, and Rashika. Michael and Maria share an account, as seen in Figure 2-4.
Rashika does not share any data with the other two customers in our example.

Figure 2-4. A look at the graph data we will use to introduce new graph terminology in
this chapter

Fundamental Elements of a Graph
The first concepts we need to introduce are the fundamental elements of graphs and
graph data and their definitions. These terms are used across all members of the
graph community and are accepted as the fundamental elements of a graph.

Graph
A graph is a representation of data with two distinct elements: vertices and edges.

Vertex
A vertex (pl. vertices) represents a concept or entity in data.

Edge
An edge represents a relationship or link from one vertex to another.

28 | Chapter 2: Evolving from Relational to Graph Thinking



You have already seen the fundamental elements we are talking about. Our financial
data from Figure 2-4 contains four conceptual entities: customers, accounts, credit
cards, and loans. These entities naturally translate into the vertices of our graph.

We avoid the term nodes in this book because we are focusing on
distributed graphs, and nodes has different meanings in distributed
systems, graph theory, and computer science.

Next, we use edges to connect our vertices. These connections illustrate the relation‐
ships that exist between the pieces of data. In graph data, an edge connects two verti‐
ces as an abstract representation of a relationship between the two objects.

For this data, we will use edges to show the relationship between a person and their
financial data. We model the data to say that the customer owns accounts, the cus‐
tomer owes loans, and the customer uses credit cards. The edges in the graph data‐
base become the relationships of owns, owes, and uses.

Together, all of the vertices and edges in the data represent the full graph.

Adjacency
While there are many foundational topics in graph theory to explore, the term to
start with is adjacency. You will find this term used throughout graph theory to talk
about how data is connected. Essentially, adjacency is the mathematical term used to
describe whether vertices are connected to each other. Formally, it is defined as
follows:

Adjacency
Two vertices are adjacent if they are connected by an edge.

In Figure 2-4, Maria is adjacent to acct_14. Also, we see that both Michael and Maria
are adjacent to acct_14 because they both own that account. The benefit to using
graph data in your application is immediately apparent when you can see how differ‐
ent entities are related in a way that you may not have previously seen.

The idea of adjacency will come up many more times throughout this book, in topics
ranging from the connectedness of data to different storage formats on disk. For now,
it is important to know only that this popular term refers to how vertices are connec‐
ted.

Concepts in Graph Data | 29



Neighborhoods
Data that is connected forms communities. In graph theory, these communities are
called neighborhoods.

Neighborhood
For a vertex v, all vertices that are adjacent to v are said to be within the neigh‐
borhood of v, written N(v). All vertices within a neighborhood are neighbors of
v.

Figure 2-5 shows the concept of graph neighborhoods starting from customer_0,
Michael. In this sample data, the vertices cc_17, loan_32, and acct_14 are directly
connected, or adjacent, to Michael. We call this the first neighborhood of customer_0.

Figure 2-5. A visual example of graph neighborhoods starting from customer_0

You can continue this concept by walking further away from the starting vertex. The
second neighborhood consists of those vertices that are two edges away from Michael;
Maria is in the second neighborhood of Michael. It also works to say the reverse, that
Michael is in the second neighborhood of Maria. This can continue on throughout
the graph as we walk through the full depth of vertices from a singular starting point.

Distance
The concept of neighborhoods brings us to distance. Another way to talk about the
connectedness of this sample data is to say how many steps it takes to walk from one
vertex to another. Talking about Michael’s first or second neighborhood is the same
as finding all vertices that are a distance of 1 or 2 from Michael.

30 | Chapter 2: Evolving from Relational to Graph Thinking



Distance
In graph data, distance refers to the number of edges that you have to walk
through to get from one vertex to another.

In Figure 2-5, we selected the starting point as the vertex Michael. The vertices cc_17,
loan_32, and acct_14 are in Michael’s first neighborhood, which is the same as a dis‐
tance of 1 from Michael.

In mathematical communities, you will see this written as dist(Michael, cc_17) =
1. That also means that everything in the second neighborhood from your starting
point is two edges away, and so on—specifically, dist(Michael, Maria) = 2.

Degree
The ideas of adjacency, neighborhoods, and distance help us understand if two pieces
of data are connected. For many applications, it is especially useful to understand how
well a piece of data is connected to its neighbors.

The difference between if and how well data is connected introduces a new term from
the math community: degree.

Degree
A vertex’s degree is the number of edges that are incident to (i.e., touch) the
vertex.

In other words, we talk about a vertex’s degree in reference to the number of edges
that touch that vertex.

Recall Figure 2-4 as we walk through the upcoming examples. In that figure, we see
that there are three edges that connect Michael to cc_17, loan_32, and acct_14. We
apply this to say that the degree of Michael is three, or deg(Michael) = 3.

In this data, we have two vertices that have a degree of two. Specifically, acct_14 is
adjacent to Michael and Maria, so it has a degree of two. On the right side of the
image, we see that Rashika also has only two edges. That means that Rashika has a
degree of two.

There are a total of five vertices in our example data that have a degree of one. They
are loan_32, cc_17, Maria, cc_32, and acct_5.

In graph theory, a vertex with a degree of one is called a leaf.

Concepts in Graph Data | 31



We also break down a vertex’s degree into two subcategories according to whether the
edge starts at or ends with that particular vertex. Let’s introduce two new terms that
describe these categories.

In-degree
A vertex’s in-degree is the total number of incoming edges that are incident to (or
touch) the vertex.

Out-degree
A vertex’s out-degree is the total number of outgoing edges that are incident to (or
touch) the vertex.

Let’s apply these definitions to the examples we just walked through.

All three of Michael’s edges start at Michael and end at other vertices: cc_17,
loan_32, and acct_14. Therefore, we say that the out-degree of Michael is three
because all three of the edges are outgoing.

The in-degree of acct_14 is two because it has incoming edges from Michael and
Maria. Both of Rashika’s edges are outgoing edges, so we say that Rashika has an out-
degree of two.

The in-degree of cc_17 is one because the edge is incoming; the same is true for
loan_32, cc_32, and acct_5. Maria has an out-degree of one because its one edge is
an outgoing edge to acct_14.

Implications of vertex degree
Data scientists and graph theorists use a vertex’s degree to understand the type of
connections found within the graph data. One of the places to start is to find the most
highly connected vertices within your graph.

Depending on the application, vertices of very high degree can be thought of as hubs
or highly influential entities.

It is useful to find these highly connected vertices because there are performance
ramifications when they are stored or queried in a graph database. To a graph data‐
base practitioner, vertices of extremely high degree (>100,000 edges) are known as
supernodes.

For the purposes of this section, we want to illustrate how to apply and interpret
graph structure in your application. We will get into the performance details of highly
connected vertices in Chapter 9, where we formally define supernodes, reason about
their influence in your database, and step through mitigation strategies.

Recall that we opened this chapter with three questions. Everything up until now
addressed the first two of those questions. The final section of this chapter introduces

32 | Chapter 2: Evolving from Relational to Graph Thinking



a tool to teach you how to model graph schema by translating visual diagrams into
code. Let’s dive in.

The Graph Schema Language
Graph practitioners, academics, and engineers have generally agreed on terms and
methods for illustrating graph data. However, the terms are used confusingly across
the technical and academic communities. There are words that mean one thing to a
graph database practitioner and something different to a graph data scientist.

To address confusion across the communities, in this book we are introducing and
formalizing terminology to describe graph schema. This language is called the Graph
Schema Language, or GSL. The GSL is a visual language for applying concepts to cre‐
ate graph database schema.

We created the GSL as a teaching tool to use throughout the examples in this book.
Our purpose in creating, introducing, and using the GSL is to normalize how graph
practitioners communicate conceptual graph models, graph schema, and graph data‐
base design. To us, this set of terminology and visual illustrations complements the
graph languages popularized by the academic community and the standardization
initiatives within the graph community.

We will use the visual cues and terminology described in this section throughout the
conceptual graph models used in this book. We hope the many upcoming examples
are good practice for translating a visual schematic into schema code.

Vertex Labels and Edge Labels
The fundamental elements of graph data—vertices and edges—give us the first terms
of the Graph Schema Language (GSL): vertex labels and edge labels. Where relational
models use tables to describe the data in Figure 2-3, we use vertex labels and edge
labels to describe a graph’s schema.

Vertex label
A vertex label is a set of objects that are semantically homogeneous. That is, a
vertex label represents a class of objects that share the same relationships and
attributes.

Edge label
An edge label names the type of relationship between vertex labels in your data‐
base schema.

In graph modeling, we label each entity with a vertex label and describe the relation‐
ship between entities with an edge label.

The Graph Schema Language | 33



Generally speaking, vertex labels describe entities in your data that share attributes of
the same type and relationships of the same label. Edge labels describe relationships
between vertex labels.

The terms vertices and edges are used in reference to data. To
describe a database’s schema, we use the terms vertex labels and
edge labels.

For the data from Table 2-1, we would model the same customer and account with
the conceptual graph model shown in Figure 2-6. This conceptual graph model looks
very similar to the ERD from Figure 2-3, but with the translation to using the first
two terms of GSL.

Figure 2-6. A graph model showing the vertex and edge labels for customers and bank
accounts

In the GSL, a vertex label is illustrated with a circle containing the label’s name.
Figure 2-6 shows this for the Customer and Account vertex labels. An edge label is
illustrated with a named line between two vertex labels. We see this in Figure 2-6 with
the owns edge label between the Customer and Account vertex labels. When we look
at this illustration, we infer that a customer has a relationship to an account; specifi‐
cally, the customer owns the account. We will get into an edge’s direction later, in
“Edge Direction” on page 35.

Properties
Where relational models use attributes to describe the data in Figure 2-3, properties
describe data in graph modeling. That is, where we had attributes before, we have
properties in a graph model.

Property
A property describes features of a vertex label or an edge label, such as names,
dates, or other descriptive features.

34 | Chapter 2: Evolving from Relational to Graph Thinking



In Figure 2-7, each vertex label has a list of properties associated with it. These prop‐
erties are the same attributes from the relational ERD in Figure 2-3. A customer ver‐
tex is described by its unique identifier, name, and birthdate. An account is described
with its account ID and created date, as before. We add an edge label of owns to
describe the relationship between the two entities in this data model.

Figure 2-7. A graph model for customers and bank accounts

Note that the term property applies to concepts in graph schema
and graph data.

Edge Direction
The next modeling concept defined in the GSL is an edge’s direction. When we set up
our edge labels in our data model, we connected the vertex labels together in a way
that follows how we would naturally talk about the data; we would say that a cus‐
tomer owns an account, and we modeled the data in our graph that way. This also
gives each edge a direction.

There are two ways in which you can model the direction of an edge: directed and
bidirectional.

Directed
A directed edge goes one way: from one vertex label to the other vertex label.

Bidirectional
A bidirectional or bidirected edge goes in both directions between the vertex
labels.

Using GSL, we indicate the direction of an edge with an arrow at either one end or
both ends of the edge line. This is illustrated in Figure 2-8 with the arrow below the
edge label.

The Graph Schema Language | 35



Figure 2-8. The use of a line with a single arrow to indicate that an edge label is directed

We would say that our example in Figure 2-8 shows a directed edge label. We have an
edge label that goes from the customer to an account. This edge label uses a directed
edge to model that a customer owns an account.

On the other hand, it might be useful to model our data in the opposite direction.
One way to do this is by adding a second directed edge from the account to the cus‐
tomer. This edge indicates that the account is owned by the customer, like in
Figure 2-9. We say that all of the edges in Figure 2-9 are directed because they go only
one way.

Figure 2-9. The use of two different directed edge labels to allow walking in both direc‐
tions between customers and accounts

An edge label’s direction comes from how we communicate about our data. When
you describe your data, you use a subject, a predicate (i.e., a verb), and an object to
communicate about your domain. To see this, consider how you would describe the
sample data we have been using so far in this chapter. You likely are thinking some‐
thing like “customers own accounts” or “bank accounts are owned by customers.” In
the first phrase, the subject is “customers,” the predicate is “owns,” and the object is
“accounts.” This gives us a source vertex label, Customer, and a destination vertex
label, Account; the predicate “owns” translates to an edge label and has a direction
from the customer to their account. We can follow a similar process for the second
phrase to derive an edge label of “owned_by” from Account to Customer.

Loosely speaking, the identification of the subject, predicate, and object of your
description creates an edge label’s direction. The subject is the first vertex label and is
where an edge starts. In the GSL, we call this the domain. Then the predicate becomes
your edge label. Last, the object is the destination or range of an edge label. This
means the edge label comes from the domain and goes to the range. This gives us two
new terms:

36 | Chapter 2: Evolving from Relational to Graph Thinking



Domain
The domain of an edge label is the vertex label from which the edge label origi‐
nates or starts.

Range
The range of an edge label is the vertex label to which the edge label points or
ends.

The last concept to illustrate in this section is a bidirectional edge. For the data we
have talked about so far, it doesn’t exactly make semantic sense to have an edge label
that goes in both directions. That is, it is meaningful to say that a customer owns an
account, but it doesn’t make sense to say “an account owns a customer.” We have to
change the edge label to say “an account is owned by a customer.”

To best illustrate an edge label that is bidirectional, let’s add relationships between
customers into our example. Specifically, let’s add an edge label that connects custom‐
ers who are family members. This is a better example to illustrate a bidirectional edge
label and is shown in Figure 2-10.

Figure 2-10. The use of a line with two arrows to indicate that an edge label is bidirec‐
tional

In this model, we are indicating that customers can be family members of other cus‐
tomers. We interpret this type of relationship as a reciprocal relationship: if you are a
family member to someone else, they are also your family member. We model this in
the GSL using a line with an arrow on both ends and say that this edge label is bidir‐
ectional or bidirected.

In graph theory, a bidirected edge is the same thing as an undirec‐
ted edge. That is, modeling a relationship in both directions is
essentially the same as not having any specific direction. However,
in the context of this book, we are using relationships between data
to provide meaning to an application and therefore have to con‐
sider an edge’s direction.

When first encountering direction, it can be a tricky concept to wrap your head
around. In graph development, one of the best ways to think about direction comes
from how you speak about your data. We recommend creating a description of your
data and identifying how you would explain the relationships within it. This helps

The Graph Schema Language | 37



mentally translate your conceptual understanding of your data’s relationships into an
edge label’s direction.

Self-Referencing Edge Labels
Without explicitly calling it out, we introduced a new concept in Figure 2-10 that we
would like to define now. If an edge starts and ends on the same vertex label, we say
that is a self-referencing edge label. In the GSL, we would draw and notate this as seen
in Figure 2-11.

Self-referencing
A self-referencing edge label is where the edge label’s domain and range are the
same vertex label.

Figure 2-11. The use of an edge label in the GSL to indicate a bidirectional, self-
referencing edge

Figure 2-11 is the correct way to illustrate an edge label that starts and ends on the
same vertex label. We say that this is a self-referencing edge label. In the case of
Figure 2-11, it is also a bidirected edge label. However, not all self-referencing edge
labels are bidirected.

You will see an example of a directed, self-referencing edge label in
an upcoming chapter. This is the case when you need to model a
recursive relationship—specifically, when something is contained
within something else, or when you have a parent-child
relationship.

Multiplicity of Your Graph
When you start diving into data modeling with graphs, you will probably want a way
to indicate how many relationships can exist between different vertex labels in your
graph.

We have some good news on this topic. There is only one option for describing the
number of relationships in most graph models: many.

38 | Chapter 2: Evolving from Relational to Graph Thinking



2 James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling Language Reference Manual, vol. 2
(Reading, MA: Addison-Wesley, 1999).

In DataStax Graph and in most other graph databases, all edge labels represent many-
to-many relationships. Meaning, any vertex can have many other vertices connected
to it by a particular edge label. In an ERD, this is called many-to-many; in UML you
use 0..* to 0..*. Sometimes, this is also referred to as an m:n relationship within the
relational community.

We use the term multiplicity to describe this concept:

Multiplicity
Multiplicity is a specification of the range of allowable sizes that a group may
assume. Namely, multiplicity describes the range of allowable sizes that the group
of vertices adjacent to a given vertex along a particular edge label may assume.2

The actual size of the set or collection is referred to as cardinality.
Cardinality is defined as the finite number of elements in a particu‐
lar set or collection.

For correctness and clarity, we exclusively use the term multiplicity when talking
about modeling edge labels within a graph schema. Let’s dig a little deeper into the
two options available when you apply the definition of multiplicity in your graph
model.

Modeling multiplicity in the GSL
The application of multiplicity to your graph’s schema comes down to understanding
the different kinds of groups of adjacent vertices that are possible. There are only two:
a set or a collection.

Set
A set is an abstract data type that stores unique values.

Collection
A collection is an abstract data type that stores nonunique values.

In a set of adjacent vertices, there can be only one instance of a vertex. In a collection
of adjacent vertices, there could be many instances of a vertex. We illustrate the dif‐
ference between these concepts in Figure 2-12.

The Graph Schema Language | 39



Figure 2-12. The two options for applying multiplicity to the group of adjacent vertices
for a specific edge label

The graph on the left in Figure 2-12 shows that the group of vertices adjacent to
Michael is a set: {acct_0}. This means that we want to have at most one edge
between a customer and an account in our database. The graph on the right in
Figure 2-12 shows that the group of vertices adjacent to Michael is a collection:
[acct_0, acct_0]. This means that we want to have many edges between a customer
and an account in our database. An example of when you would like many edges is
when you want to represent that a customer is both administrator and user of an
account.

The most likely occasion for needing to decide about the multiplic‐
ity type is when you are modeling time on your edges. Do you want
only the most recent edge in your database? Then you are thinking
of your edge as a set. Do you want all of your edges over time?
Then you are thinking of your edges as a collection. We will cover
time on edges in Chapters 7, 9, and 12.

Let’s look at how we would model the differences between the two graphs from
Figure 2-12 in the GSL.

Figure 2-13 shows how we use a single line in the GSL to illustrate that we want to
have at most one edge between two vertices.

40 | Chapter 2: Evolving from Relational to Graph Thinking



Figure 2-13. In the GSL, we use a single line to indicate when the group of adjacent ver‐
tices needs to be a set

In order to be able to model many edges between two vertices, we need a way for one
edge to be different from another edge. In Figure 2-12, we added the role property to
the edge so that each edge is different. Figure 2-14 shows how we use a double line
and a property value in the GSL to illustrate that we want to have many edges
between two vertices.

Figure 2-14. In the GSL, we use a double line to indicate when the group of adjacent
vertices needs to be a collection

The trick to understanding multiplicity lies in understanding your data. If you need
to have multiple edges between two vertices—because you need the group of connec‐
ted vertices to be a collection rather than a set—then you need to define a property on
the edge that makes it unique.

Full Example Graph Model
Using GSL, the data from Table 2-1 translates into the conceptual graph model shown
in Figure 2-15.

The Graph Schema Language | 41



Figure 2-15. The starting point for our first example: a basic model for customer data
from financial services

We refer to the image in Figure 2-15 as a conceptual graph model. This model creates
your graph database schema. This conceptual graph model shows a customer and
three different pieces of data related to the customer. These four entities translate to
four separate vertex labels: Customer, Account, Loan, and CreditCard.

These four pieces of data are related in three ways: customers own accounts, use
credit cards, and owe loans. This creates three edge labels in the conceptual graph
model: owns, uses, and owes, respectively. All three edge labels are directed; there are
no bidirectional edge labels in this example. Further, we see that the edge labels uses
and owes will have at most one edge between two vertices, whereas owns can have
many edges.

The final piece of Figure 2-15 to explore is the properties shown on each vertex label.
These are the properties that we can find in the data from Table 2-1. A Customer has
two properties: customer_id and name. The Account, CreditCard, and Loan vertex
labels each have only one property: acct_id, cc_num, and loan_id, respectively. In
each case, the property is the unique identifier for the data.

It is important to understand the difference between Figure 2-15 and the instance
data we showed in Figure 2-4. Figure 2-15 shows the conceptual graph model for
your database schema using GSL. Figure 2-4 shows what the data will look like in
your graph database.

42 | Chapter 2: Evolving from Relational to Graph Thinking



Relational Versus Graph: Decisions to Consider
The most difficult evaluations of relational versus graph technologies are those that
intertwine techniques for database modeling with those of data analysis. We want to
conclude with a few notes on each of those topics to set you up for more effective
evaluation processes.

Data Modeling
Graph data modeling is very similar to relational data modeling; the main difference
is in the consideration of relationships between entities. Graph technology is opti‐
mized for relationship-first data organization so as to provide direct access to an enti‐
ty’s relationships in the database. Given this, you will want to explore graph
technology if the relationships between your entities are the most important features
of your data.

In contrast to relational technology, graph technology was created to minimize the
transition from mental model to data storage and retrieval. With graph technologies,
the conceptual data model is the actual physical data model. That is, you don’t have to
specifically do any physical data modeling, as the graph database optimizes the stor‐
age and physical layout based on the logical model alone. This is achieved by storing
the edges for a vertex in structures that give direct access to the edges associated to a
vertex.

In our experience, the shorter translation from mental model to data storage is one of
the primary reasons architects are turning from relational to graph technologies.
When using graph technology, you can draw one image that represents both the con‐
ceptual understanding and the physical organization of your data. This shorter inter‐
pretation from conceptual to physical data organization creates a more powerful way
to envision, discuss, and apply the relationships within your data. Without graph
thinking and technology, this was previously unachievable.

Understanding Graph Data
Applied graph theory empowers the appeal of using graph technology in your appli‐
cation. Graph technology gives you the means to understand both if and how well
your data is connected. Specifically, concepts such as neighborhoods and degree open
up to a new understanding about your data that is not possible with relational
technologies.

The nuances between the worlds of graph schema and graph data are very important.
Introducing graph technology to your team comes with a learning curve of new
terms, concepts, and applications. One of the most effective ways to keep yourselves
from being blocked is to understand which concepts apply to database modeling and
which apply to data analysis at the application level.

Relational Versus Graph: Decisions to Consider | 43



Mixing Database Design with Application Purpose
We have learned from our experiences that teams often confuse concepts about graph
data analysis and graph schema. As we see it, interchanging terms from graph schema
and graph data is the same as confusing the following two concepts: pie charts and
foreign key constraints.

Let’s unpack that.

Relational technologies are great for setting up a database that creates reports and
summaries of data, like pie charts. Something like a pie chart visualizes a metric
about the data. The application (the pie chart) is a completely different, and unrela‐
ted, concept from relational schema design, like selecting foreign key constraints
between tables.

An application of your relational database is to create pie charts, and the database’s
schema requires designing with foreign keys to make it possible.

When getting started with graph technology, this same distinction applies. After you
have set up your graph database, you use it to understand the connectivity of your
data. Specifically, you can find the distance between two vertices in your graph. This
is at the application level and uses data to understand the connections within the
data. This is made possible by creating a graph database schema with vertex labels,
edge labels, and properties.

An application of your graph database is to calculate the distance between vertices,
and the database’s schema requires designing with edge labels and vertex labels to
make that possible.

The important takeaway here is to understand the differences between creating data‐
base schema and analyzing graph data.

Up until now, the flood of graph thinking has introduced many waves of terminology
and complexity. In this chapter, we hope to have clearly delineated the techniques for
creating database models as well as a few for analyzing graph data.

Summary
This chapter set out to translate the concepts and terms that are used across multiple
communities. Our goals for this content were to provide background and informa‐
tion for the following three objectives:

1. Is graph technology better for my problem than relational technology?
2. How do I think about my data as a graph?
3. How do I model a graph’s schema?

44 | Chapter 2: Evolving from Relational to Graph Thinking



In our experience, these three questions are the primary topics of conversation within
development teams that are evaluating graph technology for their application stack.

We selected the content in this chapter as the minimum topic set needed to answer
these questions. The terms and topics in this chapter represent the starting point for
understanding data modeling, graph data, and application design in relational or
graph systems. Combined with the GSL, the foundational concepts throughout this
chapter represent what you need to know to get started with graph technology. At this
point, you are equipped with the terminology and concepts you need to begin your
first application design and evaluation.

We admittedly haven’t given you much that answers our first question. This is
because we can’t answer it directly for you. Your team’s need for graph technology for
your application comes down to the applicability of the concepts and terms presented
throughout this chapter. To boil it down: if relationships matter to your data, then
graph technology will be the right answer for your team. Only you can determine that
about your data.

On the other hand, we can help you navigate the use of relational or graph technol‐
ogy for specific use cases. The next chapter will walk you through a common starting
use case in which teams typically put relational versus graph technologies to the test.
Without further ado, let’s start with the foundation that companies have successfully
built as the gateway to using graph data in your business: the single view of your
customer.

Summary | 45





CHAPTER 3

Getting Started: A Simple Customer 360

We have often seen technical teams understand the benefits of graph thinking in the
context of discussing a data problem that most large businesses face: trying to extract
value across disparate data sources. Standing at a whiteboard sketching out the prob‐
lem inevitably produces one hairy graph.

You can imagine this same scenario. You are drawing at a whiteboard and actively
discussing how your system’s data is spread in different silos across the company’s
systems. Your team agrees that what it really needs is direct access to your customers
and their data. To illustrate this, almost every time, your coworker draws the cus‐
tomer at the center of the whiteboard and connects the relevant data to the customer.
After stepping back, you all realize your colleague just drew a graph.

In our experience, these whiteboarding exercises illustrate the power of using graph
thinking to build a data management solution. Graph applications start with data
management because, either conceptually or physically, previous technology choices
forced us to shape graph data into tabular solutions. The problem is that tabular-
shaped data is no longer a one-size-fits-all design for today’s applications.

This is especially true for those applications that have to cater to the user’s demand
for personalized context. The rising demand for personalization has put top-down
pressure on data availability and relevancy. This pressure has forced organizations to
integrate disparate data and ensure that data ties users to their digital experience.

When teams huddle around the drawing board to re-architect their systems to deliver
personalization, they encounter a new problem. How does a single system unify data,
function in real time, and relate the data back to the end user? Existing relational
tools are great for those parts of the process that require the data to fit well in a row-
and-column format.

47



However, relational tools are not well suited for delivering certain shapes of data—
specifically, deeply connected data.

At this point in the whiteboarding session, we have reached a significant discussion
topic: identifying and comparing solutions. The solution design process often intro‐
duces multiple technologies. The subsequent debate around which technology to
choose can be divisive and never-ending.

Chapter Preview: Relational Versus Graph
To address this common pressure point, the main goals of this chapter are as follows:

1. Define and formalize a common starting application for graph data
2. Build out an example application architecture with relational and graph

technologies
3. Provide a guide for making the right choice for your system’s needs

Throughout the rest of this chapter, we are going to introduce and motivate the use
case that we just described in the whiteboard story. Afterwards, we are going to step
through the implementation details of this type of application, starting with a rela‐
tional system. Then we will follow the same process with a graph system. We will
close this chapter with a discussion of how to select which technology is best for your
application. Getting this right will help you find roots in the seemingly circular and
never-ending debate over when, where, and how to apply graph technology to resolve
your data management needs.

The Foundational Use Case for Graph Data: C360
As we illustrated with the whiteboard story, tech teams all over the world are realizing
the utility of graph data to solve their data management problems. For this type of
problem, the difference between old and new solutions lies in the usefulness of mod‐
eling, storing, and retrieving relationships within your data.

Applications that aim to focus on the relationships in their data have the initial chal‐
lenge of transforming and unifying data across relational systems. This transforma‐
tion requires us to reorganize our thinking and processes from organizing entities to
organizing relationships. Similar to the whiteboard drawing from earlier, the new
approach to organizing your data according to its relationships is usually very close to
what we have in Figure 3-1.

48 | Chapter 3: Getting Started: A Simple Customer 360



Figure 3-1. An exercise in graph thinking to yield a conceptual graph model

Adopters of graph technologies independently converged on naming this type of sol‐
ution a Customer 360 application, commonly abbreviated C360. The vision of a C360
project, like what is illustrated in Figure 3-1, is to engineer an application around the
relationships between the important entities in your business.

You can envision the goal of a C360 application; there is a central object, your cus‐
tomer, and the customer’s relationships to other integral pieces of data. These pieces
of data are likely those that are most relevant to your business’s domain. Commonly,
we see teams start with the customer’s family, methods of payment, or important
identification details. This particular application within financial services is designed
to answer the following types of questions about your customer:

1. Which credit cards does this customer use?
2. Which accounts does this customer own?
3. Which loans does this customer owe?
4. What do we know about this customer?

The idea to unify consumer data into a single application is not new. Existing solu‐
tions such as data warehouses or data lakes provide single systems in which con‐
sumer data is stored. The problem here isn’t in the integration of a business’s data but
in its accessibility. The era of graph thinking made us revisit these solutions in search

The Foundational Use Case for Graph Data: C360 | 49



1 Mark Abraham, et al. “Profiting from Personalization.” Boston Consulting Group, May 8, 2017. https://
www.bcg.com/publications/2017/retail-marketing-sales-profiting-personalization.aspx.

of a way to make this data more available and representative of the individual’s
experience.

Think of it this way: would you rather spend the day fishing, or would you like to get
quick access to your dinner?

The difference between fishing for or ordering your dinner is similar to putting your
data in a data lake or organizing your data for quick retrieval. The demands of today’s
digital applications require architects to focus on the quick delivery of data. Graph
technologies allow architects to build deeply connected retrieval systems to comple‐
ment longer search expeditions across data lakes.

Why Do Businesses Care About C360?
Consumers interact with your company in an omnichannel fashion; they seamlessly
transition from your mobile or web applications to your social media feeds and phys‐
ical storefronts. Across all of these channels, they are experiencing an integrated per‐
ception of your brand. Companies that match this expectation by creating a unified
digital experience are seeing revenue increases of up to 10%. These revenue increases
are measured to be two to three times faster than those of companies that have not
unified their customers’ digital experiences.1

The secret ingredient behind this observed revenue growth is an application that uni‐
fies all customer data. Bringing together all of your customers’ data into an applica‐
tion mirrors each customer’s experience with your brand. In other words, it is a C360
application.

There are myriad creative examples of early innovators who have deployed interest‐
ing C360 applications. One of the more unique examples comes from Baidu (the
Google of China) and Kentucky Fried Chicken. Through a unified data platform,
Baidu teamed up with KFC to deliver order recommendations. Their collaborative
solution identifies customers, accesses their order history, and returns order recom‐
mendations. This integration of data across these two industries has proven to be a
unique and profitable example of C360 technologies.

A C360 application is the starting place for implementing graph thinking in your
business. Getting this right provides a solid foundation for introducing graph data
into your system’s architecture. We have found that one of the most common mis‐
takes made by architects and system designers is to move too quickly from the con‐
ceptual model to implementation details with graph technologies. There is more to
consider here, and we want to use our experience to guide you through your own
evaluation throughout the rest of this chapter.

50 | Chapter 3: Getting Started: A Simple Customer 360

https://www.bcg.com/publications/2017/retail-marketing-sales-profiting-personalization.aspx
https://www.bcg.com/publications/2017/retail-marketing-sales-profiting-personalization.aspx


Implementing a C360 Application in a Relational System
The goal of this section is to briefly introduce how to build out a relational system to
store the C360 data. This section does not serve as a complete introduction to this
class of system architecture. Rather, our goal is to introduce the minimum needed to
understand the complexities of using a relational system for a C360 application.

To illustrate the process from data modeling through queries, we will be using the
same data introduced in Table 2-1. For convenience, we are sharing the table of data
again in this chapter—see Table 3-1. For a complete refresher on the generation,
meaning, and details of this data, refer to the discussion in “Data for Our Running
Example” on page 23.

Table 3-1. A sample of the data created to illustrate the technology choices in this chapter

customer_id name acct_id loan_id cc_num
customer_0 Michael acct_14 loan_32 cc_17

customer_1 Maria acct_14 none none

customer_2 Rashika acct_5 none cc_32

customer_3 Jamie acct_0 loan_18 none

customer_4 Aaliyah acct_0 [loan_18, loan_80] none

The two technologies we will be using to illustrate a relational implementation are
SQL and Postgres. SQL, which stands for Structured Query Language, is the pro‐
gramming language used to communicate with a relational database. We have chosen
to use the Postgres RDBMS because of its wide applicability and origins within the
open source community.

Data Models
After agreeing on a conceptual model, like that shown in Figure 2-1, you can move
on to the design of your relational database. Traditionally, you would create an entity-
relationship diagram, or ERD. An ERD is a logical representation of your data model
and is a typical starting point for a relational database design.

In Figure 3-2, each square represents an entity that will become a table in the rela‐
tional database. The attributes, or descriptive properties about each entity, are listed
within each square. As already seen in the data, each entity will have a unique identi‐
fier. A customer will be uniquely identified by its customer_id, an account by its
acct_id, and so on. Customers also have names and, in larger applications, other
attributes.

Implementing a C360 Application in a Relational System | 51



Figure 3-2. An entity-relationship diagram for a relational implementation of this C360
application

The diamond shapes between entities in Figure 3-2 represent the connection from
one entity to another. The cardinality of the connection is indicated above and below
or to the left and right of the diamond shape. In this data, we have two types of con‐
nections: one-to-many and many-to-many.

Let’s start with the one-to-many connection that is shown between customers and
credit cards. In this example, a customer can have many credit cards, but a credit card
can only have one customer. This one-to-many connection describes the cardinality
between customers and credit cards and is illustrated with the n to 1 connection
between customers and credit cards in Figure 3-2.

The other type of connection we see in our data is a many-to-many connection. There
are two many-to-many connections in our data: customers to accounts and custom‐
ers to loans. We know from our data that a customer can have many accounts, and
one account can have many customers. The same is true for loans. We say that cus‐
tomers to loans is a many-to-many connection and illustrate this in Figure 3-2 with
the n to m notation on the connection.

Before creating tables and inserting data, we need to translate our logical data model
into a physical data model. Specifically, we need to translate the entities and connec‐
tions from the ERD illustrated in Figure 3-2 into tables with primary and foreign
keys.

52 | Chapter 3: Getting Started: A Simple Customer 360



We need two types of keys for this implementation: primary and foreign keys. A pri‐
mary key is a uniquely identifying piece of data, such as a customer’s ID or credit card
number, that we will use to access the information in its table. A foreign key is a
uniquely identifying piece of data that we will use to access the information in a dif‐
ferent table, such as storing a customer’s ID alongside their credit card information.
We store a customer’s ID with the customer’s credit card information so that we can
use it to look up all of their information in a different table, namely in the customer
table.

Let’s take a look at how the keys and data from Figure 3-2 map into the physical data
model shown in Figure 3-3.

Figure 3-3. A physical data model for a relational implementation of this C360
application

We expected to see at least four tables in Figure 3-3—one table for each entity. Specif‐
ically, Figure 3-3 has one table per entity type: customer, account, loan, and credit
card. For each of those tables, we see additional attributes that describe the entity. The
most important attribute for each of these entities is its primary key. Each primary
key is indicated with a PK next to the row. The primary keys we have for each table are
the customer_id, acct_id, loan_id, and cc_num, respectively. These are the unique
identifiers that we will use to look up a specific row of information in the table.

Before we talk about the other two tables in Figure 3-3, let’s examine the CreditCard
table. This table has both a primary key and a foreign key. We are using a foreign key
in this table to track the one-to-many relationship we created in our ERD. The cus
tomer_id is the foreign key (indicated with an FK) that will give us the ability to relate
the credit card information back to a unique customer. Building a one-to-many rela‐
tionship into your physical data model can be as easy as adding a foreign key to join
you back to another entity table.

The last two tables to understand in our physical data model are the Owns and Owes
tables. These tables are join tables that allow us to physically store the many-to-many
connections in our data. The Owns table stores the many connections observed

Implementing a C360 Application in a Relational System | 53



between customers and the accounts that they own. The Owes table stores the many
connections observed between customers and the loans that they owe. Since each
customer can own an account only once and can owe a loan only once, the primary
key of these join tables is a compound of the two foreign keys.

For example, the Owns table stores at least two pieces of information about each row
in the table: the customer’s unique identifier and the account’s unique identifier.
Given one row from this table, we can access both the customer’s unique identifier to
join back to the customer table and the account’s unique identifier to join back to the
account table. This join table is a common way to represent a many-to-many connec‐
tion in a relational system.

Relational Implementation
Given our physical data model, let’s walk through creating the tables and inserting
our sample data from Table 3-1 into the tables.

First, we want to create the customer table. The final data model for this is shown in
Figure 3-4.

Figure 3-4. The customer table for the relational implementation

The SQL statement for creating the customer table is:

CREATE TABLE Customers ( customer_id TEXT,
                         name TEXT,
                         PRIMARY KEY (customer_id));

Our data has five customers. Let’s insert those five customers into this customer table:

INSERT INTO Customers (customer_id, name) VALUES
  ('customer_0', 'Michael'),
  ('customer_1', 'Maria'),
  ('customer_2', 'Rashika'),
  ('customer_3', 'Jamie'),
  ('customer_4', 'Aaliyah');

Our data in our relational database now has one table with five entries, as shown in
Figure 3-5.

54 | Chapter 3: Getting Started: A Simple Customer 360



Figure 3-5. The customer data within our relational database

Next, let’s add the other three entity tables for Accounts, Loans, and CreditCards.
Their final data models are shown in Figure 3-6.

Figure 3-6. The account, loan, and credit card tables for the relational implementation

We will start by creating the two tables for Accounts and Loans:

CREATE TABLE Accounts ( acct_id TEXT,
                        created_date DATE DEFAULT CURRENT_DATE,
                        PRIMARY KEY (acct_id));

CREATE TABLE Loans ( loan_id TEXT,
                     created_date DATE DEFAULT CURRENT_DATE,
                     PRIMARY KEY (loan_id));

Next, let’s insert the data for Accounts and Loans:

INSERT INTO Accounts (acct_id) VALUES
  ('acct_0'),
  ('acct_5'),
  ('acct_14');

INSERT INTO Loans (loan_id) VALUES
  ('loan_18'),
  ('loan_32'),
  ('loan_80');

At this point, we have one last entity table to create in our relational database: the
table for CreditCards. Because credit cards have a one-to-many relationship with
customers, we also need to insert the customer’s ID as a foreign key. We create this
table with:

Implementing a C360 Application in a Relational System | 55



CREATE TABLE CreditCards
    ( cc_num TEXT,
      customer_id TEXT NOT NULL,
      created_date DATE DEFAULT CURRENT_DATE,
      PRIMARY KEY (cc_num),
      FOREIGN KEY (customer_id) REFERENCES Customers(customer_id));

Looking back at the data from Table 3-1, we find each unique credit card and the cus‐
tomer who owns that card. From this information, we can create the following state‐
ments to insert this data into our relational database:

INSERT INTO CreditCards (cc_num, customer_id) VALUES
  ('cc_17', 'customer_0'),
  ('cc_32', 'customer_2');

Our relational database now has a total of four tables with data; see Figure 3-7.

Figure 3-7. The data in our relational database for the four entity tables

The last two tables to create in our relational implementation are those for the many-
to-many connections from Customers to Accounts and Loans. First, let’s create the
table that will join Customers to Accounts, as illustrated in Figure 3-8.

Figure 3-8. The join table from Customers to Accounts

In SQL, we create this table with:

CREATE TABLE Owns ( customer_id TEXT NOT NULL,
                    acct_id TEXT NOT NULL,
                    created_date DATE DEFAULT CURRENT_DATE,
                    PRIMARY KEY (customer_id, acct_id),

56 | Chapter 3: Getting Started: A Simple Customer 360



                    FOREIGN KEY (customer_id) REFERENCES Customers(customer_id),
                    FOREIGN KEY (acct_id) REFERENCES Accounts(acct_id));

Remembering the data from Table 3-1, we find the following data to insert into the
Owns table:

INSERT INTO Owns (customer_id, acct_id) VALUES
  ('customer_0', 'acct_14'),
  ('customer_1', 'acct_14'),
  ('customer_2', 'acct_5'),
  ('customer_3', 'acct_0'),
  ('customer_4', 'acct_0');

Now that we have some data in our Owns table (see Figure 3-9), we can see how to
associate the data from a customer and an account in our data.

Figure 3-9. The customer, account, and join table data

The final step in creating our relational database is to create the Owes table to asso‐
ciate a customer to their loan, and vice versa. The final data model for this join table
is shown in Figure 3-10.

Figure 3-10. The join table from Customers to Loans

In SQL, we create this table in our relational database via:

CREATE TABLE Owes ( customer_id TEXT NOT NULL,
                    loan_id TEXT NOT NULL,
                    created_date DATE DEFAULT CURRENT_DATE,
                    PRIMARY KEY (customer_id, loan_id),
                    FOREIGN KEY (customer_id) REFERENCES Customers(customer_id),
                    FOREIGN KEY (loan_id) REFERENCES Loans(loan_id));

Finally, we can extract one last connection from the data in Table 3-1 and insert all
observations of customers who owe loans into the Owes table:

Implementing a C360 Application in a Relational System | 57



INSERT INTO Owes (customer_id, loan_id) VALUES
  ('customer_0', 'loan_32'),
  ('customer_3', 'loan_18'),
  ('customer_4', 'loan_18'),
  ('customer_4', 'loan_80');

The full picture of our data in our relational database is shown in Figure 3-11.

Figure 3-11. The complete mapping of the data into a relational database

Example C360 Queries
Now that the data is in our relational database, we need to ask the four fundamental
queries for our C360 application:

1. Which credit cards does this customer use?
2. Which accounts does this customer own?
3. Which loans does this customer owe?
4. What do we know about this customer?

For our relational system, we are asking these four questions in a specific order for
two reasons. First, we want to start slowly with a natural progression toward asking
more detailed questions about a person from a database. Second, we structured these
questions so that the technical implementation builds upon each statement to con‐
clude with the final SQL statement.

58 | Chapter 3: Getting Started: A Simple Customer 360



Query: Which credit cards does this customer use?

First, let’s use our relational database to query for the credit cards owned by cus
tomer_0. The data for this query is directly available from the CreditCards table. If
we just want the credit card information, we can query the table with the following
SQL query:

SELECT * from CreditCards WHERE customer_id = 'customer_0';

This query will return the following data:

cc_num customer_id created_date
cc_17 customer_0 2020-01-01

It is likely that you really wanted to view the customer’s data alongside their credit
card information. This requires us to join the Customers table with the CreditCards
table. In SQL, this would be done via:

SELECT Customers.customer_id,
       Customers.name,
       CreditCards.cc_num,
       CreditCards.created_date
FROM Customers
LEFT JOIN CreditCards ON (Customers.customer_id = CreditCards.customer_id)
WHERE Customers.customer_id = 'customer_0';

This query will return the following data:

Customers.customer_id Customers.name CreditCards.cc_num CreditCards.created_date
customer_0 Michael cc_17 2020-01-01

Getting access to a customer alongside their credit card information requires only
one join statement because of the one-to-many relationship between customers and
credit cards. When we need to look at the data about customers and their accounts,
things get a little tricky.

Query: Which accounts does this customer own?
Next, let’s query the relational database to answer the question: which accounts does
customer_0 own? For this query, we will need to use the join table Owns to join
together the customer table with the account table. The SQL query for this is:

SELECT Customers.customer_id,
       Customers.name,
       Accounts.acct_id,
       Accounts.created_date
FROM Customers
LEFT JOIN Owns ON (Customers.customer_id = Owns.customer_id)

Implementing a C360 Application in a Relational System | 59



LEFT JOIN Accounts ON (Accounts.acct_id = Owns.acct_id)
WHERE Customers.customer_id = 'customer_0';

This query starts by accessing the data about customer_0 from the customer table.
Next, we find all foreign key pairs from the Owns table that have a matching
customer_id. There is only one entry in the Owns table for this customer because
customer_0 owns only one account. From here, we follow the foreign keys of the
accounts over to the Accounts table to extract the account information. The resulting
data looks like:

Customers.customer_id Customers.name Accounts.acct_id Accounts.created_date
customer_0 Michael acct_14 2020-01-01

Query: Which loans does this customer owe?
The next question uses the same structure but traces from the customer table to the
Loans table by using the Owes join table. This question is asking for the customer’s
information alongside their loan details. For this query, let’s use the data about cus
tomer_4. The SQL statement for this query is:

SELECT Customers.customer_id,
       Customers.name,
       Loans.loan_id,
       Loans.created_date
FROM Customers
LEFT JOIN Owes ON (Customers.customer_id = Owes.customer_id)
LEFT JOIN Loans ON (Loans.loan_id = Owes.loan_id)
WHERE Customers.customer_id = 'customer_4';

The resulting data is:

Customers.customer_id Customers.name Loans.loan_id Loans.loan_id
customer_4 Aaliyah loan_18 2020-01-01

customer_4 Aaliyah loan_80 2020-01-01

Query: What do we know about this customer?
Each of these queries is building up the individual pieces required to ask the main
query for a C360 application: for a specific customer, tell me everything we know
about them. This query brings together each of the three previous queries into one
statement. The following SQL statement uses all six tables across our relational data‐
base to find all information about one customer. Let’s use customer_0 again in this
final example:

SELECT Customers.customer_id,
       Customers.name,
       Accounts.acct_id,

60 | Chapter 3: Getting Started: A Simple Customer 360



       Accounts.created_date,
       Loans.loan_id,
       Loans.created_date,
       CreditCards.cc_num,
       CreditCards.created_date
FROM Customers
LEFT JOIN Owns ON (Customers.customer_id = Owns.customer_id)
LEFT JOIN Accounts ON (Accounts.acct_id = Owns.acct_id)
LEFT JOIN Owes ON (Customers.customer_id = Owes.customer_id)
LEFT JOIN Loans ON (Loans.loan_id = Owes.loan_id)
LEFT JOIN CreditCards ON (Customers.customer_id = CreditCards.customer_id)
WHERE Customers.customer_id = 'customer_0';

This will transform the data about customer_0 from across the database into the fol‐
lowing:

customer_id name acct_id created_date loan_id created_date cc_num created_date
customer_0 Michael acct_14 2020-01-01 loan_32 2020-01-01 cc_17 2020-01-01

The four questions we demonstrated in this section are just scratching the surface of
the SQL query language. And we addressed only the fundamentals of SQL: SELECT-
FROM-WHERE with basic joins. Even though our questions can be stated very simply,
the required queries become increasingly complex. It is even harder to follow the data
throughout this system to understand which data is related to which customer.

Implementing a C360 Application in a Graph System
Now that we have walked through a relational implementation, let’s dig into trans‐
forming our sample data into a graph database implementation. Let’s revisit the con‐
ceptual model, shown in Figure 3-12, before we dig into the implementation details in
this section.

Figure 3-12. A conceptual description of the relationships observed in the data in
Table 3-1

Implementing a C360 Application in a Graph System | 61



For this example, we are going to use the Gremlin query language—the most widely
implemented graph query language— and DataStax Graph schema APIs. We are
choosing to use Gremlin due to its wide adoption across the graph database commu‐
nity and its roots in open source. Our overarching objective in this book is to build
up to implementing graphs within a distributed, partitioned environment. Given this
goal, we will be using the DataStax Graph schema APIs to build up to working with
distributed graphs.

Data Models
Compared to relational models, there is a smaller transition from a conceptual model
to a graph data model. This lower bar illustrates the power of a database implementa‐
tion that more closely represents your natural way of expressing data.

Using the GSL from “The Graph Schema Language” on page 33, Figure 3-13 contains
a property graph model for our example data. The first benefit to notice is the shorter
transition from conceptual (Figure 3-12) to logical data modeling for graph
implementations.

Figure 3-13. A data model for a graph-based implementation of this C360 application

There are four vertex labels in Figure 3-13: Customer, Account, CreditCard, and
Loan. These vertex labels are shown in bold on the entities in the data model. There
are three edge labels in Figure 3-13: owns, uses, and owes. These edge labels are
shown in bold on the relationships in the data model.

Last, we find a few places in Figure 3-13 where we are using properties. A Customer
vertex will have two properties: customer_id and name. You can see the properties for
each vertex listed underneath the vertex labels. And we have also included a role on
the owns edge label.

62 | Chapter 3: Getting Started: A Simple Customer 360



Graph Implementation
With graph databases, our first implementation step will be to create the graph so that
we can add the graph’s schema. Once we have set up the schema, we will be ready to
insert data into the database.

The code for creating a graph is as follows:

system.graph("simple_c360").create()

We took care of installing and setting up the graphs for you in the provided technical
assets. If you want to dig into those steps on your own, you can find the step-by-step
instructions in the DataStax Docs. We will not be covering those topics in this book.

Let’s dive straight into creating graph schema. If you would like, you can follow along
in the DataStax Studio Notebook we created for this chapter, Ch3_SimpleC360. Data‐
Stax Studio gives you a notebook environment for developing with DataStax products
and is the best way to implement this book’s examples. The notebooks are available in
our book’s GitHub repository.

Creating your graph’s schema

First, let’s create the customer vertex label. Our customer data has a unique ID and a
name:

schema.vertexLabel("Customer").
       ifNotExists().
       partitionBy("customer_id", Text).
       property("name", Text).
       create();

Let’s finish the vertex label creation by adding the vertex labels for accounts, loans,
and credit cards:

schema.vertexLabel("Account").
       ifNotExists().
       partitionBy("acct_id", Text).
       create();

schema.vertexLabel("Loan").
       ifNotExists().
       partitionBy("loan_id", Text).
       create();

schema.vertexLabel("CreditCard").
       ifNotExists().
       partitionBy("cc_num", Text).
       create();

Implementing a C360 Application in a Graph System | 63

https://oreil.ly/_i_m7
https://oreil.ly/Zt_JY
https://oreil.ly/Zt_JY
https://oreil.ly/graph-book


At this point, we have four tables in the database—one table per vertex label. The last
step is to add the relationships from the customer to each of the other entities in the
data model.

For this example, we selected to model the edges coming out of the customer vertex
and into the other vertex types. These edges have direction; it comes from the cus‐
tomer and goes to Accounts, Loans, and CreditCards. When we create an edge label,
this direction matters. Let’s look at an example for creating the owes relationship
between a customer and their account:

schema.edgeLabel("owes").
       ifNotExists().
       from("Customer").
       to("Loan").
       create();

The direction of this edge label is set with the from and to steps. The edge comes
from the vertex label Customer and goes to the Loan vertex label.

There are two more edge labels to create: one from the customer to their credit card
and another from the customer to their account. The owns edges will also have the
role property stored on the edge:

schema.edgeLabel("uses").
       ifNotExists().
       from("Customer").
       to("CreditCard").
       create();

schema.edgeLabel("owns").
       ifNotExists().
       from("Customer").
       to("Account").
       property("role", Text).
       create();

We read the label to say the edge owns is coming from the customer and going to the
account and has a property called role.

Inserting your graph data
With our graph schema in place, we can add our sample data into this graph database.
We will start by adding one piece of data—the vertex for Michael:

michael = g.addV("Customer").
            property("customer_id", "customer_0").
            property("name", "Michael").
            next();

64 | Chapter 3: Getting Started: A Simple Customer 360



When adding vertices into your graph, the addV step requires you to provide the full
primary key. Otherwise, you will see an error like the one shown in Figure 3-14.

Figure 3-14. An example of an error you may experience if you forget to include the full
primary key when inserting a new vertex

Next, let’s add the vertices for Michael’s account, loan, and credit card:

acct_14 = g.addV("Account").
           property("acct_id", "acct_14").
           next();

loan_32 = g.addV("Loan").
           property("loan_id", "loan_32").
           next();

cc_17 = g.addV("CreditCard").
         property("cc_num", "cc_17").
         next();

The next() step is a terminal step in Gremlin. It returns the first result from the end
of a traversal. In the preceding example, we are returning the vertex object that we
just added into the graph and storing it into an in-memory variable.

Now, we have four disconnected pieces of data in our graph database. As before, we
stored each vertex object in variables called acct_14, loan_32, and cc_17 to be used
later. The database essentially has four vertices with no edges, as seen in Figure 3-15.

Implementing a C360 Application in a Graph System | 65



Figure 3-15. The data currently in our graph database

Let’s introduce some connectivity between the data. To do so, we need to add three
edges from customer_0 to the other vertices. Using the variables we just created, we
can add an edge from the vertex Michael to the vertices account, loan, and credit
Card, respectively:

g.addE("owns").
  from(michael).
  to(acct_14).
  property("role", "primary").
  next();

g.addE("owes").
  from(michael).
  to(loan_32).
  next();

g.addE("uses").
  from(michael).
  to(cc_17).
  next();

66 | Chapter 3: Getting Started: A Simple Customer 360



When adding edges into the database, we start by identifying the vertex from which
the edge will be coming. In the preceding example, this is Michael because all edges
will be starting from Michael and going to other pieces of data. These three edges cre‐
ate the first connected view of our data in our graph database, as shown in
Figure 3-16.

Figure 3-16. A connected view of the data currently in our graph database

From the example we already walked through, we know that Maria shares an account
with Michael. Let’s add the vertex for Maria and connect it to the account vertex we
already created (see Figure 3-17):

maria = g.addV("Customer").
          property("customer_id", "customer_1").
          property("name", "Maria").
          next();

g.addE("owns").
  from(maria).
  to(acct_14).
  property("role", "limited").
  next();

Implementing a C360 Application in a Graph System | 67



Figure 3-17. The connected view of Michael’s and Maria’s data in our graph database

Let’s finish up this example by adding the vertices and edges about the remaining
three customers:

// Data Insertion for Rashika
rashika = g.addV("Customer").
         property("customer_id", "customer_2").
         property("name", "Rashika").
         next();
acct_5 = g.addV("Account").
           property("acct_id", "acct_5").
           next();
cc_32 = g.addV("CreditCard").
          property("cc_num", "cc_32").
          next();
g.addE("owns").
  from(rashika).
  to(acct_5).
  property("role", "primary").
  next();
g.addE("uses").
  from(rashika).
  to(cc_32).
  next();

// Data Insertion for Jamie
jamie = g.addV("Customer").
         property("customer_id", "customer_3").
         property("name", "Jamie").
         next();
acct_0 = g.addV("Account").
           property("acct_id", "acct_0").
           next();

68 | Chapter 3: Getting Started: A Simple Customer 360



loan_18 = g.addV("Loan").
          property("loan_id", "loan_18").
          next();
g.addE("owns").
  from(jamie).
  to(acct_0).
  property("role", "primary").
  next();
g.addE("owes").
  from(jamie).
  to(loan_18).
  next();

// Data Insertion for Aaliyah
aaliyah = g.addV("Customer").
         property("customer_id", "customer_4").
         property("name", "Aaliyah").
         next();
loan_80 = g.addV("Loan").
          property("loan_id", "loan_80").
          next();
g.addE("owns").
  from(aaliyah).
  to(acct_0).
  property("role", "primary").
  next();
g.addE("owes").
  from(aaliyah).
  to(loan_80).
  next();
g.addE("owes").
  from(aaliyah).
  to(loan_18).
  next();

These final statements complete the insertion of the sample data into our graph data‐
base. Figure 3-18 shows the final view of the data in the database.

Figure 3-18. The final view of the data in our graph database

Implementing a C360 Application in a Graph System | 69



Graph traversals
The Gremlin statements in this section are our first graph database queries. A graph
database query is also called a graph traversal.

Graph traversal
A graph traversal is an iterative process of visiting the vertices and edges of a
graph in a well-defined order.

When using Gremlin, you start your traversals with a traversal source.

Traversal source
A traversal source wraps two concepts together: the graph data you are traversing
and traversal strategies, such as exploring data without indexes. The traversal
sources you will use for examples in this book are dev (for development) and g
(for production).

The queries in this section used the g traversal source. We will come back to using the
g traversal source in Chapter 5 and in the production chapters.

For the rest of this chapter, we will be using the dev traversal source. We will always
use the dev traversal source in this book when we are developing our graph traversals,
like in this chapter, in Chapter 4, and in the development chapters. We use the dev
traversal source because it allows us to explore our graph data without indexes on the
data.

From here, let’s move on to implementing the same queries as before, but with our
graph data.

Example C360 Queries
We like to think of querying a graph database, loosely, as the reverse of an SQL query. 
The common relational querying mindset is SELECT-FROM-WHERE. In graph, we are
essentially asking the traversal to follow a similar pattern in reverse: WHERE-JOIN-
SELECT.

You can think of a Gremlin query as beginning with WHERE you need to start from in
your graph data. Then you tell the database to use relationships from your starting
location to JOIN different pieces of data together. Last, you tell the database which
data to SELECT and return. For a C360 application, our query loosely follows this
WHERE-JOIN-SELECT pattern and is a great starting point for learning how to query a
graph database.

With that in mind, let’s revisit our C360 application queries, and then we will answer
each question using the Gremlin query language and our graph database:

1. Which credit cards does this customer use?

70 | Chapter 3: Getting Started: A Simple Customer 360



2. Which accounts does this customer own?
3. Which loans does this customer owe?
4. What do we know about this customer?

Query: Which credit cards does this customer use?

First, let’s use our graph database to query for the credit cards owned by customer_0.
We can’t just query for any credit card; we need to first access the vertex for cus
tomer_0 and then walk to the credit card that is adjacent (connected) to customer_0.
In Gremlin:

dev.V().has("Customer", "customer_id", "customer_0"). // WHERE
        out("uses").                                  // JOIN
        values("cc_num")                              // SELECT

The language to the right of // in each line of code is an in-line
comment to describe the logic happening in the code at left.

This query will return the following data:

"cc_17"

Let’s break down this Gremlin query into the WHERE-JOIN-SELECT pattern. The first
part of the query is dev.V().has("Customer", "customer_id", "customer_0"). We
say that this step is finding where you are starting your graph traversal; we are starting
by finding a vertex with label Customer that has customer_id equal to customer_0.
The second step in this traversal is out("uses"). This step is joining the customer to
their credit card data. The last step is to pick the data you want to return. This is the
values("cc_num") step. This part of the Gremlin traversal is specifying which data to
select and return to the end user.

Whenever you see the word traversal, you can associate it with the idea of walking. To
us, a graph traversal is a walk through your graph data. When we write graph traver‐
sals, we picture walking to and from pieces of graph data in our minds.

Let’s go back to the graph query we just wrote to show you how we think of traversals
as walking around graph data. In the first part of the graph query, we found a single
vertex as our starting place: customer_0. From this customer, we needed to walk
through the outgoing edge labeled uses. We walked through this edge using the
out() step in Gremlin so that we could arrive at the credit card vertex. Once we were
at the credit card vertex, we could look at the properties on the vertex. Specifically, we
wanted access to Michael’s credit card number: cc_17.

Implementing a C360 Application in a Graph System | 71



For the best performance, we advise that you always start your tra‐
versal from a specific vertex via the full primary key. For Apache
Cassandra users, this is the same as providing the full primary key
for a CQL query.

It helps to have a copy of Figure 3-13 to look at as you start practicing your first graph
traversals. From an image on paper, you can see where you need to start and end.
This is just like using a map for navigation, but in this case, you are walking around
your data. With graph data, you can use your graph model to find your starting place,
find your ending place, and translate the walk between them into your Gremlin state‐
ments. With enough practice, you will eventually be able to do all of this in your head.

Query: Which accounts does this customer own?
The next C360 query for our application wants to know which accounts a specific
customer owns. Following the same pattern as before, we are going to access the ver‐
tex for customer_0 and walk to the account vertex. From the account vertex, we can
access the unique ID for the account:

dev.V().has("Customer", "customer_id", "customer_0").// WHERE
        out("owns").                                 // JOIN
        values("acct_id")                            // SELECT

As before, this query follows the WHERE-JOIN-SELECT pattern. The first part of this
Gremlin query is similar to a where statement: dev.V().has("Customer", "cus
tomer_id", "customer_0"). We say that this step is finding where you are starting
your graph traversal.

The second step in this traversal is like a join statement: out("owns"). This step is
walking through the owns relationship coming out of the customer to join the cus‐
tomer to their data. The last step selects the data to return to the end user, specifically
the account id: values("acct_id"). This query will return the following data:

"acct_14"

Let’s try the same query again, but this time we would like to display the customer’s
name alongside their account ID. To do this, we need to remember the data we have
visited as we walked through the graph. This introduces two new Gremlin steps: as()
and select(). The as() step is similar to labeling the data as you walk through your
graph, like leaving breadcrumbs behind as you walk around a maze.

72 | Chapter 3: Getting Started: A Simple Customer 360



Once we are done, we can recall the visited data with the other new step: select().
We use the select() step to return the data from the query:

dev.V().has("Customer", "customer_id", "customer_0"). // WHERE
          as("customer").                             // LABEL
        out("owns").                                  // JOIN
          as("account").                              // LABEL
        select("customer", "account").                // SELECT
          by(values("name")).                   // SELECT BY (for the customer)
          by(values("acct_id"))                 // SELECT BY (for the account)

As before, this query follows the same WHERE-JOIN-SELECT pattern, with two addi‐
tions. This query adds in the need to SAVE and SELECT specific data points from the
query.

Let’s walk through the steps in this query.

Once again, we start with where we need to go in our graph data, dev.V().has("Cus
tomer", "customer_id", "customer_0"). We want to remember this data for later,
so we save the data with the step as("customer"). We continue to follow the pattern
as before, joining the customer to their account data by walking through the owns
edge. Now we have arrived at the account vertex. We want to save this vertex by using
as(), like before. Last, we need to select multiple pieces of data. We do this with
select("customer", "account").

The remaining two steps that use by are important to call out. This step helps us
shape the results of our query. After the select("customer", "account") step, we
have two vertex objects: the customer and account vertices, respectively. Our original
query wanted to access the customer’s name and account ID. That is where the by
step comes in. We want to view the customer according to their name and the
account according to its ID. The by steps are applied in order to the vertex objects.

This query returns the following JSON:

{
  "customer": "Michael",
  "account": "acct_14"
}

Query: Which loans does this customer owe?
So far, we have seen three graph traversals and two different ways to select data from
your graph. Next, let’s explore the third query for our C360 application. This query
wants to access the loans associated to a customer. Let’s use customer_4 for this
example since she has multiple loans in our dataset. In this query we just want to look
at the loan IDs:

Implementing a C360 Application in a Graph System | 73



dev.V().has("Customer", "customer_id", "customer_4"). // WHERE
        out("owes").                                  // JOIN
        values("loan_id")                             // SELECT

This query follows the same WHERE-JOIN-SELECT pattern that we saw in the previous
section. This query will return the following data:

"loan_18",
"loan_80"

Query: What do we know about this customer?
The final query of a C360 application is to access an individual customer and all of
their relevant data. The query for this will start at customer_0 and walk through all
outgoing edges that are connected to customer_0. Then we return the data from all
vertices that are in this first neighborhood of customer_0. This query gives us all of
the data about customer_0:

dev.V().has("Customer", "customer_id", "customer_0"). // WHERE
        out().                                        // JOIN
        elementMap()                                  // SELECT *

This query will return the data shown in Example 3-1.

Example 3-1.

{
  "id": "dseg:/CreditCard/cc_17",
  "label": "CreditCard",
  "cc_num": "cc_17"
},
{
  "id": "dseg:/Loan/loan_32",
  "label": "Loan",
  "loan_id": "loan_32"
},
{
  "id": "dseg:/Account/acct_14",
  "label": "Account",
  "acct_id": "acct_14"
}

Example 3-1 shows everything stored in DataStax Graph about each vertex: an inter‐
nal id, the vertex’s label, and then all properties. Let’s inspect the JSON that
describes Michael’s credit card. First, there is an "id": "dseg:/CreditCard/cc_17".
This is the internal identifier used in DataStax Graph to describe that piece of data.
The internal id in DataStax Graph is a URI, or Uniform Resource Identifier. Next, we
see the vertex’s label, "label": "CreditCard". Last, we see the only property we

74 | Chapter 3: Getting Started: A Simple Customer 360



stored in the graph about credit cards: "cc_num": "cc_17". We interpret the JSON
about the loan and account vertices similarly.

These traversals are the base of what is required to extract the data in your C360
application. We recommend keeping a copy of your graph data model nearby when
you are first starting to write graph traversals. Once you understand the basic steps,
you can use an image of your data model to walk from your starting point to your
destination. After some practice, this is an art that you may be able to visualize in
your head as if you were the one walking around the data.

We constructed this example to show that graph applications can make data retrieval
easier. As seen in this section, there were significantly fewer steps to the query, and
they were easier to follow. The adjustment from relational to graph query languages
requires an adjustment in your mentality to traversing or walking through your data.
The learning curve is steep; we don’t want to hide that. However, once you can pic‐
ture yourself walking through your graph data, writing graph queries can be as simple
as learning a new set of tools.

Relational Versus Graph: How to Choose?
Through the lens of a C360 application, let’s consider the benefits and drawbacks of a
relational database implementation versus those of a graph database implementation.
In considering these two technologies, we are going to compare them in four areas.
We are going to examine each technique’s approach to data modeling, representing
relationships, and query languages.

Relational Versus Graph: Data Modeling
There are quantitative and subjective items to consider when comparing the differ‐
ences in data modeling for relational or graph databases. The quantitative arguments
around data model design will point toward a relational system as the clear winner
due to the higher volume of resources and production usage of relational systems.
The techniques, tricks, and optimizations for a relational system are very well docu‐
mented and accessible for all members and abilities within a development team.

On a more subjective note, data modeling techniques with graph technologies are sig‐
nificantly more intuitive. Specifically, when using graph technology, the human-to-
computer translation of data is preserved; the way you think about your data is nearly
the same as the way you would represent it digitally in a computer. This shorter trans‐
lation from human intuition to machine representation allows you to extract deeper
insights about the relationships in your data. This arguably makes graph technology
easier to use over the system design required for the same implementation in a rela‐
tional database.

Relational Versus Graph: How to Choose? | 75



Relational Versus Graph: Representing Relationships
There has been and continues to be a growing demand for modeling and storing rela‐
tionships within a database. This has created both good and bad news for relational
systems. The good news, as stated before, is that the tips, tricks, and techniques for
modeling relationships with relational technology are well documented. Adding rela‐
tionships to an existing relational database can be as simple as adding a join table or
foreign key constraint. With the new join table or foreign key, relationships are
queryable and accessible. Essentially, getting the data into the system is well docu‐
mented and relatively easy for the developer.

On the downside, getting the relationships back out of a relational system in a mean‐
ingful way has a much steeper curve; it is very difficult to reason about the relation‐
ships stored in a relational system because of the large gap from idea to
implementation to machine. The process from conversation to modeling to reasoning
is much more disconnected with relational technology than it is with graph technol‐
ogy. The disconnect lies in the mental transformation required to map your human
understanding of data into relational models and down to tables. This translation
requires significant mental interpretation to follow and reason about relationships
within the data stored in a relational database.

Graph technologies were created from this gap. If there is a need to model and reason
about relationships in your data, graph technologies provide a more seamless transi‐
tion from human understanding to machine representation of your data and back.
The crux of this stance is whether or not relationships exist within your data and are
useful for deeper analytics and reasoning. If you need to model and reason about
relationships in your data, then graph technologies are the way to go.

Relational Versus Graph: Query Languages
There are three aspects we would like to examine when comparing query languages
for the two systems: language complexity, query performance, and expressiveness.

First, let’s talk about what we mean by language complexity. After designing relation‐
ships into your system, the query language introduces additional complexity to your
evaluation of the database within your architecture. At this level, it is the query lan‐
guage that will highlight all of the complexities or simplifications that were made dur‐
ing the implementation process. The additional complexity is experienced as queries
are developed and lengthened to pull together the required data.

Teams often measure query language complexity by query development time, main‐
tainability, and ease of transferring knowledge. When you are considering SQL and
Gremlin, these comparisons come down to adoption maturity and personal prefer‐
ence. SQL is the clear winner in language maturity. However, we see the scales tip
toward Gremlin for deeply nested queries or those requiring a large number of joins.

76 | Chapter 3: Getting Started: A Simple Customer 360



The next evaluation of query languages measures query performance. Query perfor‐
mance measures a multifaceted and complex dependency of database-tuning exerci‐
ses from indexing, partitioning, load balancing, and more optimizations than will fit
in this book.

When we are considering the scope of a C360 application in a small deployment, it is
likely that the queries against a properly indexed relational system will consistently
outperform the same queries in a graph database. This is because the queries for the
simplistic C360 application are very shallow graph queries; the queries stay within the
first neighborhood of the customer. As graph queries get deeper, like what we will see
in the next chapter, the performance debate between graph technology and relational
technology heavily favors graph solutions.

The last comparison to make considers query language expressiveness. In our experi‐
ence, the expressiveness of graph query languages solidifies the power of using graph
data in an application. The difference in query complexity between the two systems
illustrates that a more expressive language like Gremlin is a significant improvement
for querying relationships in your system. Graph query languages on top of graph
databases allow for a significant reduction in the code required to access and extract
relationships from data. Only time will allow graph technologies to mature to the
same levels as relational standards.

Relational Versus Graph: Main Points
For a loose summation, the points that we can make for each option, see Table 3-2.

Table 3-2. A summary of considerations when choosing a relational or graph database for a
C360 application

Relational Graph Databases
Data modeling Well documented Digital representation matches human

interpretation

Representing relationships
in data

Known limitations and complexities More intuitive representation

Queries Well documented Steep learning curve

Difficulty when querying many
relationships together

More expressive query language

For any area in which you can compare these two technologies, the advantages and
disadvantages for either choice come down to maturity. The adoption, documenta‐
tion, and community are much more evolved for relational technologies than for
graph technologies. This maturity likely translates to lower risk and faster execution
for traditional applications. Today, graph technologies cannot compete with relational
in the categories of maturity and time to delivery for a new application.

Relational Versus Graph: How to Choose? | 77



On the other hand, relational technology is reaching its limits for delivering valuable
insights into relationships within data. This is a significant problem because relation‐
ships naturally occur within data and are instrumental in delivering improved
insights into your business. In this regard, graph technology is the better option for
applications that require relationships to make business decisions. It is the best choice
for delivering and reasoning on relationships within your data, which is not achieva‐
ble at depth and scale with relational databases.

Summary
The power and vision of implementing a C360 application with graph technology is
directly correlated to your business’s need for accessing related data across your
organization.

Let’s unpack what we mean by that.

We have consulted with many enterprises that made specific technology choices over
the past decade that in turn led to the construction of data silos. These data silos sepa‐
rated the data relevant to the core entities of their business, such as the customer.
From there, recent approaches led to the integration of important data into large
monolith systems, such as data lakes. The pain points here were not in the integration
of the company’s data but in its accessibility.

Who wants to spend time and resources fishing for valuable data in a data lake
instead of using a system designed to retrieve valuable data?

For these enterprises, the advent of graph thinking has guided the next iteration of
their data architecture. Their goal is to build with technologies that make their data
available and representative of their customers’ experience. This combination of
availability and representation has been and continues to be the driving momentum
behind graph technology.

Graph technologies are enabling the next iteration of enterprise data architectures in
a way that was previously unachievable. We delved into one version of graph data
management in this chapter. Namely, we explored the application and implementa‐
tion details of a Customer 360 application, a customer-specific use case for graph
technology. However, this same template for building data-centric applications with
graph technology applies to non-customer-facing applications.

We have seen companies build similar systems around the businesses they interact
with—kind of like a Business 360. The applications that organize and deliver all infor‐
mation about important interactions within their business are saving significant over‐
head in cross-departmental communication. For example, imagine all of the different
departments you have to collaborate with in your company to find out the most
recent interaction between your company and another vendor. The information for

78 | Chapter 3: Getting Started: A Simple Customer 360



this request is spread across finance, marketing, sales, customer relations, and likely
other departments. The solution to this B2B problem requires the same template as
we have described throughout this chapter.

Given the vision for this style of application, the next criteria to evaluate are the time
and cost of implementation. These choices likely involve comparing vendors and
existing tools, such as using relational or graph technology for your C360 application.

Why Not Relational?
We get this question all the time: “I can build a C360 application with an RDBMS, so
why not use what I already know?”

The short version of our response to this question: relational is great for tabular data,
graph is better for complex data. Otherwise, the two are remarkably similar. At its
root, your choice comes down to the complexity of your data and what value you
want to get out of it.

In the longer version, the key is how your business values time: time spent on engi‐
neering custom solutions and time spent on waiting for queries. The differences are
quite clear when your business needs to answer deeper or unplanned queries. Rela‐
tional systems require architectural changes, adding tables, and building your own
query languages. Graph systems require augmenting your schema and inserting more
data.

Essentially, graph technology makes it easier to work with complex data, whereas
relational technology is easier for simple (i.e., tabular) data. The depth and complex‐
ity your project needs to expand into will help make this choice clearer for you.

Making a Technology Choice for Your C360 Application
The decision between relational and graph technology ultimately comes down to
your C360 application’s full scope. Generally speaking, our experiences have shown us
that if your application aims only to unify disparate data sources, then you will ach‐
ieve the best results from properly tuning a relational system. This realization and
commitment to the sole function of your application will save development resources
and more quickly get to final delivery for the production system.

On the other hand, if a data management solution or C360 application is a starting
point for your data architecture, then the steep learning curve to graph databases will
deliver more value in the long run. Graph technologies enable more intuitive reason‐
ing about the relationships that exist across your data. The business objectives that
require insight into relationships also require graph technology behind them.

Let us be clear on our points here. The example in this chapter is incredibly primitive.
Anything more realistic and more elaborate starts to become a stretch for RDBMS.

Summary | 79



And realistic data contains elaborate relationships within it. If your business needs
access to these relationships, then you need graph technology.

If you are going to just build a simple C360 system and nothing
more, use relational technology. If you want to understand and
explore the connectedness within your data, use graph technology.
There are pluses and minuses for each choice, but for the scenario
we have set up in this chapter, graph technology is the winner.

Whichever data problem your business faces, be aware that those teams with the need
to build and extend a foundation are turning to graph technology. A successful inte‐
gration of graph technology into your architecture needs to start with a C360 applica‐
tion as its foundation and build from there. With a C360 application as a foundation,
your business is set up to go after deeper graph traversals for more valuable insights
from your data. In the next chapter, we are going to extend our simplistic C360 appli‐
cation to a more complete scenario that will highlight how graph technology and
RDBMS diverge in terms of ease of use and time to market.

80 | Chapter 3: Getting Started: A Simple Customer 360



CHAPTER 4

Exploring Neighborhoods in Development

To get to the next phase in graph application development, we are going to build
upon the simple Customer 360 (C360) application from Chapter 3. We’ll add a few
more layers, or neighborhoods, onto that example to illustrate the next wave of con‐
cepts in graph thinking.

Adding data to our example provides a more realistic picture of the complexity of
data modeling, querying, and applying graph thinking to our customer-centric finan‐
cial data.

We consider the transition from the basic example in Chapter 3 to the complexity in
this chapter to be analogous to steps in the process of learning how to scuba dive.
What we did in Chapter 3 was like starting to learn how to scuba dive in a wading
pool; it is not really clear what the point is when you are in water that shallow. But we
needed to start from a familiar place. The examples in this chapter are like scuba div‐
ing in a deep pool. Afterwards, we will be ready to head into more interesting depths
in Chapter 5.

Chapter Preview: Building a More Realistic Customer 360
There are three main sections within this chapter.

In the first section, we will explore and explain graph thinking to present best practi‐
ces in graph data modeling. We will do this by adding more neighborhoods of data to
our C360 example so that we can answer the following questions:

1. What are the most recent 20 transactions involving Michael’s account?
2. In December, at which vendors did Michael shop, and with what frequency?

81



3. Find and update the transactions that Jamie and Aaliyah most value: their pay‐
ments from their account to their mortgage loan. (Query 3 is an example of
personalization.)

Throughout this initial section, we will follow query-driven design to illustrate com‐
mon best practices for creating a property graph data model. Topics include mapping
your data to vertices or edges, modeling time, and common mistakes.

In the next section, we will build up deeper Gremlin queries. These queries walk
through three, four, and five neighborhoods of data. We will also introduce how to
use properties to slice, order, and range over graph data, and we will discuss querying
in time windows. By the end of this section, we will have illustrated all of the data,
technical concepts, and data modeling that we planned for our example.

We will end the chapter by revisiting the basic queries to introduce some more
advanced querying techniques. These techniques are most commonly a part of trying
to format your query results into a more user-friendly structure.

This content sets us up to present the final, production-quality schema for this exam‐
ple, which we will do in Chapter 5.

Graph Data Modeling 101
During the early days of working with graph databases backed by Apache Cassandra,
my team was sitting around the couches in the living room of our venture-backed
startup. We were whiteboarding a graph data model for storing healthcare data in a
graph database.

We quickly agreed that doctors, patients, and hospitals were our primary entities of
importance, and therefore they would be vertices. Everything else after that was a
debate. Vertices, edges, properties, and names: everyone had a defensible opinion
about everything. Our most memorable disagreements were polarizing. What should
we name the edges between doctors and patients? All of these entities live or work
somewhere; how do we model addresses? Is country a vertex or a property, or should
it be left out of our model?

It was a difficult conversation. It took much longer than we had expected to arrive at a
design consensus, and none of us really felt comfortable with it.

Since that design session, each time I advise a graph team around the world, I can feel
similar tensions and see similar design consensus. The tensions are always real,
always there, and always observable.

This section is all about helping your team have a more constructive discussion about
your graph data model. To accomplish this, we want to walk through three sections of
advice for creating a good graph data model. Those sections of advice will be:

82 | Chapter 4: Exploring Neighborhoods in Development



1. Should This Be a Vertex or an Edge?
2. Lost yet? Walk Me Through Direction.
3. A Graph Has No Name: Common Mistakes in Naming

We selected these topics for two reasons. First, these topics cover most of the points
of contention you will encounter during the modeling process. Second, these topics
support where we are in the development of the running example for these chapters.
Details for deeper and more advanced modeling advice will be introduced when we
get there.

Should This Be a Vertex or an Edge?
This is the most debatable topic about property graph modeling. From the middle of
the most heated debates, we’ve grabbed a number of tips for creating graph data
models.

Let’s start our tips at the beginning. In our world, the beginning is where you want to
start your graph traversals.

Rule of Thumb #1

If you want to start your traversal on some piece of data, make that
data a vertex.

To unpack our first tip, let’s revisit one of the queries we constructed in Chapter 3:

Which accounts does this customer own?

There are three pieces of data required to answer that question: customers, accounts,
and a connection from which customer owns an account. Think about how you
could use that data to “find all accounts owned by Michael.” There are two ways to
translate this statement into a database query: “Michael owns accounts” or “accounts
owned by Michael.”

Let’s talk about the first option: starting with Michael to find his accounts. This
means that you are starting with data about people—specifically, the piece of data
about Michael. In your head, when you find a starting place for a query, you would
want to translate that data to being a vertex label in your graph model. With this, we
have our first vertex label for our graph model: customers.

Consider the second way to find this information: you could first find all accounts
and then keep only those that are owned by Michael. In this case, you are starting
with the data about accounts. Now we have a second vertex label for our graph
model: accounts.

Graph Data Modeling 101 | 83



This sets us up for the next tip on how to find the edges in your data.

Rule of Thumb #2

If you need the data to connect concepts, make that data an edge.

For the query we are working with, we know that Michael will be a vertex label and
that his account is another vertex label. That leaves the concept of ownership, and yes,
you guessed it—it will be the edge. The concept of ownership links a customer to an
account for our example data.

To find the edges in your model, examine your data. You find your edges from within
the information that links concepts together and to which you have access.

When working with graph data, these edges are the most important piece of your
graph model. Edges are why you need graph technology in the first place.

Putting these two together, you can derive the following rule for labeled property
graph models.

Rule of Thumb #3

Vertex-Edge-Vertex should read like a sentence or phrase from
your queries.

Our advice here is to write out how you want to query with your data into short
phrases like “customer owns account.” Identifying these queries and phrases remains
a simple way to identify how you want to map your data into graph objects in a prop‐
erty graph database, as shown in Figure 4-1.

Figure 4-1. Two vertices, named Michael and acct_14, with an edge (relationship)
titled, owns; this illustrates an example of translating short phrases of noun-verb-noun to
a property graph model: Michael owns account 14

Generally speaking, written forms of your graph queries will translate verbs to edges
and nouns to vertices.

84 | Chapter 4: Exploring Neighborhoods in Development



1 Ora Lassila and Ralph R. Swick, “Resource Description Framework (RDF) Model and Syntax Specification,”
1999. https://oreil.ly/zWcnO

This isn’t the first time the graph community has worked with
semantic phrases and graph data. Those of you from the semantic
community are likely shouting, “We’ve seen this before!” And you
are right; we have.1

Putting recommendations #2 and #3 together yields a specific way to translate how
you think into graph objects.

Rule of Thumb #4

Nouns and concepts should be vertex labels. Verbs should be edge
labels.

Depending on how you think, there are times at which tip #3 and tip #4 can create
ambiguous scenarios. We want to delve into some semantics here to help you navi‐
gate different ways that people see and think about data.

Specifically, if you think “Michael owns an account,” then “owns” should be an edge
label. This is a case in which you are thinking actively about the relationship between
Michael and his account. And this active line of thought translates owns to a verb that
connects two pieces of data together. This is how we arrive at “owns” as an edge label.

However, there are cases in which you may see this same scenario differently. Namely,
if you are thinking “We need to represent the concept of ownership between Michael
and his account,” then ownership should be a vertex label. In that case, you are think‐
ing of ownership as a noun—that is, an entity. The difference is that in this case, it is
likely that the ownership needs to be identifiable. You probably are trying to relate
ownership in other ways. In these cases, other questions you may plan on asking are,
“Who established that ownership?” or “Who does the ownership transfer to if the pri‐
mary agent dies?”

We acknowledge that we are getting into the weeds here. But we know that you will
eventually find yourself in the weeds as well. We hope that the guidance we are pro‐
viding will help you find your way back up and out.

Our first four tips introduced the fundamentals for identifying vertices and edges in
your graph data. Let’s walk through how to reason about the direction of your edge
labels.

Graph Data Modeling 101 | 85

https://oreil.ly/zWcnO


Lost Yet? Let Us Walk You Through Direction
The questions and queries for this chapter integrate more data into our model.
Specifically, we want to add transactions into our data so that we can answer ques‐
tions like:

What are the most recent 20 transactions involving Michael's account?

To answer this query, we need to add transactions into our data model. And these
transactions need to give us a way to model and reason about how transactions with‐
draw and deposit money between the accounts, loans, and credit cards.

When you first start writing graph queries and iterating on data models, it is very
easy to get turned around in your data model. Direction of an edge label is a difficult
thing to reason around, which is why we make the following recommendation.

Rule of Thumb #5

When in development, let the direction of your edges reflect how
you would think about the data in your domain.

Tip #5 infers the direction of an edge label as you combine and apply the advice from
the previous four tips. At this point, the pattern of Vertex-Edge-Vertex should be
easily read as subject-verb-object sentences.

Therefore, the edge label’s direction comes from subject and goes to object.

Coming up with edge labels between transactions is a discussion we have seen play
out many times. Let’s follow through our thought process to detail how we reasoned
about modeling something like a transaction in a graph.

An evolution of modeling transactions in a graph
Think about how you would first add transactions into your graph model. You likely
are thinking about how an account transacts with other accounts, or something like
we are showing in Figure 4-2.

Figure 4-2. The data model most people start from: thinking about transactions as verbs,
with phrases like “this account transacts with that account”

86 | Chapter 4: Exploring Neighborhoods in Development



The model for Figure 4-2 doesn’t work for our example because it uses the idea of a
transaction as a verb, whereas our questions use transactions as nouns. We want to
know things like an account’s most recent transactions and which transactions are
loan payments. In this light, we are really thinking about transactions as nouns.

Therefore, transactions need to be vertex labels in our example.

Now we need to reason about the direction of the edges. Most people start with mod‐
eling edge direction to follow the flow of money, as shown in Figure 4-3.

Figure 4-3. Modeling edge direction according to the flow of money

The challenge with a model like Figure 4-3 is to come up with intuitive names for the
edges that make it easy to answer our chapter’s questions. The edge direction in
Figure 4-3 models the flow of money and is awkward for how we are using transac‐
tions in our questions. Would we say, “This account had money withdrawn from it
via this transaction”? Let’s hope not.

So Figure 4-3 isn’t going to work for our example, either.

Let’s recall our chapter’s questions and reason about how we use transactions in the
queries. We came up with the following subject-verb-object sentences for the context
in which we are using transactions in our example:

1. Transactions withdraw from accounts.
2. Transactions deposit to accounts.

These two phrases might work; let’s see how this would work with data. In our data,
we could model a transaction and how it interacted with accounts as shown in
Figure 4-4.

Figure 4-4. Modeling the direction of your edges according to how you would use them
in your queries

Graph Data Modeling 101 | 87



For the example in this chapter, we think that Figure 4-4 makes it reasonably easy to
use our model to answer our questions. This gives us direction for both of our labels:
the edge labels will flow from a Transaction and go to an Account. The schema is
shown in Figure 4-5.

Figure 4-5. Modeling the direction of your edges according to how you would think about
the data in your domain

By breaking down your queries into short, active phrases of the structure subject-
verb-object, you will be able to naturally find what needs to be a vertex or edge label
in your graph model. Then the edge label’s direction will come from the subject and
go to the object.

Let’s zoom out from the nuances of modeling direction for transactions and get back
to the final main element of a graph’s schema: properties.

When do we use properties?
Let’s repeat the first query that will use the transaction vertices:

What are the most recent 20 transactions involving Michael's account?

The short version of our query from above translates to the following short phrases:

1. Michael owns account
2. Transactions withdraw from his account
3. Select the most recent 20 transactions

So far, we can walk through customers, accounts, and transactions within our graph.
Now our question asks for the 20 most recent transactions from an account. This
means that we need to subselect our transactions to include only the most recent
ones.

Therefore, we will want the ability to filter transactions by time. This brings us to our
last tip related to data modeling decisions.

88 | Chapter 4: Exploring Neighborhoods in Development



Rule of Thumb #6

If you need to use data to subselect a group, make it a property.

Ordering transactions by time requires us to have that value stored in our graph
model: enter properties. This is a great use of a property on the transaction vertex so
that we can subselect those vertices in our model. Figure 4-6 shows how we would
add time into our ongoing example.

Figure 4-6. Modeling time as a property on the transaction vertex so that we can subse‐
lect to query for only the most recent transactions

Together, tips #1–6 give you a great starting point for identifying what will be a ver‐
tex, an edge, or a property in your graph data model. We have one last section of data
modeling best practices to consider before we start the implementation details for this
chapter.

A Graph Has No Name: Common Mistakes in Naming
The callouts in the upcoming section are common mistakes. Each mistake is followed
by our bad-better-best recommendations.

Arriving at a consensus on what something should be named and maintained with
your codebase is surprisingly difficult. We have three topics on which teams com‐
monly waste their valuable time in bikeshedding how to address naming conventions
in their graph data model.

Pitfalls in Naming Conventions #1

Using the word has as an edge label.

One of the most common mistakes we see comes from naming all of your edges with
the label has, as shown on the left side of Figure 4-7. This is a mistake in naming
because the word has does not provide meaningful context regarding the edge’s pur‐
pose or direction.

Graph Data Modeling 101 | 89



Figure 4-7. From left to right: the bad, better, and recommended ways to name your
edges

If your graph model uses has for its edge labels, we have two recommendations for
you. A better edge label would have the form has_{vertex_label}, as shown in the
center in orange in Figure 4-7. This type of name allows you to have more specificity
in your graph queries while also providing a more meaningful name to maintain in
your codebase.

The preferred solution to this problem is shown in green at far right in Figure 4-7.
This recommendation advises you to use an active verb that communicates meaning,
direction, and specificity to your data. We are going to use the edge labels deposit_to
and withdraw_from to connect transactions to the accounts in our examples.

After meaningful edge labels have been selected, it is also a common mistake to create
property names that do not help uniquely identify your data. This brings us to our
next pitfall in property graph modeling.

Pitfalls in Naming Conventions #2

Using the word id as a property.

The concept of which pieces of data uniquely identify an entity is a deep topic. Using
a property key called id is a bad decision because it is not descriptive of what it is
referring to. Additionally, id is a naming clash with the internal naming conventions
within Apache Cassandra and is not supported in DataStax Graph.

A slightly better convention would be to name the property that uniquely identifies
your data with {vertex_label}_id, as shown at center in Figure 4-8. We use this a
few times throughout the book because we are working with synthetic examples, and
this type of identifier is perfectly fine if you use randomly generated identifiers, like
UUIDs (universally unique identifiers). However, you will see us move to using more
descriptive identifiers when we work with open source data. These identifiers repre‐
sent concepts that uniquely identify entities within their domain, such as social secu‐
rity numbers, public keys, and domain-specific universally unique identifiers.

90 | Chapter 4: Exploring Neighborhoods in Development



Figure 4-8. From left to right, the bad, better, and recommended ways to name a prop‐
erty to uniquely identify your data.

This brings us to the last and debatably most important mistake that we see through‐
out application codebases.

Pitfalls in Naming Conventions #3

Inconsistent use of casing.

When it comes to casing, the best approach follows the language conventions that
you are writing in. Some languages have style guides that promote CamelCase,
whereas others prefer snake_case. For the examples in this book, we plan to follow
the following casing and styles:

1. Capital CamelCase for vertex labels
2. Lowercase snake_case for edge labels, property keys, and example data

This last tip feels a bit pedantic to even bring up in a graph book. We are mentioning
it because consistency in naming conventions tends to be forgotten, creating expen‐
sive roadblocks for teams during the last stretch of getting their graph technology
into production. The more trivial these tips seem to your team, the better off you
probably already are in making sure to remember them.

Our Full Development Graph Model
The previous discussion of graph data modeling illustrated how we broke down our
first query to evolve the example from Chapter 3. In this section, we want to build up
the remaining elements in our data model to answer all the questions for this chap‐
ter’s example.

Graph Data Modeling 101 | 91



The example in this chapter adds schema and data that enable our application to
answer the following three questions:

1. What are the most recent 20 transactions involving Michael’s account?
2. In December, at which vendors did Michael shop, and with what frequency?
3. Find and update the transactions that Jamie and Aaliyah most value: their pay‐

ments from their account to their mortgage loan.

We have already stepped through how to model the first question. Let’s take a closer
look at it.

Figure 4-9. The augmented graph schema from Chapter 3 that applies the data modeling
principles to answer the first query of our expanded example

The graph schema in Figure 4-9 applies the principles we built up to answer the first
question into a graph data model. The new vertex label is Transaction, with two new
edge labels to the Account vertex: withdraw_from and deposit_to, respectively. We
discussed how and where to model time in our graph, which you see in Figure 4-9
with timestamp on the Transaction vertex.

Next, let’s consider this chapter’s remaining questions for our example in this chapter
by modeling the queries:

92 | Chapter 4: Exploring Neighborhoods in Development



1. In December, at which vendors did Michael shop, and with what frequency?

2. Find and update the transactions that Jamie and Aaliyah most value:
     their payments from their account to their mortgage loan.

To arrive at a data model for these questions, let’s apply the thought processes we
introduced in “Graph Data Modeling 101” on page 82. Following the advice there, we
came up with three statements about transactions:

1. Transactions charge credit cards.
2. Transactions pay vendors.
3. Transactions pay loans.

From these statements, we can find the rest of our required schema elements. First,
we need a new vertex label to represent where our customers shop: Vendor. Next, we
need an edge label, pay, for a transaction to the Loan or Vendor vertex labels. Last, we
need another edge label, charge, to indicate that a transaction charges a credit card.

Bringing all of this together, we have the schema shown in Figure 4-10.

Figure 4-10. The development schema that answers all of the queries we aim to build for
this example

Before We Start Building
We reduced the full perspective on graph data modeling to include only the practices
that we need for our current example. Beyond these core principles, you will find

Graph Data Modeling 101 | 93



edge cases about your data that are not covered here. That is expected. We are teach‐
ing a thought process and selected the principles here as a starting guide for modeling
your data like a graph.

If we could ensure you understood one concept about graph data
modeling, it would be the following: modeling your data as a graph
is just as much of an art as it is engineering. The art of the data
modeling process involves creating and evolving your perspective
on your data. This evolution translates your mindset into the para‐
digm of relationship-first data modeling.

When you find new modeling cases in this book or in your own work, ask the follow‐
ing questions about what you are modeling to help develop your own reasoning:

1. What does this concept mean to the end user of the application?
2. How are you going to read this data in your application?

Defining your data model is the first step in applying graph thinking to your applica‐
tion. Focus on the data you can integrate, the queries you want to ask, and what this
will mean to your end user. When combined, those three concepts articulate how we
see, model, and use graph data within an application.

Our Thoughts on the Importance of Data, Queries, and the End User
To help you learn and apply our perspective to building your own graph model, let’s
walk through the importance of data, queries, and the end user.

Our first piece of advice is to focus on the data you have. It is easy to boil the ocean by
modeling your industry’s entire graph problem; avoid this rabbit hole! Your graph
model will evolve if you keep centered on getting to production with the data with
which your application will be working.

Second, apply the practice of query-driven design. Build your data model to accom‐
modate only a predefined set of graph queries. A common red herring we run into on
this topic is those applications that aim to create open traversals across any discovera‐
ble data in a graph. For developmental purposes, the ability to explore and discover
makes sense. However, for production use, an application with open traversal access
can introduce a myriad of concerns.

For security, performance, and maintenance implications, we strongly advise teams
not to create production platforms with unbounded and unlimited traversals. The
warning sign we see is a lack of specificity for your graph application. We know this
perspective is very hard to apply when you are first exploring graph data. We see the

94 | Chapter 4: Exploring Neighborhoods in Development



line here as setting expectations between what you want to do during development
versus what you want to push to production in a distributed production application.

Last and most importantly, you have to consider what the data means to your end
user. Everything from selecting naming conventions to the objects in your graph will
be interpreted by someone else: your team members or your application users.
Naming conventions and graph objects are interpreted and maintained by your engi‐
neering team members; choose them wisely.

Ultimately, your graph data will be presented to an end user through your applica‐
tion. Spend time designing your data architecture, models, and queries to present
information that is most meaningful to them.

When combined, these three concepts articulate how we see, model, and use graph
data within an application. Again, the three concepts are to build with the data you
have, follow query-driven design, and design for your end user. Following these
design principles will help get you unstuck during those difficult data modeling dis‐
cussions and prepare your application to be the best use of graph data the industry
has ever seen.

Implementation Details for Exploring Neighborhoods in
Development
Our schema from Figure 4-10 requires only two new vertex labels: Transaction and
Vendor. What you have practiced a few times prior to now is how to take a schema
drawing and translate it into code. We showed the schema in Figure 4-10, and in
Example 4-1 we show you the code.

Example 4-1.

schema.vertexLabel("Transaction").
       ifNotExists().
       partitionBy("transaction_id", Int).
       property("transaction_type", Text).
       property("timestamp", Text).
       create();

schema.vertexLabel("Vendor").
       ifNotExists().
       partitionBy("vendor_id", Int).
       property("vendor_name", Text).
       create();

Implementation Details for Exploring Neighborhoods in Development | 95



In case you are wondering, we are using Text as the data type for
timestamp to make it easier to teach concepts in our upcoming
examples. We will be using the ISO 8601 standard format stored as
text.

In addition to these vertex labels, we added relationships between the Transaction
vertex and the other vertex labels in this graph. Let’s start with the new edge labels
between the Transaction and Account vertex labels. The schema code for the new
edge labels is shown in Example 4-2.

Example 4-2.

schema.edgeLabel("withdraw_from").
       ifNotExists().
       from("Transaction").
       to("Account").
       create();

schema.edgeLabel("deposit_to").
       ifNotExists().
       from("Transaction").
       to("Account").
       create();

These two edges model how money moves to and from an account within your bank.
In Example 4-3, we add in the rest of the edge labels in our example:

Example 4-3.

schema.edgeLabel("pay").
       ifNotExists().
       from("Transaction").
       to("Loan").
       create();

schema.edgeLabel("charge").
       ifNotExists().
       from("Transaction").
       to("CreditCard").
       create();

schema.edgeLabel("pay").
       ifNotExists().
       from("Transaction").
       to("Vendor").
       create();

96 | Chapter 4: Exploring Neighborhoods in Development



These last three edge labels complete the edges we will need to describe transactions
between the assets in our example.

Generating More Data for Our Expanded Example
As examples grow, so too does the data. We wrote a small data generator to expand
the data from Chapter 3 to include our data model from Figure 4-10. If you are inter‐
ested in the data generation process for this chapter, you have two options.

Your first option is to use the bash scripts to reload the exact same data you will see in
the upcoming examples. We will teach you about this tool and process in Chapter 5,
but you are welcome to preview the loading script in the GitHub repository. We rec‐
ommend using the scripts throughout this book if you would like the examples you
are running locally to match the results we show in the text.

Your second option is to dive into and execute our data generation code. We provided
our code in a separate Studio Notebook called Ch4_DataGeneration. We recommend
this option if you want to dig into creating fake data with Gremlin and the methods
we used.

An Important Warning About the Data Generation Process

If you rerun the data insertion process in your Studio Notebook,
the results in your local graph will not precisely match the results
printed in this text. If you want the data to match precisely, we rec‐
ommend importing the exact same graph structure via DataStax
Bulk Loader. You will find all of this in the accompanying technical
materials.

Up to this point, we have accomplished many tasks. We explored our first set of data
modeling tips, created a development model, looked at the schema code, and inserted
data.

The last main task is to use the Gremlin query language to walk around our model
and answer questions about our data.

Basic Gremlin Navigation
The main objective of this chapter is to illustrate a real-world graph schema that
walks through multiple neighborhoods of graph data.

For your reference, we will use the words walk, navigate, and tra‐
verse interchangeably throughout this book to mean that we are
writing graph queries.

Basic Gremlin Navigation | 97

https://oreil.ly/graph-book
https://oreil.ly/Nesez
https://oreil.ly/graph-book
https://oreil.ly/graph-book


Everything in this chapter up until now was required to set up answering the follow‐
ing three questions in this section:

1. What are the most recent 20 transactions involving Michael’s account?
2. In December, at which vendors did Michael shop, and with what frequency?
3. Find and update the transactions that Jamie and Aaliyah most value: their pay‐

ments from their account to their mortgage loan.

Let’s walk through the queries and their results. Then, in the chapter’s final section on
Advanced Gremlin, we will delve a bit deeper into how to shape the result payload.

Our recommendation is that you find a way to reference Figure 4-10 as you practice
the queries in the upcoming sections. We recommend doing this because your
schema functions as your map; you need to know where you are so that you can walk
in the right direction to your destination.

Query 1: What are the most recent 20 transactions involving Michael’s account?

Let’s start with some pseudocode in Example 4-4 to think about how we are going to
walk through our data to answer this first question.

Example 4-4. 

Question: What are the most recent 20 transactions involving Michael's account?
Process:
    Start at Michael's customer vertex
    Walk to his account
    Walk to all transactions
    Sort them by time, descending
    Return the top 20 transaction ids

We used the process outlined in Example 4-4 to create the Gremlin query in
Example 4-5.

Example 4-5. 

1 dev.V().has("Customer", "customer_id", "customer_0"). // the customer
2         out("owns").                       // walk to his account
3         in("withdraw_from", "deposit_to"). // walk to all transactions
4         order().                           // sort the vertices
5           by("timestamp", desc).   // by their timestamp, descending
6         limit(20).                         // filter to only the 20 most recent
7         values("transaction_id")           // return the transaction_ids

A sample of the results:

"184", "244", "268", ...

98 | Chapter 4: Exploring Neighborhoods in Development



Let’s dig into this query one step at a time.

On line 1, dev.V().has("Customer", "customer_id", "customer_0") looks up a
vertex according to its unique identifier. Then on line 2, the step out("owns") walks
through the outgoing owns edge to the Account vertices for this customer. In this
case, Michael has only one account.

At this point, we want to access all transactions. On line 3, the in("withdraw_from",
"deposit_to") step does just that: we walk through the incoming edge labels to
access transactions. At line 4, we are on the transaction vertices.

We left a detail out of “An evolution of modeling transactions in a
graph” on page 86 that we want to bring up now. The simplicity of
line 3 in Example 4-5 was also part of the motivation that led to
how we designed the edges in our data model. This first query was
much harder to write and reason about when the edges were going
in different directions.

The order() step on line 4 indicates that we need to provide some sort of order to the
vertices, which are transactions. We specify the sort order on line 5 with the by("time
stamp", desc) step. This means that we are going to access, merge, and sort all
Transaction vertices according to their timestamp. Then we want to select only the
20 most recent vertices with limit(20). Last, on line 7, we want to get access to the
transaction_ids, so we select them via the values("transaction_id") step.

This query will return a list of values that contains the transaction_id for each of
the 20 most recent transactions across all of the customer’s accounts.

Imagine how much more powerful this would be to display for the end user. They
would be able to see the details that are most relevant to them instead of navigating
multiple screens to join this data together in their head. This type of query is vital in
understanding how to personalize your application to what a customer most cares
about.

Query 2: In December 2020, at which vendors did Michael shop, and with what frequency?
For this second question, let’s start with an outline of the query in Example 4-6 to
think about how we are going to walk through our data to answer the question.

Basic Gremlin Navigation | 99



Example 4-6. 

Question: In December 2020, at which vendors did Michael shop, and with what frequency?
Process:
    Start at Michael's customer vertex
    Walk to his credit card
    Walk to all transactions
    Only consider transactions in December 2020
    Walk to the vendors for those transactions
    Group and count them by their name

We start the process outlined in Example 4-6 in Example 4-7 and complete it in
Example 4-8. In preparation for this query, we used the ISO 8601 timestamp stand‐
ardization in our data to make it easier to range on dates. In the ISO 8601 standard,
timestamps are commonly formatted as YYYY-MM-DD’T’hh:mm:ss’Z’, where
2020-12-01T00:00:00Z represents the very beginning of December in 2020.

Example 4-7. 

1 dev.V().has("Customer", "customer_id", "customer_0"). // the customer
2         out("uses").                         // Walk to his credit card
3         in("charge").                        // Walk to all transactions
4         has("timestamp",                     // Only consider transactions
5             between("2020-12-01T00:00:00Z",  // in December 2020
6                     "2021-01-01T00:00:00Z")).
7         out("pay").                          // Walk to the vendors
8         groupCount().                        // group and count them
9           by("vendor_name")                  // by their name

The results are:

{
  "Nike": "2",
  "Amazon": "1",
  "Target": "3"
}

Randomization affects the results of query 2. If you use the data
generation process instead of loading the data, your graph may
have a slightly different structure and therefore different counts for
query 2.

The setup for Example 4-7 follows a similar access pattern as before, where we start at
a customer and then traverse to a neighboring vertex. We start at customer_0 and
walk to their credit cards and then to transactions. On lines 4 through 6, we are using
a way to filter your data during a traversal. Here, we are filtering all vertices according

100 | Chapter 4: Exploring Neighborhoods in Development



2 Kelvin Lawrence, Practical Gremlin: An Apache TinkerPop Tutorial, January 6, 2020, https://kelvinlawrence.net/
book/Gremlin-Graph-Guide.html.

to their timestamps in a specific range. Specifically, has("timestamp",

between("2020-12-01T00:00:00Z", "2021-01-01T00:00:00Z")) sorts and returns
all transactions that have a timestamp during the month of December in the year
2020.

At line 7, following our schema, we walk to the vendors with the out("pay") step.
Finally, we want to return the vendor’s name along with how many times a transac‐
tion was observed with that vendor. We do this on lines 8 and 9 with group
Count().by("vendor_name").

In addition to between, Table 4-1 lists the most popular predicates you can use to
range on values. Please refer to the book by Kelvin Lawrence for the full table of
predicates.2

Table 4-1. Some of the most popular predicates that you can use to range on values

Predicate Usage
eq Equal to

neq Not equal to

gt Greater than

gte Greater than or equal to

lt Less than

lte Less than or equal to

between Between two values excluding the upper bound

You may be wondering: what if we wanted to order the output of Example 4-7?

If you wanted to return the results in a decreasing order, you would do that by adding
in the order().by() pattern, shown on lines 10 and 11 in Example 4-8.

Example 4-8. 

1 dev.V().has("Customer", "customer_id", "customer_0").
2         out("uses").
3         in("charge").
4         has("timestamp",
5             between("2020-12-01T00:00:00Z",
6                     "2021-01-01T00:00:00Z")).
7         out("pay").
8         groupCount().
9           by("vendor_name").

Basic Gremlin Navigation | 101

https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html


10        order(local).         // Order the map object
11          by(values, desc)    // according to the groupCount map's values

The results are now:

{
  "Target": "3",
  "Nike": "2",
  "Amazon": "1"
}

We threw in the use of scope in a traversal at line 10 with the step order(local).

Scope
Scope determines whether the particular operation is to be performed to the cur‐
rent object (local) at that step or to the entire stream of objects up to that step
(global).

For a visual explanation of scope in a traversal, consider Figure 4-11.

Figure 4-11. A visual example of the difference between global and local scope in a
Gremlin traversal

To explain it simply, at the end of line 9, we needed to order the object in the pipeline,
which is a map. The use of local on line 10 tells the traversal to sort and order the
items within the map object. Another way to think about this is that we want to order
the entries within the map. We do that by indicating that the scope is local to the
object itself.

The best way to understand traversal scope is to play with different queries in your
Studio Notebook and see how the scope affects the shape of your results. More great
visual diagrams on understanding the flow of data and object types are available on
the DataStax Graph documentation pages.

If you ever question what object type you have in the middle of
developing a Gremlin traversal, add .next().getClass() to where
you are in your traversal development. This will inspect the objects
at this point in your traversal and give you their class.

102 | Chapter 4: Exploring Neighborhoods in Development

https://oreil.ly/vFjwh


Query 3: Find and update the transactions that Jamie and Aaliyah most value: their payments
from their account to their mortgage loan.
The advantage of using a graph database really starts to show as we walk through
multiple neighborhoods of data, as we will be doing with this third and last query.
Here, we are accessing and mutating data across five neighborhoods of data in our
graph. We are going to break this query down into three steps: access, mutation, and
then validation.

The first simplification we are going to make to our account is to reduce the scope of
the query. We know that Jamie and Aaliyah share only one account: acct_0. There‐
fore, to further simplify our query, we can focus on walking from only one person; we
choose Aaliyah.

This brings us to the first shorter query we want to build:

Query 3a: Find Aaliyah’s transactions that are loan payments.    Before we can update
important transactions, we need to find the important ones. The transactions we are
looking for are those that indicate a loan payment from Aaliyah’s joint account to
Jamie and Aaliyah’s mortgage. Let’s outline our approach in pseudocode in
Example 4-9 to think about how we are going to walk through our data to answer the
question.

Example 4-9. 

Question: Find Aaliyah's transactions that are loan payments
Process:
    Start at Aaliyah's customer vertex
    Walk to her account
    Walk to transactions that are withdrawals from the account
    Go to the loan vertices
    Group and count the loan vertices

We used the process outlined in Example 4-9 to create the Gremlin query in
Example 4-10.

Example 4-10. 

1 dev.V().has("Customer", "customer_id", "customer_4"). // accessing Aaliyah's vertex
2         out("owns").                      // walking to the account
3         in("withdraw_from").              // only consider withdraws
4         out("pay").                       // walking out to loans or vendors
5         hasLabel("Loan").                 // limiting to only loan vertices
6         groupCount().                     // groupCount the loan vertices
7           by("loan_id")                   // by their loan_id

Basic Gremlin Navigation | 103



The results for the sample data will look like:

{
  "loan80": "24",
  "loan18": "24"
}

Let’s step through Example 4-10. On line 1, we start by accessing the customer and
walking to their account. On line 2, we traverse to Aaliyah’s account. Recalling the
schema, we walk through the incoming edge withdraw_from to access account with‐
drawals on line 3.

On line 4, we walk through the pay edge label to arrive at either Loan or Vendor verti‐
ces. The hasLabel("Loan") step on line 5 is a filter that eliminates all vertices at this
point that are not loans. This means we are now considering only the assets into
which a payment has been made from the account and that are loans. On line 6, we
group and count those loan vertices according to their unique identifier, as indicated
on line 7.

The result payload indicates that this account has made 24 payments into each loan
within the system.

Next, we want to go a step further and update the data in this traversal to indicate
which transactions are mortgage payments.

Query 3b: Find and update the transactions that Jamie and Aaliyah most value: their payments
from their checking account to their mortgage, loan_18.   
The traversal required to accomplish this query is a mutating traversal. All we mean
by mutating traversal is that it updates data in the graph as a part of the traversal.
Example 4-11 shows how we can use the traversal above to write properties on the
transactions that go from the account and into loan_18, because loan_18 is Jamie
and Aaliyah’s mortgage loan.

Example 4-11. 

1 dev.V().has("Customer", "customer_id", "customer_4"). // accessing Aaliyah's vertex
2         out("owns").                                  // walking to the account
3         in("withdraw_from").                          // only consider withdraws
4         filter(
5                out("pay").                            // walking to loans or vendors
6                has("Loan", "loan_id", "loan_18")).    // only keep loan_18
7         property("transaction_type",  // mutating step: set the "transaction_type"
8                  "mortgage_payment"). // to "mortgage_payment"
9         values("transaction_id", "transaction_type")  // return transaction & type

104 | Chapter 4: Exploring Neighborhoods in Development



The results are:

"144", "mortgage_payment",
"153", "mortgage_payment",
"132", "mortgage_payment",
...

Example 4-11 starts the same as the first part of our query. The new portion of this
traversal spans lines 4 through 6 with the filter(out("pay").has("Loan",

"loan_id", "loan_18")) steps. Here, we allow only the transactions that are con‐
nected to the loan_18 vertex to continue down the pipeline. This is because loan_18
is Jamie and Aaliyah’s mortgage loan. On line 7, we mutate the transaction vertices by
changing “transaction_type” to “mortgage_payment.” At the end of this traversal on
line 9, we want to return the transaction_id along with its new property, its transac
tion_type.

Query 3c: Verify that we didn’t update every transaction.    At this point, it is very helpful to
make sure that we did not update all of Aaliyah’s transactions with mortgage_pay
ment. We can do that with a quick check, shown in Example 4-12.

Example 4-12. 

// check that we didn't update every transaction
1 dev.V().has("Customer", "customer_id", "customer_4"). // at the customer vertex
2         out("owns").                 // at the account vertex
3         in("withdraw_from").         // at all withdrawals
4         groupCount().                // group and count the vertices
5           by("transaction_type")     // according to their transaction_type

The results from the Studio Notebook are shown below. We set unknown as the default
value during the data loading process also shown in the Studio Notebook:

{
  "mortgage_payment": "24",
  "unknown": "47"
}

This query does a quick check to validate that we properly mutated our data. Com‐
bining lines 1 through 3, we process all of the transactions from Aaliyah’s bank
account. At line 4, we do a groupCount() for all of those vertices according to the
value stored in the transaction_type property. Here, we see that we correctly upda‐
ted only the 24 transactions that are mortgage payments to loan_18. This validates
that our mutation query properly updated our graph structure.

This section started out with three questions, and the last three examples answered
them using the Gremlin query language.

Basic Gremlin Navigation | 105



3 Kelvin Lawrence, Practical Gremlin: An Apache TinkerPop Tutorial, January 6, 2020, https://kelvinlawrence.net/
book/Gremlin-Graph-Guide.html.

We stepped through the basic queries to show you where to start. Get your basic
graph walks ironed out before you start exploring the full flexibility and expressivity
of the Gremlin query language. We always recommend iterating through Gremlin
steps in development mode to find the basic walks that accomplish your queries. This
means we are asking you to execute line 1 of a Gremlin query and look at the results.
Then execute lines 1 and 2 and look at the results, and so on.

After you have mapped out your basic walks, you can try out more advanced Grem‐
lin. At this point in development, it is very common to find ways to create specific
payload structures to pass back to your endpoint.

We will cover the most popular strategies for building JSON with Gremlin in the next
section.

Advanced Gremlin: Shaping Your Query Results
The goal of this section is to build up a more advanced version of our Gremlin query
that answers a new question:

Is there anyone else who shares accounts, loans, or credit cards with Michael?

We would like to introduce a new question to demonstrate advanced Gremlin con‐
cepts within a small neighborhood of data. Once you understand how these concepts
apply to this question, we invite you to use the accompanying notebook for this chap‐
ter to implement the concepts for the other queries introduced in “Basic Gremlin
Navigation” on page 97.

We will work through shaping the results of our new query in a few stages. They are:

1. Shaping query results with the project(), fold(), and unfold() steps
2. Removing data from the results with the where(neq()) pattern
3. Planning for robust result payloads with the coalesce() step

For anyone diving deeper into the world of Gremlin queries, we
highly recommend the detail and explanations in the book Practi‐
cal Gremlin: An Apache TinkerPop Tutorial by Kelvin Lawrence.3

106 | Chapter 4: Exploring Neighborhoods in Development

https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://oreil.ly/G1Lrz
https://oreil.ly/G1Lrz


Shaping Query Results with the project(), fold(), and unfold() Steps
When we start writing a new query, we like to slowly build up its required pieces. One
of the most useful Gremlin steps is the project() step, because it helps us build up a
specific map of data from our query. Let’s start building our query out by defining the
three keys we want to have in our map: CreditCardUsers, AccountOwners, and Loan
Owners.

1 dev.V().has("Customer", "customer_id", "customer_0").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3           by(constant("name or no owner for credit cards")).
4           by(constant("name or no owner for accounts")).
5           by(constant("name or no owner for loans"))

This query structure is the base of what we are building toward. We want to start with
a specific person in this example—namely Michael. Then we want to create a data
structure that will have three keys: CreditCardUsers, AccountOwners, and LoanOwn
ers. We create this map with the project() step on line 2. The arguments to the
project() step are the three keys. For each key in the project() step, we want to
have a by() step. Each by() modulator creates the values associated to the keys:

1. The by() modulator on line 3 will create a value for the CreditCardUsers key.
2. The by() modulator on line 4 will create a value for the AccountOwners key.
3. The by() modulator on line 5 will create a value for the LoanOwners key.

Let’s take a look at the results at this point:

{
  "CreditCardUsers": "name or no owner for credit cards",
  "AccountOwners": "name or no owner for accounts",
  "LoanOwners": "name or no owner for loans"
}

This is a good baseline to work from. Next, let’s walk through our graph structure to
start to populate the values in our map. We will start with the data for the first key:
finding people who share a credit card with Michael.

Thinking back to our schema, we will need to walk through the uses edge to get to
the credit cards. Then we will walk back through the uses edge to get back to people.
After that, we want to access their names. In Gremlin, we would add this walk on
lines 3, 4, and 5:

1 dev.V().has("Customer", "customer_id", "customer_0").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5            values("name")).

Advanced Gremlin: Shaping Your Query Results | 107



6         by(constant("name or no owner for accounts")).
7         by(constant("name or no owner for loans"))

1 dev.V().has("Customer", "customer_id", "customer_0").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5            values("name")).
6         by(constant("name or no owner for accounts")).
7         by(constant("name or no owner for loans"))

The only steps we added were to walk from Michael out to his credit card via the
uses edge on line 3. Then, on line 4, we walk back to all people who use that credit
card. The resulting payload is:

{
  "CreditCardUsers": "Michael",
  "AccountOwners": "name or no owner for accounts",
  "LoanOwners": "name or no owner for loans"
}

This confirms what we know: Michael didn’t share any credit cards with other people.
We expected to see his name in the result set.

Now let’s do the same thing for the next key in our map: AccountOwners. Here, we
want to walk out the owns edge to the account vertex and back to the person vertex:

1 dev.V().has("Customer", "customer_id", "customer_0").
2           project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5            values("name")).
6         by(out("owns").
7            in("owns").
8            values("name")).
9         by(constant("name or no owner for loans"))

Let’s look at the resulting payload:

{
  "CreditCardUsers": "Michael",
  "AccountOwners": "Michael",
  "LoanOwners": "name or no owner for loans"
}

Looking at this data, we do not see what we would expect. We expected to see Maria
as a resulting value for AccountOwners. Maria does not show up because Gremlin is
lazy; it returns the first result, not all results. We need to add a barrier to force all
results to finish and return.

108 | Chapter 4: Exploring Neighborhoods in Development



The barrier that we like to use here is fold(). The fold() step will wait for all of the
data to be found and then roll up the results into a list. This is a bonus, because now
we can build up specific data type rules for our application. The adjusted query reads:

1 dev.V().has("Customer", "customer_id", "customer_0").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5            values("name").
6            fold()).
7         by(out("owns").
8            in("owns").
9            values("name").
10           fold()).
11        by(constant("name or no owner for loans"))

The shape of the data in the resulting payload is what we were expecting to see:

{
  "CreditCardUsers": [
    "Michael"
  ],
  "AccountOwners": [
    "Michael",
    "Maria"
  ],
  "LoanOwners": "name or no owner for loans"
}

Let’s complete the construction of our map by adding in the statements in the last
by() step. These statements need to walk from Michael out to his loan and then back.
The query and result set are:

1 dev.V().has("Customer", "customer_id", "customer_0").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5            values("name").
6            fold()).
7         by(out("owns").
8            in("owns").
9            values("name").
10           fold()).
11        by(out("owes").
12           in("owes").
13           values("name").
14           fold())

{
  "CreditCardUsers": [
    "Michael"
  ],
  "AccountOwners": [

Advanced Gremlin: Shaping Your Query Results | 109



    "Michael",
    "Maria"
  ],
  "LoanOwners": [
    "Michael"
  ]
}

1 dev.V().has("Customer", "customer_id", "customer_0").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5            values("name").
6            fold()).
7         by(out("owns").
8            in("owns").
9            values("name").
10           fold()).
11        by(out("owes").
12           in("owes").
13           values("name").
14           fold())

{
  "CreditCardUsers": [
    "Michael"
  ],
  "AccountOwners": [
    "Michael",
    "Maria"
  ],
  "LoanOwners": [
    "Michael"
  ]
}

At this point, we have the expected results. We see that Michael shares an account
with Maria. And we see that Michael doesn’t share credit cards or loans with anyone
else.

For some applications, it isn’t helpful to return that Michael shares a credit card with
himself. Let’s dive into how we would remove Michael from this resulting payload.

Removing Data from the Results with the where(neq()) Pattern
It might be useful for you to eliminate Michael from the result set. We can do that by
using the as() step to store Michael’s vertex, and then eliminate it from the result set.
You can remove a vertex from your pipeline with the step where(neq

("some_stored_value")).

110 | Chapter 4: Exploring Neighborhoods in Development



The next version of our query, in which we have directly applied this step to each sec‐
tion, is shown in Example 4-13.

Example 4-13. 

1 dev.V().has("Customer", "customer_id", "customer_0").as("michael").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5              where(neq("michael")).
6            values("name").
7            fold()).
8         by(out("owns").
9            in("owns").
10             where(neq("michael")).
11           values("name").
12           fold()).
13        by(out("owes").
14           in("owes").
15             where(neq("michael")).
16           values("name").
17           fold())

The full results of Example 4-13 are shown below:

{
  "CreditCardUsers": [],
  "AccountOwners": [
    "Maria"
  ],
  "LoanOwners": []
}

The main additions to our query occur on lines 1, 5, 10, and 15 in the above query.
On line 1, we store the vertex for Michael with the as("michael") step. Let’s take a
look at what is happening with where(neq("michael")) on line 5, which is the same
thing that is happening on lines 10 and 15.

To understand what is happening on line 5, you need to remember where you are in
your graph. At the end of line 4, we are on Customer vertices. Specifically, we are pro‐
cessing customers that share an account with Michael. This is where the
where(neq("michael")) step comes in. We want to apply a true/false filter to every
vertex in the pipeline. The true/false filter test is whether or not that vertex is equal to
Michael: where(neq("michael")). If the vertex is Michael, line 5 eliminates it from
the traversal. If the vertex is not Michael, the vertex passes through the filter and
remains in the pipeline.

Advanced Gremlin: Shaping Your Query Results | 111



Planning for Robust Result Payloads with the coalesce() Step
Depending on your team’s data structure rules, checking whether or not a value in
your data payload is an empty list may not be preferred. We can help design around
that.

We can implement try/catch logic so that your query doesn’t return an empty list. We
will step through this for the first key in the map: CreditCardUsers. After we step
through that, we will add in the full query details for the two remaining by() steps.

Let’s rewind and go back to just building up the JSON payload for the value associ‐
ated to CreditCardUsers. We are starting from here:

1 dev.V().has("Customer", "customer_id", "customer_0").as("michael").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5              where(neq("michael")).
6            values("name").
7            fold()).
8         by(constant("name or no owner for accounts")).
9         by(constant("name or no owner for loans"))

{
  "CreditCardUsers": [],
  "AccountOwners": "name or no owner for accounts",
  "LoanOwners": "name or no owner for loans"
}

You can implement try/catch logic in Gremlin with the coalesce() step. We want to
shape the results so that there is always a value in the lists for each key, like "Credit
CardUsers": ["NoOtherUsers"]. Let’s start by seeing how to integrate the coalesce
step into our query:

1 dev.V().has("Customer", "customer_id", "customer_0").as("michael").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5              where(neq("michael")).
6            values("name").
7            fold().
8            coalesce(constant("tryBlockLogic"),    // try block
9                     constant("catchBlockLogic"))).// catch block
10        by(constant("name or no owner for accounts")).
11        by(constant("name or no owner for loans"))

112 | Chapter 4: Exploring Neighborhoods in Development



The resulting payload is:

{
  "CreditCardUsers": "tryBlockLogic",
  "AccountOwners": "name or no owner for accounts",
  "LoanOwners": "name or no owner for loans"
}

When you use the coalesce() step in line 8, it takes two arguments. The first argu‐
ment is on line 8 and can be thought of as the try block logic. The second argument is
on line 9 and can be thought of as the catch block logic.

If the try block logic succeeds, then the resulting data is passed down the pipeline. In
this case, for illustrative purposes, we used something that would definitely succeed:
the constant() step. This step returned the string "tryBlockLogic" that we see in
the resulting payload. The constant() step is useful for many reasons, one of which
is that it can serve as a placeholder while you build up more complicated queries.
This is how we are using it here.

Should the first argument of the coalesce() step fail on line 8, the second argument
will execute on line 9. Let’s look at how we can use this to populate what we want in
our data payload:

1 dev.V().has("Customer", "customer_id", "customer_0").as("michael").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5              where(neq("michael")).
6            values("name").
7            fold().
8            coalesce(unfold(),                   // try block
9                     constant("NoOtherUsers"))). // catch block
10        by(constant("name or no owner for accounts")).
11        by(constant("name or no owner for loans"))

{
  "CreditCardUsers": "NoOtherUsers",
  "AccountOwners": "name or no owner for accounts",
  "LoanOwners": "name or no owner for loans"
}

On line 8, the logic that we added to the try block is the unfold(). This is trying to
take the results from the previous step and successfully unfold them. The results at
this point in the pipeline are an empty list []. In Gremlin, you cannot unfold an
empty object. This throws an exception that is caught by the try block. Therefore, we
execute line 9, the second argument of the coalesce() step: constant("NoOtherUs
ers"). This is why we see the entry "CreditCardUsers": "NoOtherUsers" in our
result payload.

Advanced Gremlin: Shaping Your Query Results | 113



Regrettably, we lost our guaranteed list structure. We can add that back in with a
fold() after the coalesce() step:

1 dev.V().has("Customer", "customer_id", "customer_0").as("michael").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5              where(neq("michael")).
6            values("name").
7            fold().
8            coalesce(unfold(),
9                     constant("NoOtherUsers")).fold()).
10        by(constant("name or no owner for accounts")).
11        by(constant("name or no owner for loans"))

{
  "CreditCardUsers": [
    "NoOtherUsers"
  ],
  "AccountOwners": "name or no owner for accounts",
  "LoanOwners": "name or no owner for loans"
}

The steps we added from line 5 to line 9 create a predictable data structure to
exchange throughout your application. It will be well-formatted JSON about which
other applications can reason.

Next, we need to add this try/catch logic to each by() step. The full logic pattern to
add at the end of each by() step in our full query is:

coalesce(unfold(),                  // try to unfold the names
         constant("NoOtherUsers")). // inject this string if there are no names
fold()                              // structure the results into a list

This Gremlin pattern ensures we have a nonempty list in the resulting payload. The
full query and its results are:

1 dev.V().has("Customer", "customer_id", "customer_0").as("michael").
2         project("CreditCardUsers", "AccountOwners", "LoanOwners").
3         by(out("uses").
4            in("uses").
5              where(neq("michael")).
6            values("name").
7            fold().
8            coalesce(unfold(),
9                     constant("NoOtherUsers")).fold()).
10         by(out("owns").
11           in("owns").
12             where(neq("michael")).
13           values("name").
14           fold().
15           coalesce(unfold(),
16                    constant("NoOtherUsers")).fold()).

114 | Chapter 4: Exploring Neighborhoods in Development



17        by(out("owes").
18           in("owes").
19             where(neq("michael")).
20           values("name").
21           fold().
22           coalesce(unfold(),
23                    constant("NoOtherUsers")).fold())

{
  "CreditCardUsers": [
    "NoOtherUsers"
  ],
  "AccountOwners": [
    "Maria"
  ],
  "LoanOwners": [
    "NoOtherUsers"
  ]
}

We find that iterative building and stepping through Gremlin steps is the best way to
wrap your head around the query language. This book is about teaching you our
thought processes, and this is how we think through using Gremlin. There is more
than one way to write a graph query; we hope you are curious about using other steps
to process the same data. Figuring this out can be as easy as opening up a Studio
Notebook and exploring new steps on your own.

Moving from Development into Production
Bringing back our scuba analogy from the beginning of this chapter, our time train‐
ing in the pool has come to a close. As we see it, the progression through the techni‐
cal examples in this chapter is just like learning buoyancy control or deepwater
troubleshooting within a pool. At some point, you have learned everything you can
from practicing in a controlled environment.

With the foundation we have built over the past few chapters, it is time to take the
leap out of your development environment and build a production-ready graph
database.

Before you get too concerned, this doesn’t mean you are supposed to know every‐
thing there is to know about graph data. There are still myriad topics we are continu‐
ing to explore ourselves.

What it does mean, however, is that we think you are ready to move into a deeper
understanding of using graph data in distributed systems. We set up this example to
get you ready for one last step down into the physical data layer of understanding
graph data structures in Apache Cassandra. Specifically, the upcoming chapter will
show you how to optimize your graph structures for distributed applications.

Moving from Development into Production | 115



While illustrating how we think through graph data, we purposefully set up some
traps in the example in this chapter. In the next chapter, we will show these traps to
you and walk you through their resolution. This upcoming chapter will be the last
chapter that uses our C360 example, as it will describe the final iteration in creating a
production-quality graph schema for this example.

116 | Chapter 4: Exploring Neighborhoods in Development



CHAPTER 5

Exploring Neighborhoods in Production

When you use DataStax Graph, you are working with graph data in Cassandra. And if
you have been following along and executing the implementation details from the last
two chapters, you have already been using it.

The paradigm shift from working with a traditional database to working with Apache
Cassandra is that we write our data according to how we are going to read it.

To illustrate how we apply this, the examples in Chapters 3 and 4 used but skipped
over fundamental topics of working with graph data in Apache Cassandra. Concepts
like edge direction and partition key design are fundamental to building a
production-quality, scalable, and distributed graph data model.

We are going to dig deeply into the topics of distributed data to set you up for a suc‐
cessful use of distributed graph technology within your production stack.

Recall that we mentioned at the end of Chapter 4 that we purposely set up some traps. 
Our example built up the schema shown in Figure 5-1 and aimed to use queries like
we have in Example 5-1.

117



Figure 5-1. The developmental data model for a graph-based implementation of a C360
application from the previous chapter

We need to connect two concepts together so you can see the whole picture. First, all
of our queries have used the development traversal source dev.V(). The development
traversal source in DataStax Graph enables you to walk around your data without
worrying about indexing strategies. Second, our queries walk from an account vertex
to transactions. The query in Example 5-1 uses the production traversal source g.V().
If you try to run the query in Example 5-1 in DataStax Studio, you will see something
like the execution error in Example 5-1.

Example 5-1. 

g.V().has("Customer", "customer_id", "customer_0"). // the customer
      out("owns").                                  // walk to their account(s)
      in("withdraw_from", "deposit_to")             // access all transactions

Table 5-1. An example of an execution error due to trying to walk an edge in the reverse
direction without an index

Execution error
com.datastax.bdp.graphv2.engine.UnsupportedTraversalException:

One or more indexes are required to execute the traversal

118 | Chapter 5: Exploring Neighborhoods in Production



This error is tied to the representation of graph data structures on disk. In the rest of
this chapter, we take a peek under the hood to explain the why and then apply the
how.

Chapter Preview: Understanding Distributed Graph Data
in Apache Cassandra
The primary intent of this chapter is to introduce design and operational recommen‐
dations for modeling data efficiently prior to entering production. For that, this chap‐
ter builds on the example from Chapter 4 by detailing how graph data structures
operate in Apache Cassandra.

At the end of this chapter, you will have a list of 10 data modeling
recommendations to apply to any new problem. We will use these
same tips throughout the remaining examples in this book, too.

We selected the next set of technical topics to illustrate the minimum required set of
concepts for building production-quality distributed graph applications. This chapter
has three main sections that align with the accompanying notebook and technical
materials.

The first section of this chapter revisits the topics we used but did not explain in
Chapter 4. Here, we introduce the fundamentals of distributed graph structures to
model our queries from that chapter. Namely, you will learn about partition keys,
clustering columns, and materialized views.

The second section applies the concepts of distributed graph structures to our second
set of data modeling recommendations. We will introduce Cassandra topics such as
denormalization, revisit edge direction, and talk about loading strategies. These tips
represent data modeling decisions that we recommend for production-quality, dis‐
tributed graph schema.

The last section walks through the final iteration of our C360 example. We will
explain the schema code that applies the concepts of materialized views and indexing
strategies. And we will go through one last iteration of our Gremlin queries to use the
new optimizations.

Altogether, the thought process and development in Chapters 3, 4, and 5 represent
the development life cycle of designing, exploring, and finalizing the models and
queries for your first application with distributed graph data.

Let’s get started by taking a final step down into the physical data layer of working
with graph data in Apache Cassandra.

Chapter Preview: Understanding Distributed Graph Data in Apache Cassandra | 119

https://oreil.ly/graph-book
https://oreil.ly/graph-book


Working with Graph Data in Apache Cassandra
This section looks at the fundamental concepts of working with graph data structures
in Apache Cassandra: primary keys, partition keys, clustering columns, and material‐
ized views.

We are going to discuss these Cassandra data modeling topics from a graph user’s
perspective.

First, we will talk about what you need to know about vertices, and then we will go
over what you need to know about edges. For vertices, you need to know about pri‐
mary keys and partition keys. For edges, you need to know about clustering columns
and materialized views.

Let’s get started with the concept that connects everything: the primary key.

The Most Important Topic to Understand About Data Modeling:
Primary Keys
A major challenge of building a good data model within a distributed system is deter‐
mining how to uniquely identify your data with primary keys.

You have already worked with one of the simplest forms of a primary key: the parti‐
tion key.

Partition key
The partition key is the first element of a primary key in Apache Cassandra. The
partition key is the part of the primary key that identifies the location of the data
in a distributed environment.

From a user’s perspective, the entire primary key is required for you to access your
data from the system. The partition key is just the first piece of the primary key.

Primary key
The primary key describes a unique piece of data in the system. In DataStax
Graph, a primary key can be made up of one or more properties.

You have already been using and working with primary and partition keys. In Data‐
Stax Graph, you specify the desired primary key in the schema API. We saw the sim‐
plest version of a primary key—just one partition key—in the previous chapter with:

schema.vertexLabel("Customer").
       ifNotExists().
       partitionBy("customer_id", Text). // basic primary key: one partition key
       property("name", Text).
       create();

120 | Chapter 5: Exploring Neighborhoods in Production



The partitionBy() method indicates the value that will be included in the label’s
partition key. In this case, we have only one value, customer_id. This means that cus
tomer_id is the full primary key and partition key for the Customer vertex.

From a developer’s perspective, this decision has three consequences for your appli‐
cation. First, the value for customer_id uniquely identifies the data. Second, your
application will need the value for customer_id to read the data about the customer.
We will cover the third point in a moment.

These two consequences govern how you, the user, design your data’s primary and
partition keys. Let’s take a look at an example. Previously, you used your primary key
to look up this data in Gremlin via:

g.V().has("Customer", "customer_id", "customer_0").
      elementMap()

This returns:

{
  "id": "dseg:/Customer/customer_0",
  "label": "Customer",
  "name": "Michael",
  "customer_id": "customer_0"
}

Looking up vertices or edges by their full primary key is the fastest way to read data
in DataStax Graph. This is one of the main reasons that selecting a good partition and
primary key for your data is so important.

There is a third consequence of the partition key in Apache Cassandra. A vertex
label’s partition key assigns your graph data to a host within a distributed environ‐
ment. Partition keys also give you different ways you can colocate your graph data.
Let’s dig into the details.

Partition Keys and Data Locality in a Distributed Environment
We recommend this section if you like getting deep in the weeds.

This section aims to synthesize topics across the Cassandra and graph communities.
We will explore some hypothetical alternatives to graph partitioning by examining
different partition key choices to colocate graph data. We will conclude with the par‐
tition strategy we started with for our example, but you will have gained a better
understanding of the effects of partition key design and the graph partitioning prob‐
lem.

And we need to be pedantic about what we really mean for a brief moment.

The word partition means two very different things to two different groups of people.
The Cassandra community’s understanding of partition answers the question,

Working with Graph Data in Apache Cassandra | 121



“Where is my data in my cluster?” The graph community’s understanding of the term
answers the question, “How can I organize my graph data into a smaller group to
minimize an invariant?”

This book applies the Cassandra community’s definition of partitioning to working
with graph data. When we refer to a partition, we are referencing data locality, or on
which server your data is written to disk across your distributed system.

To illustrate how we will be using the idea of partitioning, let’s recall some data for
our current example, as shown in Figure 5-2.

Figure 5-2. Sample data for three customers in our C360 example

To visualize data assignment to a server (also referred to as an instance or a node) in a
cluster, imagine you are working with a cluster of four servers running DataStax
Graph in Apache Cassandra. In Figure 5-3, we represent a distributed cluster with a
circle that has four servers running Cassandra. (Each eye in Figure 5-3 represents
DataStax Graph in Cassandra.) Then, we show where your graph data is written to
disk by illustrating the graph data next to the server around your cluster, as we do in
Figure 5-3.

The largest circle in Figure 5-3 represents a cluster of four servers, each indicated
with the Cassandra eye logo, running DataStax Graph in Apache Cassandra. The
sample data from Figure 5-2 is shown next to the server in which the data is physi‐
cally stored. In Apache Cassandra, data is mapped to a specific server in your cluster
according to its partition key.

122 | Chapter 5: Exploring Neighborhoods in Production



Figure 5-3. Illustrating which server (node) each vertex is stored in a distributed cluster;
the circle with four eyes represents a distributed cluster

In Figure 5-3, you see that the data for customer_0 is mapped to four different
machines. The customer vertex is written to server 1, the loan vertex is on server 2,
the account vertex is written to machine 3, and the credit card vertex is on machine 0.

You can think of partition keys and their association to data locality in a distributed
environment as follows: data with the same partition key is stored on the same
machine, and data with different keys may be stored on different machines.

Partitioning graph data according to access pattern
With graph data, there are strategies for designing your partition keys to minimize
the latency of your graph traversals. Different partitioning strategies affect the coloca‐
tion of your data and, therefore, the latency of your query.

To minimize jumping around machines in your cluster when you are processing your
graph data, you may consider a partitioning strategy that keeps all the data related to
your query within the same partition. To illustrate this idea, Figure 5-4 shows a parti‐
tioning strategy optimized for the expected access pattern of a C360 application. The
partitions are defined according to the individual customer and their data because a
C360 query will typically be looking for an individual and their associated data. For
our sample data, we would create a partition for each individual.

Working with Graph Data in Apache Cassandra | 123



Figure 5-4. Partitioning graph data in a distributed system according to access pattern

If you have a background in graph theory, the partitioning strategy
illustrated in Figure 5-4 is similar to partitioning according to con‐
nected components.
If you have a background in working with Apache Cassandra, the
partitioning strategy illustrated in Figure 5-4 follows the same
practice of partitioning according to access pattern.

To implement the partitioning strategy illustrated in Figure 5-4, you would need to
add the customer’s unique identifier as the partition key for every vertex label. In
your schema code, we implement the partitioning strategy with:

schema.vertexLabel("Account").
       ifNotExists().
       partitionBy("customer_id", Text).
       clusterBy("acct_id", Text).  // to be defined in a coming section
       property("name", Text).
       create();

It is useful to consider this partitioning strategy because it minimizes the latency of
your query. All the data for your customer-centric query is colocated on the same
node in your environment. This is an optimization at the physical data layer that will
be advantageous when you query your data.

However, there are two reasons why this type of partition strategy will not be recom‐
mended for the queries we are exploring for our example. Recall that the full primary
key is required to start your graph query. The first downside to the design shown in
Figure 5-4 is that you will need to know the customer’s identifier to start your graph
traversal at an account.

Applying this to our example of a shared account, acct_14, brings us to another
drawback to using this partition strategy. This schema design will create two vertices
about acct_14 that are adjacent to two different people. This means that you won’t be
able to start at acct_14 and find all customers who own that account. This has impli‐
cations for your graph query.

124 | Chapter 5: Exploring Neighborhoods in Production



For the C360 queries we are exploring in this example, the partition strategy from
Figure 5-4 doesn’t make sense. When we talk about trees in an upcoming example,
however, it makes sense to consider data model optimizations to minimize query
latency.

Partitioning according to unique key
Let’s look at a second strategy and compare it to colocating data according to your
application’s access pattern.

Think back to the full schema for our example and recall that each vertex label had a
single, unique partition key. You can think of this as separating your graph data via
the most granular division possible: the data’s most unique value.

Figure 5-5. A visual example of the different partitions within your graph data according
to the vertex label’s partition key

The graph data in Figure 5-5 would distribute the vertices across your cluster accord‐
ing to the partition key’s value. Essentially, each vertex will be mapped to a different
partition because each partition key’s value is unique.

One of the drawbacks to partitioning your vertices according to a unique key is that
any time you need to walk through your data, you will be jumping between machines
across your distributed environment. The purpose of using graph data in your appli‐
cation is to use the connections and relationships in your data. If you structure your
graph data across a distributed environment according to unique identifiers, that also
means that you will (likely) be switching servers each time you need to access con‐
nected data.

Final thoughts on partitioning strategies
There are benefits and drawbacks to the different strategies for partitioning graph
data in a distributed environment. Partitioning your graph data according to access
pattern creates limitations on how you can walk through connected data. On the
other hand, this strategy minimizes traversal latency by colocating large components
of data onto the same node.

Working with Graph Data in Apache Cassandra | 125



The most common way to partition your graph data is by the data’s unique identifier.
This makes it easiest to plan for query flexibility but does also introduce latency to
your queries due to the distributed nature of your graph. This is the approach we will
use for our C360 example.

The only way to understand the implications of any partition strategy is to calculate
what it would look like for your data and queries. This requires a balance between
understanding the distributions of the data for the application you need to build
today and considering the future scope toward which you are building.

Selecting a good partitioning strategy is more complicated when we
are working with graph data. Partitioning graph data around a dis‐
tributed environment is synonymous with breaking up your graph
data into different sections. Optimizing which data belongs to a
particular section is classified as one of the hardest types of prob‐
lems in computer science: an NP-complete problem. While maybe
not the best news, this helps to explain why using graph technolo‐
gies in a distributed environment isn’t as simple as translating an
entity-relationship diagram into a graph data model.

On the topic of partitioning, there are two main takeaways to restate here: uniqueness
and locality. In DataStax Graph, your data’s primary key is its unique identifier. For
the fastest performance, you start your graph queries by data via its full primary key.

The second thing to note is that your data’s partition key determines its locality in
your cluster. This governs which machines in your cluster will store the data and the
colocation of other data alongside it.

Given uniqueness and locality with partition keys, let’s take a look at how edges are
represented in Apache Cassandra.

Understanding Edges, Part 1: Edges in Adjacency Lists
Diving into the world of graph modeling brings a large wave of terms, concepts, and
thinking patterns. Now that we have the basics covered, let’s take a look at how graph
data, namely the edges, can be represented on disk or in memory.

There are three main data structures for representing edges in data:

Edge list
An edge list is a list of pairs in which every pair contains two adjacent vertices. 
The first element in the pair is the source (from) vertex, and the second element
is the destination (to) vertex.

126 | Chapter 5: Exploring Neighborhoods in Production



Adjacency list
An adjacency list is an object that stores keys and values. Each key is a vertex, and
the value is a list of the vertices that are adjacent to the key.

Adjacency matrix
An adjacency matrix represents the full graph as a table. There is a row and col‐
umn for each vertex in the graph. An entry in the matrix indicates whether there
is an edge between the vertices represented by the row and column.

To understand these data structures, let’s look at how we would map a small example
of graph data into each structure.

There is a significant amount of detail illustrated in Figure 5-6. At the top, we show
an example of five vertices that are connected by four edges. Direction matters when
you map the data into each of the graph data structures below.

Figure 5-6. An example of three different data structures for storing edges on disk

Let’s walk through each data structure.

On the lower left in Figure 5-6, we have written out how the example data would be
stored in an edge list. The edge list contains four entries: one entry per edge in our
example data. In the center, we represent how the example data maps to an adjacency
list. The adjacency list has two keys: one key per vertex with outgoing edges. The
value for each key is a list of the incoming vertices the edges point to. The last data
structure, shown on the far right, is an adjacency matrix. There are five rows and five
columns: one row or column for each vertex in the graph. Each entry in the matrix
indicates whether there is an edge going from the row vertex to the column vertex.

There are space and time trade-offs for each data structure. Skipping over optimiza‐
tions that can be made for each individual data structure, let’s consider the complexi‐
ties of each at a basic level. Edge lists are the most compressed version of representing

Working with Graph Data in Apache Cassandra | 127



your graph, but you have to scan the entire data structure to process all edges about a
specific vertex. Adjacency matrices are the fastest way to walk through your data, but
they take up an inordinate amount of space. Adjacency lists combine the benefits of
the other two models by providing an indexed way to access a vertex and limit the list
scans to only the individual vertex’s outgoing edges.

In DataStax Graph, we use Apache Cassandra as a distributed adjacency list to store
and traverse your graph data. Let’s dig into how we optimize the storage of edges on
disk so you can get the most benefit out of the sorting order of your edges during
your graph traversals.

Understanding Edges, Part 2: Clustering Columns
You used the concept of clustering columns when you added edge labels to your
graph in Chapter 4.

Clustering column
A clustering column determines a sorting order of your data in tables on disk.

Clustering columns make up the final components of a table’s primary key in Cassan‐
dra. Clustering columns inform the database how to store the rows in a sorted order
on disk, which makes data retrieval more efficient.

We want to dig into the details of clustering columns because they explain two con‐
cepts at the same time. First, the technical implications of clustering columns detail
exactly why the query at the beginning of this chapter returned an error. Second, clus‐
tering columns illustrate how we sort your edges on disk in an adjacency list structure
to provide the fastest access possible.

Example 5-2 illustrates the use of a clustering column in creating an edge label.

Example 5-2.

schema.edgeLabel("owns").
       ifNotExists().
       from("Customer").   // the edge label's partition key
       to("Account").      // the edge label's clustering column
       property("role", Text).
       create()

Following the example in Example 5-2, we can pick out the partition key and cluster‐
ing columns for our edge label:

128 | Chapter 5: Exploring Neighborhoods in Production



1. The from(Customer) step means that the full primary key of the Customer vertex
will be the partition key for the edge label owns: (customer_id).

2. The full primary key for Account will be the clustering column for the owns edge:
(acct_id).

Putting this together, we can lay out Cassandra’s table structures alongside the graph
schema, as see in Figure 5-7.

Figure 5-7. The default table structure in Cassandra for an edge between two vertices

Figure 5-7 shows the table structures in Cassandra as they map to graph schema
using the Graph Schema Language (GSL). The Customer vertex creates a table with a
partition key, customer_id. The owns edge connects Customer to Account. The parti‐
tion key of the owns edge is the customer_id. The owns edge also has a clustering key,
in_acct_id, which is the partition key of the account vertex. There is a third column
in the customer_owns_account table: role. This is a simple property and is not a part
of the primary key. As a result, the value for role will come from the most recent
write of an edge between a customer and an account.

To make this concrete, Figure 5-8 shows an example of data that follows the schema
from Figure 5-7.

Figure 5-8. Looking at how our data from the schema in Figure 5-7 would be organized
on disk and how it would be represented in DataStax Graph

Working with Graph Data in Apache Cassandra | 129



Before we move on to a different topic, there is one last idea to synthesize about clus‐
tering keys and edges in DataStax Graph. In Chapter 2, we outlined cases in which
you want to have many edges between two vertices. We denote this in the GSL with a
double-lined edge. In Cassandra, we would make that property a clustering key.
Figure 5-9 shows the Cassandra schema alongside a graph schema that models adja‐
cent vertices as a collection.

Figure 5-9. The table structure in Cassandra when we model clustering keys on edges

Figure 5-10 shows the table structure in Cassandra as they map to graph schema
using the GSL when we model the multiplicity of a graph with many edges between
instance vertices. The difference is in the table for the owns edge. We now have the
role as a clustering key for this edge, before the clustering key for the acct_id. The
schema from Figure 5-9 allows there to be multiple edges between vertices, as we
show in Figure 5-10.

Figure 5-10. Looking at how our data from the schema in Figure 5-9 would be organized
on disk and how it would be represented in DataStax Graph

Now that we understand the structure of edges on disk, let’s visit where they will be
stored within a distributed environment.

130 | Chapter 5: Exploring Neighborhoods in Production



Synthesizing concepts: Edge location in a distributed cluster
Recall that the partition key identifies where the data will be written within the clus‐
ter. This means that the outgoing edges for a vertex will be stored on the same
machine as the vertex itself. We previewed this in Figure 5-5 because the edges have
the same color as the customer vertices; they are all orange. To illustrate what we
mean, let’s look at the locality of edges in our cluster, as shown in Figure 5-11.

Figure 5-11. A visual example of data locality for the edges in our example

The image in Figure 5-11 illustrates where the edges for customer_0 will be stored
within a distributed environment. Each of the edges will be colocated on the same
machine as the vertex for customer_0 because each edge has the same partition key:
the customer_id.

The next thing to understand is how the edges are sorted within their partition. The
full primary key of the adjacent vertex label becomes the clustering column(s) of the
edge label. This means that the edges are sorted on disk according to their incoming
vertex’s primary key, as visualized in Figure 5-12.

Working with Graph Data in Apache Cassandra | 131



Figure 5-12. A visual example of mapping graph data, on the left, to its storage location
in a distributed cluster, on the right

The main concept to understand from Figure 5-12 is illustrated on the right. We are
showing that the vertex for customer_4, Aaliyah, is written to disk on machine 1 in
our cluster. Also on machine 1, we will find the outgoing edges from Aaliyah sorted
according to their incoming vertex. Aaliyah has two loans connected to her with an
owes edge. We see that on disk, these edges will be sorted according to the incoming
vertex’s partition key, the loan_id. We see loan_18 is the first entry and loan_80 is
the second entry.

To check whether you are synthesizing concepts: where would the
customer vertices for Michael, Maria, Rashika, and Jamie be in
Figure 5-12? Answer: The partition key for each of those vertices is
their customer_id, which would be hashed and mapped to any one
of the servers. Because we are working with five customers in total,
there will be at least one server with two customer vertices. This
logic is referred to as the “pigeonhole principle” in mathematics.

You might be asking yourself: why are we getting into all this? It all comes down to
the minimum requirement for accessing a piece of data in Apache Cassandra: the
partition key.

Understanding Edges, Part 3: Materialized Views for Traversals
The main area in which you are going to feel the effects of an edge’s primary key
design comes into how you access your edges. To use an edge, you have to know its
partition key.

132 | Chapter 5: Exploring Neighborhoods in Production

https://oreil.ly/xeET6


Because of this, we cannot yet traverse our edges in the reverse direction! This is
because there are no edges in the system that start with the partition key from the
incoming vertex labels in our examples.

Remember our query from Example 5-1?

g.V().has("Customer", "customer_id", "customer_0"). // the customer
      out("owns").                      // walk to their account(s)
      in("withdraw_from", "deposit_to") // walk to all transactions

Recalling the schema we built in the previous chapter, the deposit_to edges point
from a Transaction to an Account. However, this query is trying to walk that edge in
the reverse direction: from the Account to the Transaction.

Applying what we just learned about edges in DataStax Graph, we know that this
error happens because the edge does not exist on disk. The edge was written from the
transaction to the account, but not the reverse.

If we want to walk from accounts to transactions, then we need to store the edge in
the other direction as well. This is not done by default in DataStax Graph because of
performance implications, similar to how indexing every column in a relational data
model is an antipattern.

What we need are bidirectional edges, or edges that go in both directions. This option
brings us to the last technical topic in this chapter.

Materialized views for bidirectional edges
One of the main reasons engineers love Apache Cassandra is they are willing to trade
data duplication for faster data access. This is where materialized views come into
play with DataStax Graph. From the user’s perspective, you can think of a material‐
ized view as follows:

Materialized view
A materialized view creates and maintains a copy of the data in a separate table
with a different primary key structure, rather than requiring your application to
manually write the same data multiple times to create the access patterns you
need.

Under the hood, DataStax Graph uses materialized views to be able to walk an edge in
its reverse direction.

To demonstrate, Example 5-3 shows how to create a materialized view on the existing
edge label for deposit_to.

Working with Graph Data in Apache Cassandra | 133



Example 5-3.

schema.edgeLabel("deposit_to").
       from("Transaction").
       to("Account").
       materializedView("Transaction_Account_inv").
       ifNotExists().
       inverse().
       create()

Example 5-3 creates a table in Apache Cassandra called "Transac

tion_Account_inv". The partition key for this table is the acct_id. The clustering
column is transaction_id.

The full primary key from Example 5-3 is written as (acct_id, transaction_id).
This notation means that the full primary key contains two pieces of data: acct_id
and transaction_id. The first value, acct_id, is the partition key, and the second
value, transaction_id, is the clustering column.

From the user’s perspective, this gives us the ability to walk through the deposit_to
edge from accounts to transactions. To convince ourselves of this, let’s see the edges
that are stored between these two data structures by inspecting the data on disk.

We can inspect the edges on disk for the deposit_to edge label by querying the
underlying data structures in Apache Cassandra. There are two tables to inspect.
First, let’s look at the original table for Transaction_deposit_to_Account; you can
do this from DataStax Studio with the following (the results are shown in Table 5-2):

select * from "Transaction_deposit_to_Account";

Table 5-2. The data layout from the table Transaction_deposit_to_Account

Transaction_transaction_id Account_acct_id
220 acct_14

221 acct_14

222 acct_0

223 acct_5

224 acct_0

The following query shows how to list all edges on disk for the materialized view of
the deposit_to edge label, and Table 5-3 displays the results:

select * from "Transaction_Account_inv";

134 | Chapter 5: Exploring Neighborhoods in Production



Table 5-3. The data layout from the table Transaction_Account_inv

Account_acct_id Transaction_transaction_id
acct_0 222

acct_0 224

acct_5 223

acct_14 220

acct_14 221

Let’s look very closely at the differences between Table 5-2 and Table 5-3. The easiest
one to spot is the transaction involving acct_5. In Table 5-2, we see that the partition
key for this edge is out_transaction_id, which is 223. The clustering column is
in_acct_id, which is acct_5.

Examine how this same edge is stored in Table 5-3, the materialized view of Table 5-2.
We can see that the edge’s keys are flipped; the partition key for this edge is
in_acct_id, which is acct_5, and the clustering column is out_transaction_id,
which is 223. We now have bidirectional edges to use in our example.

How far down do you want to go?
We just walked through all of the technical explanations for topics in Apache Cassan‐
dra that we have planned for this book. Our explanations of the technical concepts
are intentionally only a surface-level introduction to the internals of Apache Cassan‐
dra, presented from the perspective of a graph application engineer. There is much
more to understand about partition keys, clustering columns, materialized views, and
more within distributed systems.

We encourage you to go deeper and can recommend two other resources to get you
there.

First, for a deep dive on the internals of Apache Cassandra, consider picking up a dif‐
ferent O’Reilly book: Cassandra: The Definitive Guide, Third Edition by Jeff Carpenter
and Eben Hewitt (O’Reilly).

Or for a complete examination of the internals of distributed systems, check out Alex
Petrov’s Database Internals: A Deep Dive into How Distributed Data Systems Work
(O’Reilly).

Working with Graph Data in Apache Cassandra | 135



Where are we going from here?
We are coming back up from the internals of distributed graph data for one last pass
of our C360 example. Applying the concepts we have discussed can give us more data
modeling recommendations, schema optimizations, and a few new ways to imple‐
ment our Gremlin queries. So that is exactly where we are going.

The upcoming section applies our knowledge of keys and views in Apache Cassandra
to data modeling best practices with DataStax Graph.

Graph Data Modeling 201
The new knowledge of the layout of vertices and edges in DataStax Graph opens up
more data modeling optimizations. Let’s apply our understanding of partition keys,
clustering columns, and materialized views and visit our second set of data modeling
recommendations (picking up from the six recommendations provided in
Chapter 4).

To begin with, let’s recall where our graph schema left off—see Figure 5-13.

Figure 5-13. Our development schema from Chapter 4

This brings us to our next data modeling recommendation.

136 | Chapter 5: Exploring Neighborhoods in Production



Rule of Thumb #7

Properties can be duplicated onto edges or vertices; use denormali‐
zation to reduce the number of elements you have to process in a
query.

To apply this tip, consider a case in which an account has thousands of transactions.
When we want to find the most recent 20 transactions, we need to access the account
vertex by walking through all transactions before we can subselect the vertices by
time. It is pretty expensive to traverse all of the edges to access all transactions and
then sort the transaction vertices.

Can we be smarter and reduce the amount of data we have to process?

We can. Specifically, we can store a transaction’s time in two places: on the transaction
vertex and on the edges. This way, we can subselect the edges to limit our traversal to
only the most recent 20 edges. Figure 5-14 illustrates duplicating time onto an edge
label.

Figure 5-14. Applying denormalization to include a timestamp on the edges and vertices
as an optimization to improve read performance

For simplicity’s sake, in Figure 5-14 we show only the addition of a timestamp to the
withdraw_from edge; we will apply the same technique for the deposit_to and
charge edge labels.

This type of optimization requires your application to write the same timestamp onto
both the edge and the vertex. This is called denormalization.

Denormalization
Denormalization is the strategy of trying to improve the read performance of a
database, at the expense of losing some write performance, by adding redundant
copies of data grouped differently.

Graph Data Modeling 201 | 137



Duplicating properties, or denormalization, is a very popular strategy that balances
the dualities between unlimited query flexibility and query performance. On one
hand, modeling your data in a graph database allows for more flexibility and easier
integration of data sources. This flexibility is one of the main reasons teams are pick‐
ing up graph technologies; graph technology inherently integrates more expressive
modeling and query languages.

On the other hand, poor planning during development has left many teams before
you with unrealistic expectations for their production graph model. They focused
more on data model flexibility at the expense of query performance. Your queries will
be more performant if you take advantage of modeling tricks like denormalization.

Before you start adding properties and materialized views to all of your edges, con‐
sider our next recommendation.

Rule of Thumb #8

Let the direction you want to walk through your edge labels deter‐
mine the indexes you need on an edge label in your graph schema.

With this tip, we are asking you to do a few things. First, we are advising you to work
out your Gremlin queries in development mode first, just like we did in Chapter 4.
Then we can apply those final queries to determine only the materialized views that
you need. You don’t need indexes for everything.

There are two ways to do this in DataStax Graph: you can do it yourself, or you can
tell the system to do it.

Let’s start with what it would look like if you were to figure out indexes on your own.

To recognize when you need an index, you have to map your Gremlin query onto
your graph schema. Mapping a query onto schema is something we’ve been mentally
practicing throughout this book, but let’s see what this looks like drawn out in
Figure 5-15. We will draw out our first query’s steps in our schema from start to end.
Then, we use the query steps overlaid on our schema to identify where we will need
an edge index. Figure 5-15 depicts a query’s steps drawn over schema followed by
Example 5-4, which shows the Gremlin query.

138 | Chapter 5: Exploring Neighborhoods in Production



Figure 5-15. Mapping your query onto your schema to find where you need a material‐
ized view on an edge label

Example 5-4. 

1 dev.V().has("Customer", "customer_id", "customer_0").  // [START]
2         out("owns").                       // [1 & 2]
3         in("withdraw_from", "deposit_to"). // [3]
4         order().                           // [3]
5           by(values("timestamp"), desc).   // [3]
6         limit(20).                         // [3]
7         values("transaction_id")           // [END]

Graph Data Modeling 201 | 139



Let’s break down what we are showing in Figure 5-15 alongside Example 5-4. We
mapped each step of the query to the schema that you walk through during the query.
The boxes labeled from Start to End map a green path through the schema elements
to match the query’s steps to where we are walking throughout our schema.

The walk through our schema can be thought of as follows. We begin the traversal by
uniquely identifying a customer, shown in the query and schema with the Start box.
This is line 1 in our query. Then we use the owns edge to access that customer’s
account; this is shown in the boxes labeled 1 and 2. This is line 2 in our query. Box 3
maps together the processing and sorting of transactions. This maps to lines 3, 4, 5,
and 6 in our query. End labels where the traversal stops, on line 7 of our query.

The most important concept in Figure 5-15 is at step 3. The query walks through the
incoming withdraw_from and deposit_to edge labels to access the Transaction ver‐
tex label. However, we are walking against the direction of these edge labels in our
schema. We highlighted this in Figure 5-15 with orange dotted lines.

Being able to mentally see that we are walking against the direction of an edge label
identifies where you need a materialized view in your graph. This is a very important
concept that we hope you followed from Figure 5-15 alongside Example 5-4. We
think of this last example as one of the most fundamental aha moments for under‐
standing graph data in Apache Cassandra, and we hope you got there.

Finding Indexes with an Intelligent Index Recommendation System
If juggling all of this in your head is new or does not feel natural, there is another
way: you can let DataStax Graph do it for you.

DataStax Graph has an intelligent index recommendation system called indexFor. To
let the index analyzer figure out what indexes a particular traversal requires, all you
need to do is execute schema.indexFor(<your_traversal>).analyze() using the
query we walked through in Figure 5-15:

schema.indexFor(g.V().has("Customer", "customer_id", "customer_0").
                    out("owns").
                    in("withdraw_from", "deposit_to").
                    order().
                      by(values("timestamp"), desc).
                    limit(20).
                    values("transaction_id")).
       analyze()

140 | Chapter 5: Exploring Neighborhoods in Production



Because we already created a materialized view for deposit_to, this command will
output only one recommendation. The output contains the following information,
reformatted here to make it easier to read:

Traversal requires that the following indexes are created:
schema.edgeLabel("withdraw_from").
    from("Transaction").
    to("Account").
    materializedView("Transaction__withdraw_from__Account_by_Account_acct_id").
    ifNotExists().
    inverse().
    create()

Essentially, Figure 5-15 and indexFor(<your_traversal>).analyze() are doing the
same thing. They are mapping your traversal onto your schema to see where you
need a materialized view.

After you develop all of your queries, as we did in Chapter 4, you can use either tech‐
nique to figure out where you will need indexes in your production schema. The
manual approach can be useful for figuring out the default direction you should use
for an edge label. If you only use indexFor(…).analyze(), you could end up with a
bunch of indexes that may not be needed if some of the edges are simply turned
around.

The next recommendation is for when you are first setting up your production
database.

Rule of Thumb #9

Load your data; then apply your indexes.

We recommend loading data before applying indexes because this will significantly
speed up your data loading process. The application of this recommendation depends
on your team’s deployment strategy.

This is a common loading strategy because of the popularity of blue-green deploy‐
ment patterns for production graph databases. If this is the type of pattern you would
like to use, we recommend loading data and then applying indexes. For a resource on
deployment strategies to minimize system downtime, like the blue-green pattern, we
recommend Continuous Delivery: Reliable Software Releases Through Build, Test, and
Deployment Automation by Jez Humble and David Farley (Addison-Wesley).

Graph Data Modeling 201 | 141



There is one last tip to recommend.

Rule of Thumb #10

Keep only the edges and indexes that you need for your production
queries.

Between development and production, you may find edge labels that you do not need
for your traversals. That is expected. When you move your schema into production,
get rid of the edge labels you are not going to use. Save some space on disk and the
time spent persisting it.

Let’s apply the new data modeling recommendations we just covered to the develop‐
ment schema we built up in Chapter 4. This will be the last time we use this example
and sample data before we move into different graph models in future chapters.

Production Implementation Details
The remaining implementation details in this section represent the final production
version of our C360 example.

First, we will add the required materialized views to the schema for our C360 exam‐
ple. Then we will go through an introduction of how to load data with DataStax Bulk
Loader. Last, we will revisit and update our Gremlin queries to use the new
optimizations.

Materialized Views and Adding Time onto Edges
We have a few changes to make to our development schema. First, we want to find
areas where adding time onto our edges will reduce the amount of data we need to
process in a query.

Let’s visualize this in Figure 5-16 for the second query of our example. Figure 5-16
steps through the Gremlin query.

142 | Chapter 5: Exploring Neighborhoods in Production



Figure 5-16. Mapping Query 2 onto our development schema to see where we can use
denormalization to minimize the amount of data we need to process

Example 5-5. 

dev.V().has("Customer", "customer_id", "customer_0").  // Start
        out("uses").                        // 1
        in("charge").                       // 2
        has("timestamp",                    // 2
            between("2020-12-01T00:00:00Z", // 2
            "2021-01-01T00:00:00Z")).       // 2
        out("Pay").                         // 3
        groupCount().                       // End
        by("vendor_name").                  // End
        order(local).                       // End
        by(values, decr)                    // End

Production Implementation Details | 143



Comparing Figure 5-16 with Example 5-5 illustrates two production schema strate‐
gies. First, we can apply denormalization to optimize this query. Currently, time is
stored only on the Transaction vertex. We can reduce the number of edges required
in this traversal if we denormalize the timestamp property and store it on the charge
edge. This is illustrated in Figure 5-16 and Example 5-5 with the label 2.

We also see in Figure 5-16 that our query walks against the direction of the charge
edge. This means we need another materialized view on this edge label. The schema
code is:

schema.edgeLabel("charge").
       from("Transaction").
       to("CreditCard").
       materializedView("Transaction_charge_CreditCard_inv").
       ifNotExists().
       inverse().
       create()

Following this same style of mapping, we can find three edge labels where denormali‐
zation can optimize our queries. This optimization minimizes the amount of data a
traversal has to process by sorting the edges on disk. Specifically, we can minimize the
amount of data required to process our traversals if we also add the timestamp prop‐
erty to the withdraw_from, deposit_to, and charge edge labels.

Our Final C360 Production Schema
We have been exploring through schema, queries, and data integration to iteratively
introduce and build up our C360 example. Together, the technical concepts and pre‐
vious discussions bring us to the final production schema for our C360 example
shown in Figure 5-17.

The adjustment we applied here is to denormalize and add timestamp onto the edge
labels that we use in our traversals.

The final version of the schema code for our edge labels is shown in Example 5-6.

144 | Chapter 5: Exploring Neighborhoods in Production



Figure 5-17. The starting data model for a graph-based implementation of a C360 appli‐
cation from the previous chapter

Example 5-6.

schema.edgeLabel("withdraw_from").
       ifNotExists().
       from("Transaction").
       to("Account").
       clusterBy("timestamp", Text). // sort the edges by time
       create();

schema.edgeLabel("deposit_to").
       ifNotExists().
       from("Transaction").
       to("Account").
       clusterBy("timestamp", Text). // sort the edges by time
       create();

schema.edgeLabel("charge").
       ifNotExists().
       from("Transaction").
       to("CreditCard").
       clusterBy("timestamp", Text). // sort the edges by time
       create();

Production Implementation Details | 145



To make the examples easier to follow in this book, we use Text to
represent time and then query with strings such as
2020-12-01T00:00:00Z. The timestamp property type uses less
space on disk than Text and may be the best option for your final
application.

Altogether, we need only the following changes from our development schema to our
production schema:

1. Denormalize a property onto five edge labels
2. Add three materialized views to walk three edges in reverse

Let’s detail how to use a bulk loading tool to insert the data into your graph database.

Bulk Loading Graph Data
We created a script that loads all of the data into DataStax Graph from CSV files.
DataStax Bulk Loader is the fastest way to load data in production. We provided a
CSV file for each vertex and edge label from our data model. Let’s walk through the
general process for loading vertices and then show the same for edges.

Loading vertex data with DataStax Bulk Loader
Let’s look at all of the included vertex datafiles and a brief description for each file in
Table 5-4.

Table 5-4. The full list of CSV files for the vertex data used in this chapter’s examples

Vertex file Description
Accounts.csv The account IDs, one per line

CreditCards.csv The credit card IDs, one per line

Customers.csv Customer details, one per line

Loans.csv The loan IDs, one per line

Transactions.csv Transaction details, one per line

Vendors.csv Vendor details, one per line

Let’s see an example of how to load vertex data with DataStax Bulk Loader by examin‐
ing Transactions.csv. The first five lines of Transactions.csv are shown in
Table 5-5. Each line contains three pieces of information about the transaction that
map to our expected schema. You also see in Table 5-5 that all transactions are loaded
with an unknown type because one of our traversals is to mutate this property accord‐
ing to the graph’s structure.

146 | Chapter 5: Exploring Neighborhoods in Production



Table 5-5. The first five lines of data from the file Transactions.csv

transaction_id timestamp transaction_type
219 2020-11-10T01:00:00Z unknown

23 2020-12-02T01:00:00Z unknown

114 2019-06-16T01:00:00Z unknown

53 2020-06-05T01:00:00Z unknown

The most important line in Table 5-5 is the header. In the accompanying loading
scripts, the header doubles as the mapping configuration between the file and the
database. The header and the property names in DataStax Graph must match.

We can load the CSV file using the command-line bulk loading utility, as shown in
Example 5-7.

Example 5-7. 

1  dsbulk load -url /path/to/Transactions.csv
2              -g neighborhoods_prod
3              -v Transaction
4              -header true

Example 5-7 shows the most basic way to load vertex data on your localhost. The first
part of line 1, dsbulk load, invokes the loading tool from the command line. The
next four parameters, which can come in any order, are -url, -g, -v, and -header:

1. The -url parameter indicates where the CSV is stored.
2. -g is the name of the graph.
3. -v is the vertex label.
4. -header specifies that the data should be mapped according to the file’s header.

The DataStax dsbulk documentation contains all the details for
other loading options, including loading into a distributed cluster,
configuration files, and much more.

Production Implementation Details | 147

https://oreil.ly/EdvO5


Next, let’s take a look at the edge data and loading process.

Loading edge data with DataStax Bulk Loader

All of the included edge datafiles and a brief description for each are listed in
Table 5-6.

Table 5-6. The full list of CSV files for the edge data used in this chapter’s examples

Edge file Description
charge.csv The charge edges from a Transaction to a CreditCard

deposit_to.csv The deposit_to edges from a Transaction to an Account

owes.csv The owes edges from a Customer to a Loan

owns.csv The owns edges from a Customer to an Account

pay_loan.csv The pay edges from a Transaction to a Loan

pay_vendor.csv The pay edges from a Transaction to a Vendor

uses.csv The uses edges from a Customer to a CreditCard

withdraw_from.csv The withdraw_from edges from a Transaction to an Account

Let’s see an example of how to load edge data with DataStax Bulk Loader by examin‐
ing deposit_to.csv. The first five lines of deposit_to.csv are shown in Table 5-7.
Each line contains three pieces of information about the deposit that map to our
schema: the transaction_id, the acct_id, and a timestamp.

Table 5-7. The first five lines of data from the file deposit_to.csv

Transaction_transaction_id Account_acct_id timestamp
185 acct_5 2020-01-19T01:00:00Z

251 acct_5 2020-07-25T01:00:00Z

247 acct_5 2020-03-06T01:00:00Z

214 acct_14 2020-06-11T01:00:00Z

The most important line in Table 5-7 is the header; the header has to match the table
schema in DataStax Graph. DataStax Graph autogenerates different column names
for the edge properties that are part of the table’s primary key. The generated name
appends the vertex label to the front of the property name, such as Transaction_ in
front of transaction_id and Account_ in front of acct_id.

We can load the edge CSV file using the command-line bulk loading utility, as shown
in Example 5-8.

148 | Chapter 5: Exploring Neighborhoods in Production



Example 5-8. 

1  dsbulk load -url /path/to/Transactions.csv
2              -g neighborhoods_prod
3              -e deposit_to
4              -from Transaction
5              -to Account
6              -header true

Example 5-8 shows the most basic way to load edge data on your localhost. The first
part of line 1, dsbulk load, invokes the loading tool from the command line, as we
saw in the previous example. The next six parameters can come in any order: -url, -
g, -e, -to, -from, and -header. The -url parameter indicates where the CSV is
stored, -g is the name of the graph, -e is the edge label, -from is the outgoing vertex
label, -to is the incoming vertex label, and -header says to map the data according to
the file’s header.

The accompanying scripts show how to load all vertex and edge labels for this chapter
and all examples in this book. Please head to the data directory within book’s GitHub
repository for the data and loading scripts for each chapter.

You will see many more examples of bulk loading data into DataStax Graph through‐
out the rest of the book. For now, let’s move on to the next stage of our implementa‐
tion details: querying our graph with Gremlin.

Updating Our Gremlin Queries to Use Time on Edges
Now that we have updated our edge labels and indexes, let’s revisit the queries and the
results for each query. These are the same queries we walked through in Chapter 4,
but there are two changes. First, we now can use the production traversal source g.
We have moved out of development mode into writing queries against a production
application. Second, we are going to update each query to use our new production
schema. We will be using time on edges in addition to the materialized view.

Let’s start by revisiting Query 1.

Query 1: What are the most recent 20 transactions involving Michael’s account?
All of the work we did to set up the schema and graph data empowers the simplicity
of the query in Example 5-9 to answer our first question.

Production Implementation Details | 149

https://oreil.ly/GtEI5
https://oreil.ly/GtEI5


Example 5-9.

g.V().has("Customer", "customer_id", "customer_0").
      out("owns").
      inE("withdraw_from", "deposit_to"). // uses materialized view on deposit_to
      order().                            // sort the edges
        by("timestamp",desc).             // by time
      limit(20).                          // walk through the 20 most recent edges
      outV().                             // walk to the transaction vertices
      values("transaction_id")            // get the transaction_ids

The results remain the same, but the query processed less data by sorting the edges:

"184", "244", "268", ...

The main change from the query in Chapter 4 to this example can be seen with the
addition of a single character: E. The query changed from using in() to inE(). This
one character change uses a materialized view and the sorted order of edges.

To dig into the details, let’s recall how we walked through this data in development
mode. In Chapter 4, the in() step walked directly through edges, to the vertices,
ignoring the edges’ direction, and then sorted the vertex objects. That was simple
enough for figuring out how to walk through our graph data.

In a production environment, we would need to ensure that this query processes only
the data it needs. In Example 5-9, we optimized this query by using inE(), sorting all
edges by time, and traversing only the 20 most recent edges.

The sorting of all edges requires three concepts from our schema. First, we use the
materialized views we built on the deposit_to and withdraw_from edge labels. Sec‐
ond, we use the clustering key for deposit_to because the edges are ordered on disk
by time. And last, we use the clustering key for the withdraw_from edge label because
these edges are also ordered on disk by time.

That is a significant amount of optimization from just a small change: from in() to
inE(). Let’s look at what we need to do to our next query to take advantage of our
new schema.

Query 2: In December, at which vendors did Michael shop, and with what frequency?
We are going to apply the same pattern to optimize our next query. We want to take
advantage of the denormalization of time on the charge edge to minimize the
amount of data we need to process. In Gremlin, this looks like Example 5-10.

150 | Chapter 5: Exploring Neighborhoods in Production



Example 5-10.

g.V().has("Customer", "customer_id", "customer_0").
      out("uses").
      inE("charge").                           // access edges
          has("timestamp",                     // sort edges
              between("2020-12-01T00:00:00Z",  // beginning of December 2020
              "2021-01-01T00:00:00Z")).        // end of December 2020
      outV().                                  // traverse to transactions
      out("pay").hasLabel("Vendor").           // traverse to vendors
      groupCount().
        by("vendor_name").
      order(local).
        by(values, desc)

The results are the same as before:

{
  "Target": "3",
  "Nike": "2",
  "Amazon": "1"
}

The change and optimization we applied in Example 5-10 follow the same pattern as
Example 5-9. This time, we used inE() to access only incoming edges. We used the
clustering key timestamp to apply a range function to the edges. Once we found all
edges in a certain range, we moved to the transaction vertices and continued our tra‐
versal, as in Chapter 4.

This brings us to our last query from Chapter 4.

Query 3: Find and update the transactions that Jamie and Aaliyah most value: their payments
from their account to their mortgage loan.
Let’s think about the data this query is processing before we look at the final version
of the query. In this query, we are starting from Aaliyah and finding all withdrawals
from her accounts. There are no limits or time requests for this query; we want to
find them all. This means that we will not be using any time ranges on the edges.

Further, every step along this query uses an existing outgoing edge label. Because of
this, we do not need any materialized views and can walk out the existing edges to
satisfy this query. Therefore, we need only to switch to our production traversal
source, and this query will be ready to go—see Example 5-11.

Production Implementation Details | 151



Example 5-11. 

g.V().has("Customer", "customer_id", "customer_4").    // accessing Aaliyah's vertex
      out("owns").                                     // walking to the account
      in("withdraw_from").                             // Only consider withdraws
      filter(
             out("pay").              // walking out to loans or vendors
             has("Loan", "loan_id", "loan_18")).       // only keep loan_18
      property("transaction_type",    // mutating step: set the "transaction_type"
                "mortgage_payment").  // to "mortgage_payment"
      values("transaction_id", "transaction_type")     // return the id and type

The results look exactly the same as those in Chapter 4:

"144", "mortgage_payment",
"153", "mortgage_payment",
"132", "mortgage_payment",
...

With Example 5-11, we have concluded the transformation from development to our
production schema and queries. We encourage you to apply the thought process of
shaping query results from “Advanced Gremlin: Shaping Your Query Results” on
page 106 to create more robust payloads and data structures to share within your
application.

Moving On to More Complex, Distributed Graph Problems
We consider the transition from Chapter 4 to the topics and production optimiza‐
tions presented in this chapter to be the final stage of learning how to work with
graph data in Apache Cassandra. Along the way, you experienced limitations, fol‐
lowed by their resolutions. We will see more of that as we go along but in shorter
iterations.

Our First 10 Tips to Get from Development to Production
Throughout Chapter 4, we presented data modeling tips for mapping your data into a
distributed graph database. In this chapter, we augmented those tips with specific
ways to optimize your production graph database. Let’s revisit all 10 tips to recall the
journey we went through from development to production (Figure 5-18).

These 10 tips are foundational to starting over with a new dataset and use case. We
will be applying them repeatedly in the coming chapters. And we will find more rec‐
ommendations to add to this list as we explore different common structures for dis‐
tributed graph applications.

152 | Chapter 5: Exploring Neighborhoods in Production



Figure 5-18. Our top 10 graph data modeling tips

From here, we think you are ready to tackle deeper and more complex graph prob‐
lems such as paths, recursive walks, collaborative filtering, and more.

The most advanced graph users today are those who are willing to learn through trial
and error. We have collected what they have learned so far and will be walking you
through those details within the context of new use cases in the coming chapters.

As we see it, gaining traction with new technology and new ways of thinking is a
journey. We have presented the major foundational milestones others have reached so
far. Now, you are ready to come along with us and apply graph thinking in produc‐
tion applications to solve complex problems.

In Chapter 6, we’ll look at one of the most popular ways for people to extend graph
thinking into their data. We will solve a complex problem found at the intersection of
edge computing and hierarchical graph data in a self-organizing communication net‐
work of sensors.

Moving On to More Complex, Distributed Graph Problems | 153





CHAPTER 6

Using Trees in Development

C360 applications for neighborhood exploration are the most popular use of dis‐
tributed graph technology at this time. A C360 example also serves as a great intro‐
duction to a plethora of concepts in distributed systems, graph theory, and functional
query languages.

But what else is out there?

In the next two chapters, we step beyond understanding neighborhoods of data and
apply graph thinking to hierarchical data.

Hierarchical data
Hierarchical data represents concepts that naturally organize into a nested struc‐
ture of dependencies.

At the time of writing this chapter, hierarchically structured data is the second most
popular shape of data used in distributed graph applications.

Chapter Preview: Navigating Trees, Hierarchical Data,
and Cycles
There are five main sections to this chapter.

The first section walks through multiple examples of hierarchical data from real-
world scenarios. With a new shape of data comes another flood of terminology; the
second section introduces new terms with many examples. The third section of the
chapter introduces the problem statement, data, and schema we will use in our exam‐
ples. With our data, there are two main styles of queries for working with hierarchical
data. The fourth section explains the first query pattern: walking from the bottom of

155



the hierarchy to the top. The last section shows the second query pattern: walking
from the top of the hierarchy to the bottom.

The final query pattern in the last section unveils one of the most difficult aspects of
working with deeply nested data in a production application. We end this chapter
showing how things can break, setting the stage for Chapter 7, in which we explain
why and how to fix them for production.

Seeing Hierarchies and Nested Data: Three Examples
More often than not, we already use graphs to describe the natural, nested structure
within concepts we use every day. We often see hierarchical structure within the data
about a product’s structure, version control systems, or people. Let’s dive into each of
these three examples and illustrate how we reason about nested data with a graph.

Hierarchical Data in a Bill of Materials
The first place to explore natural hierarchies within data can be seen in any bill of
materials (BOM) application. A BOM application describes a product’s structure by
associating the nested dependencies of the raw materials, assemblies, parts, and quan‐
tities needed to create a product in an end-to-end pipeline. Figure 6-1 illustrates the
dependencies for constructing a Boeing 737 airplane.

Figure 6-1. An example of hierarchical data in a bill of materials example

You can see the natural hierarchy or “nestedness” of data when you consider the
BOM required to build an airplane. Consider this question: how many screws are
used to construct a Boeing 737? The answer can be found by walking through the
hierarchy of components that are assembled to construct a plane: a plane has two
wings, each wing has one turbine engine, the engine has a shaft that requires 12
screws, and so on.

When we talk about hierarchies in a BOM, we are talking about following that same
deconstruction for every part of the plane to figure out the total number of screws it

156 | Chapter 6: Using Trees in Development



takes to build the whole object. This type of hierarchy in data exists for manufactur‐
ing plants, assembly lines, and myriad areas within industrial engineering.

Hierarchical Data in Version Control Systems
You also find hierarchies and graph data structures in software engineering processes. 
The most popular one, and the one used to supplement this book with technical con‐
tent, is Git.

Git’s version control system forms a hierarchy. You can think of this version control
system as containing three separate tree structures: the working directory, the index,
and the head. Each tree in the version control system has a different and specific pur‐
pose: writing, staging, or committing changes. To illustrate this, Figure 6-2 shows
how a dependency graph for your project is observable between each state of changes.

Figure 6-2. An example of hierarchical data in version control within software
development

You can also think of Git as a chain. In this light, the version control system creates a
chain of dependencies with forks. Either way you prefer to think of it, the shape of
data within Git’s version control system forms a nested hierarchy.

Let’s look at a third example where we find hierarchical structure in data.

Hierarchical Data in Self-Organizing Networks
The last example of natural hierarchies can be found in how people self-organize.
There are two main examples of this: family trees and corporate hierarchies. To really
bring home hierarchies and their relationships to graph data structures, think about
your own family. Think back as far as you can, maybe to a great-great-grandparent.
Tracing your family’s lineage from a long-ago ancestor to you forms a hierarchy of
parents and children across many levels. The parent-child dependency within a fam‐
ily is one of the best examples of hierarchy in natural data.

Seeing Hierarchies and Nested Data: Three Examples | 157



We create the same type of organization within our workforces; an example corporate
hierarchy is shown in Figure 6-3.

Figure 6-3. An example of hierarchical data in a corporate structure

Corporate structures look somewhat similar to family trees. The manager-employee
relationship is the same as your family’s parent-child relationship. We work in groups
and organize ourselves in the same structure as our lineage. Broadly speaking, a CEO
has a team of vice presidents, each vice president has a team of directors, and direc‐
tors manage teams of individual contributors.

It is great to realize how we already use nested relationships to describe common con‐
cepts, but let’s explore why this shape of data is currently the second most popular use
of graph technology.

Why Graph Technology for Hierarchical Data?
Graph technology enables a more natural way to represent the nested relationships
within data. The more natural representation of data yields simpler code to maintain
and makes development teams more productive.

For example, during one of the many conversations we had with graph users around
the world for this book, we found an early adopter who told us that his team “trans‐
lated 150 lines of a query on top of HBase into 20 lines of Gremlin.” This is exactly
why engineering teams are adopting graph technology to model, store, and query
hierarchically structured data.

The simplification to the codebase, and the resulting enhancement to developer pro‐
ductivity, has been a common theme in our conversations with users. This is encour‐
aging more teams to use distributed graph technology to model, reason, and solve
complex problems with natural hierarchies.

So what do corporate structures, version control, and product structures have in
common?

158 | Chapter 6: Using Trees in Development



When we look at the data for each of these concepts, we see nested or hierarchical
data. When using graph technologies, these hierarchies are called trees.

To lay the foundation for what we see, let’s take a tour of a new wave of graph terms
so that we can teach you how to see the trees within this forest of data.

Finding Your Way Through a Forest of Terminology
The definitions throughout this section bring together terminology from the database
and graph-theoretic communities. Concepts about the data’s storage model, like hier‐
archy, are popular terms about databases. Terms that define observable structures
within the data, such as tree and forest, originate in graph theory.

Where the terms come from does not matter. Being able to distinguish between con‐
cepts related to storage versus those related to sample data does matter. We already
ran into how easy it can be to confuse concepts from graph data and graph schema in
Chapter 2. We see the same confusion again with hierarchical data. The constant mix‐
ture of terminology from multiple communities explains why graph technology can
be difficult to pick up.

To help you navigate both worlds, let’s look at some examples that can put a picture to
some key terms.

Trees, Roots, and Leaves
We have used the term tree a few times without defining it. Let’s do that now.

Tree
A tree is a connected graph with no cycles.

We will formally define a cycle in the next section. For now, let’s revisit our example
corporate hierarchy to see trees in practice. The graph in Figure 6-4, from the CEO
down to the software engineers, forms a tree.

Examining the edges in Figure 6-4 shows that every vertex has only one edge point‐
ing to it. If you modeled your company’s corporate tree and compared its structure to
your competitor’s corporate tree, you would be looking at two separate trees. Those
two trees together make a forest. Yes, mathematicians had a bit of fun when coming
up with these official graph theory terms; let the puns begin.

Finding Your Way Through a Forest of Terminology | 159



Figure 6-4. A visualization of a corporate hierarchy as an example of a tree from graph
theory

There are two special types of vertices within hierarchical data: parents and children.

Parent vertex
A parent vertex is one step higher in the hierarchy.

Child vertex
A child vertex is one step below a parent in the hierarchy.

You can identify examples of these terms in Figure 6-4. The VP of Product in
Figure 6-4 is the parent of the Director of Marketing. The Director of Marketing is a
child vertex of the VP of Product.

The following definitions explain how roots and leaves fit into the traditional under‐
standing of parent and child dependencies in hierarchical data.

Root
A root is the topmost parent vertex; a root is the beginning of the dependency
chain within a hierarchy.

Leaf
A leaf is the last child vertex in a dependency chain within a hierarchy; a leaf ver‐
tex has a degree of one.

Looking at the diagram in Figure 6-4, the CEO is the root, and each software engi‐
neer is a leaf.

Depth in Walks, Paths, and Cycles
Data within a hierarchy is usually referenced in one of three ways in an application:
by its neighborhoods, by its depth, or by its path.

First, an application references hierarchical data according to its parents or its chil‐
dren. From a certain vertex, you would walk up one level to report the parent vertex,

160 | Chapter 6: Using Trees in Development



or you would walk down one level to report its children. This is very similar to walk‐
ing around neighborhoods like we have been doing in the past few chapters.

Second, an application references hierarchical data according to its distance from
either a root or a leaf. We use the term depth to refer to this distance in hierarchical
data.

Depth
In a hierarchy, depth is the distance of any vertex in the graph to its root; the
maximum depth in a tree is found from its root.

Let’s take a look at our corporate hierarchy tree to apply depth to this data.

Figure 6-5. Using a corporate hierarchy to understand depth in tree data

While you have been thinking about corporate reporting structures, you probably
have been considering how far each position is from the CEO. Figure 6-5 gives us a
formal terminology for that natural association. Looking at the hierarchy in
Figure 6-5, we say that the VP of Product is 1 away from the CEO. The Director of
Engineering has a depth of 2 from the CEO. Last, a software engineer has a depth of 3
from the CEO.

The third way that ,.hierarchical data is used in an application requires understanding
the full dependency chain between two pieces of data. Accessing the full dependency
chain requires traversing through the data from the root to the leaves or vice versa.
This brings us to three useful terms.

Walk
A walk through a graph is a sequence of visited vertices and edges. Vertices and
edges can be repeated.

Path
A path through a graph is a sequence of visited vertices and edges. Vertices and
edges cannot be repeated.

Finding Your Way Through a Forest of Terminology | 161



Cycle
A cycle is a path where the starting and ending vertices are the same.

Let’s look at Figure 6-6, which shows an example of a path from the root to a leaf in
our corporate tree.

Figure 6-6. Walking through a corporate hierarchy to show a path from its root, the
CEO, to a leaf, a software engineer

The path in Figure 6-6 walks from the CEO through two different levels to get to a
software engineer. This is a path because all data along the way is used only once. In
other words, there are no repeated edges or vertices in this example path: CEO → VP
of Product → Director of Engineering → Software Engineer 3.

The natural translation of hierarchical data into how we think and reason about it is
exactly why teams are using graph technology. The way that we represent, store, and
query hierarchical data with graph technology already follows how we think about it,
naturally!

Now that we understand the terminology, let’s set up the example we will be using in
the next two chapters.

Understanding Hierarchies with Our Sensor Data
If you use electricity, you likely contribute to a distributed hierarchy of data every
moment of your day.

On an hourly basis, you contribute to distributed, hierarchical graph data structures
by flicking a light switch in your house or business. Your power supplier tracks how
much energy your home or workplace uses on a time interval, likely every 15
minutes. These readings are collected and sent back to your power company, which
aggregates them.

Your power company may even distribute these readings from one power recipient to
another via a self-organizing network of sensors within the power chain. The transfer

162 | Chapter 6: Using Trees in Development



of these readings through a self-organizing network is one of the most beautiful,
dynamic, and hierarchical graph problems we interact with on a constant basis.

The example in this chapter models the dynamic and hierarchical network of com‐
munication found within a self-organizing network of sensors and towers, much as
how voltage levels are communicated from your home to your power company.

To bring this example to life, we are asking you to think like a data engineer for a
fictitious power company, Edge Energy. Your objective will be to understand, model,
and query the hierarchical structure found within Edge Energy’s communication net‐
work.

We advise teams to approach any new problem like this one in three steps:

1. Understand the data.
2. Build a conceptual model using the GSL notation.
3. Create the database schema.

The next three sections follow these steps.

Understand the Data
Each reading collected by Edge Energy at any home or business is reported for a few
different compliance scenarios, like real-time auditing. One of the most complex
problems the company has to prepare for is: what if one of the communication towers
goes down?

To help you envision this, consider the zoomed-in snapshot of Edge Energy’s network
in Figure 6-7.

Figure 6-7 shows Edge Energy’s sensors (the asterisks) and communication towers
(the diamonds); we have highlighted one of the towers in orange. Ultimately, our
example across the next two chapters has to answer this question: what would happen
to Edge Energy’s sensor data if the orange tower went down? That is, Edge Energy
wants to assess the impact of a tower’s failure on the accessibility of sensor data across
the entire network so that the company can prepare for different failure scenarios.

Understanding Hierarchies with Our Sensor Data | 163



Figure 6-7. Visualizing the sensors and towers used by Edge Energy around Georgetown,
a neighborhood in Seattle, WA (etwork edges are not shown for image clarity)

The problem requires that we first understand a single tower. If we can understand
one tower, we can understand any of the towers on the network. And the answer we
get to at the end of Chapter 7 may surprise you.

Let’s walk through how a dynamic and hierarchical graph is constructed in Edge
Energy’s network of sensors and towers.

In Edge Energy’s network, the sensors are responsible for two things. First, a sensor
takes readings of the residence or business to which it is assigned. Second, on a time
interval, every sensor communicates its reading to another available point in the net‐
work—either a nearby sensor or a tower. The objective is for every reading to eventu‐
ally pass through this network to a tower and back to Edge Energy’s monitoring
system.

In Figure 6-8 we have zoomed in to look at the network in a different area of Seattle.

164 | Chapter 6: Using Trees in Development



Figure 6-8. Zooming in to show the communication network within the downtown Seat‐
tle area

What you won’t see in Figure 6-8 is the hierarchical nature of the data, but you will
see it in how we use the data (coming up).

As we recently talked about, applications that use hierarchical data query the data in
two main patterns: from the bottom up or from the top down. It is in how the com‐
munication data is used that its hierarchical structure becomes easier to see.

Seeing hierarchies in data: From the bottom up
We are going to spend time walking through and understanding our data before we
write code to query it.

The first way we want to use the data in Edge Energy’s sensor network is to under‐
stand how the data from a sensor reached a tower. Let’s take a look in Figure 6-9 at
how the data from Sensor S was shared throughout the network to pass its reading
to a tower.

Understanding Hierarchies with Our Sensor Data | 165



Figure 6-9. Looking at our example data to walk from a sensor up to a tower

Figure 6-9 emphasizes one traversal: from Sensor S to nearby towers over the course
of an entire day. If you trace through every walk, you will find many unique ways to
walk from Sensor S to any tower. Example paths include:

S → Seattle
S → A → FirstHill
S → A → C → FirstHill
S → A → C → D → FirstHill
S → A → C → D → WestLake

To look at this in a different way, Figure 6-10 shows the hierarchical structures from
Figure 6-9.

Looking at the data in Figure 6-10 illustrates the unbounded and hierarchical nature
of the data. Some paths from Sensor S have a distance of 1 whereas others vary up to
a distance of 5. Figure 6-11 shows how you can quickly find the distance of a path in
this hierarchy.

166 | Chapter 6: Using Trees in Development



Figure 6-10. Showing the hierarchy from Sensor S multiple tower vertices

Figure 6-11. Understanding a path’s distance in our example data.

Figure 6-11 shows that the distance from Sensor S to the Seattle tower can be 1, 3,
4, or 6. The path of length 1 is Sensor S → Seattle. The path of length 3 is Sensor S
→ A → B → Seattle. The path of length 4 is Sensor S → A → B → E → Seattle. The
path of length 6 is Sensor S → A → B → E → F → G → Seattle.

Through some hierarchy, every sensor’s reading ultimately reaches a tower.

In the real world, these sensors are free to communicate with any nearby sensor or
tower. This means that the hierarchical structures within our graph are dynamic and
constantly changing. These dynamic networks create some of the most beautiful mix‐
tures of time series data with graph structures in Cassandra.

Now that we understand how to see them from the bottom up, let’s reverse the direc‐
tion and explore dynamic networks from the towers down to sensors.

Understanding Hierarchies with Our Sensor Data | 167



Seeing hierarchies in data: From the top down
The second way we will be querying this data is from the top down: from towers to
sensors. Figure 6-12 zooms in on our example data to show the data reachable in two
steps from the WestLake tower.

Figure 6-12. Illustrating the second neighborhood of sensors that connect to the West
Lake tower

Figure 6-12 shows the sensors that are reachable in a walk of length 2 from the West
Lake tower. Examining the edges, we see that sensors A, B, C, F, E, G, and D are in the
first neighborhood of the WestLake tower. In hierarchical data, we say sensors A, B,
C, F, E, G, and D have a depth of 1 from the root, WestLake. Sensors J, K, H, I, and N
are in the second neighborhood of the WestLake tower. In hierarchical data, we say
sensors J, K, H, I, and N have a depth of 2 from the root, WestLake.

The hierarchical structure, and each sensor’s depth, may be easier to see in
Figure 6-13.

Figure 6-12 and Figure 6-13 show the same data. We are looking at how to traverse
our data from the top of the hierarchy to the bottom.

One of the most important concepts to realize is that the example here represents
real-world hierarchies. They are not perfect trees. These hierarchies are messy; they
contain cycles.

To see that, let’s talk about how an edge is created in this dataset and in its real-world
version.

168 | Chapter 6: Using Trees in Development



Figure 6-13. Understanding depth from the root vertices in our example data

Understanding edges in the sensor hierarchies
The queries in the upcoming sections will be walking up and down the sensor com‐
munication hierarchies. The following rules apply to the presence of edges between
sensors and towers:

1. Edges start from any sensor and go to a neighboring sensor or tower.
2. There can be no loops; a sensor cannot add an edge to itself.

Loops are different from cycles. A loop is an edge that starts and
ends at the same vertex; a cycle is a series of edges that start and
end at the same vertex. There may be cycles in these network but
never loops.

We apply the hierarchical network of edges in our dataset to show how Edge Energy
uses the edges in its application:

1. Edges chain together to create walks.
2. Walks represent communication from a sensor to a tower.
3. Walks start at a sensor and end at a tower, and vice versa.

At this point, we have completed step one of our three steps. We are moving on from
understanding the data to query-driven data modeling.

Understanding Hierarchies with Our Sensor Data | 169



Conceptual Model Using the GSL Notation
With our example and the data it provides, we aim to gain insight into the dynamic
network formed by Edge Energy’s sensors. We will want to report the paths used to
share a sensor’s reading to a tower so that we can understand failure scenarios. To do
that, we will focus on addressing the following queries:

1. What path did a sensor’s data follow to pass its information to a tower?
2. What sensors communicated with a specific tower?
3. What is the impact of the shutdown, loss, or general failure of a tower?

Combining our understanding of the data, the queries listed above, and data model‐
ing recommendations from previous chapters, we arrive at a very basic database
schema for our example, as shown in Figure 6-14.

Figure 6-14. The starting development schema for our example in this chapter

Figure 6-14 applies query-driven modeling along with our data modeling best practi‐
ces to arrive at a graph database schema. As we have done throughout this book, we
created two vertex labels that represent the main entities of interest in this data: Sen‐
sors and Towers. To show how a sensor communicates with Edge Energy, we have an
edge label called send from a Sensor vertex label to the Tower vertex label. To illus‐
trate how sensors communicate with each other, we have a self-referencing edge label
send that starts and ends with the Sensor vertex label.

Recall from Chapter 2 that self-referencing edge labels are different from loops. Self-
referencing edge labels represent schema elements that start and end at the same ver‐
tex label. This is different from a loop, which is a concept in the data, not the schema.
Loops are edges in data that start and end with the vertex—like an edge starting and
ending at Sensor 1. We will not have loops in our data, and consequently, sensors
will not be allowed to send information to themselves.

170 | Chapter 6: Using Trees in Development



Implement Schema
The accompanying dataset represents real towers and sensors across the broader
Seattle area. For Edge Energy, this is just one small area of its global network.

Each tower in the dataset represents a real cell phone tower. Each tower has a unique
identifier, a name, and a geo-location. We already saw this when we talked about the
WestLake tower. The same is true for the sensors. The sensors have a unique identifier
and a valid geo-location around the Seattle area. We have been using letters to iden‐
tify a sensor in our examples, like Sensor A, but the identifiers in the real dataset are
integers.

A new feature we have in our example is the ability to reference the geo-location of a
specific vertex. We do this by creating points in the schema code:

schema.vertexLabel("Sensor").
       ifNotExists().
       partitionBy("sensor_name", Text).
       property("latitude", Double).
       property("longitude", Double).
       property("coordinates", Point).
       create();

schema.vertexLabel("Tower").
       ifNotExists().
       partitionBy("tower_name", Text).
       property("latitude", Double).
       property("longitude", Double).
       property("coordinates", Point).
       create();

There are only two edge labels that we need to create for our example. We need to
model a sensor sending information to either another sensor or a tower. The schema
code will be:

schema.edgeLabel("send").
       ifNotExists().
       from("Sensor").
       to("Sensor").
       create()

schema.edgeLabel("send").
       ifNotExists().
       from("Sensor").
       to("Tower").
       create()

Understanding Hierarchies with Our Sensor Data | 171



Loading vertex data with DataStax Bulk Loader
Let’s look at all of the included vertex data files and a brief description for each in
Table 6-1.

Table 6-1. The full list of CSV files for the vertex data used in this chapter’s examples

Vertex file Description
Sensor.csv The sensors, one per line

Tower.csv The towers, one per line

Let’s see an example of how to load vertex data with DataStax Bulk Loader by examin‐
ing Tower.csv. The first five lines of Tower.csv are shown in Table 6-2.

Table 6-2. The first five lines of data from the file Tower.csv

tower_name coordinates latitude longitude
Renton POINT (-122.203199 47.47896) 47.47895812988281 -122.20320129394

MapleLeaf POINT (-122.322603 47.69395) 47.69395065307617 -122.32260131835

MountainlakeTerrace POINT (-122.306926 47.791277) 47.79127883911133 -122.30692291259

Lynnwood POINT (-122.308106 47.828134) 47.82813262939453 -122.30810546875

In the accompanying loading scripts, the header doubles as the mapping configura‐
tion between the file and the database. The header and the property names in Data‐
Stax Graph must match.

We can load the CSV file using the command-line bulk loading utility as shown in
Example 6-1.

Example 6-1. 

1  dsbulk load -url /path/to/Tower.csv
2              -g tree_dev
3              -v Tower
4              -header true

Example 6-1 shows the most basic way to load vertex data on your localhost, just like
we did in Chapter 5. Next, let’s look at the edge data and loading process.

Loading edge data with DataStax Bulk Loader
All of the included edge datafiles and a brief description for each are listed in
Table 6-3.

172 | Chapter 6: Using Trees in Development



Table 6-3. The full list of CSV files for the edge data used in this chapter’s examples

Edge file Description
Sensor_send_Sensor.csv The send edges between sensors in this example

Sensor_send_Tower.csv The send edges between sensors and towers in this example

Let’s see an example of how to load edge data with DataStax Bulk Loader by examin‐
ing Sensor_send_Sensor.csv. The first five lines of Sensor_send_Sensor.csv are
shown in Table 6-4.

Table 6-4. The first five lines of data from the file Sensor_send_Sensor.csv

out_sensor_name timestep in_sensor_name
103318117 1 126951211

1064041 2 1307588

1035508 2 1307588

1282094 1 1031441

The most important line in Table 6-4 is the header; the header has to match the table
schema in DataStax Graph. DataStax Graph autogenerates different column names
for the edge properties that are part of the table’s primary key. The header line in
Table 6-4 shows how DataStax Graph appends out_ and in_ to the front of the parti‐
tion key columns in the case of a self-referencing edge. If you would like to discover
this on your own, you can use your schema tools inside of DataStax Studio or cqlsh
to inspect the naming conventions of your schema.

You also see a property called timestep in Table 6-4, but our schema does not have
this property on our edges in the database. In this case, the extra data will be ignored
during the loading process; we will not end up with timestep on our edges even
though it is in the data.

We will revisit and use the timestep property in Chapter 7 when
we introduce how to apply time to our data and how to use it in
your traversals. To add in all of that complexity now is too much
for what we want to cover at this point in the development of this
example.

We can load the edge CSV file using the command-line bulk loading utility as shown
in Example 6-2.

Understanding Hierarchies with Our Sensor Data | 173



Example 6-2. 

1  dsbulk load -url /path/to/Transactions.csv
2              -g trees_dev
3              -e send
4              -from Sensor
5              -to Sensor
6              -header true

Example 6-2 shows the most basic way to load edge data on your localhost, as we saw
in Chapter 5. The accompanying scripts show how to load all vertex and edge data for
this chapter and all examples in this book. Please refer to the data directory within
this book’s GitHub repository for the data and loading scripts for each chapter.

Before We Build Our Queries
So far, we have accomplished three tasks for our example in this chapter. We explored
the data we will be using for this example. Then, we built a model for sensors and
towers to trace communication throughout a network of sensors. Last, we loaded the
data to use for our upcoming queries.

In graph applications, querying and using tree structures primarily focuses on tra‐
versing up and down the tree’s structure. When we say we are traversing up the tree
structure, we are talking about walking up from a leaf to the root. Traversing down
the tree structure goes in the opposite direction: from the root down to a leaf or
leaves.

Let’s iron out the concepts and queries by walking up and down the sensor trees in
development mode. We will start with showing how Edge Energy can follow a sen‐
sor’s communication path to a tower by walking up the trees.

We will unveil the reason one way is harder than the other at the end of this chapter,
setting the stage for Chapter 7.

Now, we are ready to write queries.

Querying from Leaves to Roots in Development
The upcoming examples apply the data model to answer the queries for Edge Energy.
Our first question queries the data from the leaves up to the root to answer the fol‐
lowing:

• What path did a sensor’s data follow to pass its information to a tower?

We are breaking this question down into two steps:

174 | Chapter 6: Using Trees in Development

https://oreil.ly/graph-book
https://oreil.ly/graph-book


1. Where has a specific sensor sent information to?
2. What was this sensor’s path to any tower?

Answering each of these questions builds up to showing how to query from leaves to
roots in hierarchical data. Let’s dive in and see how to do this with Gremlin.

Where Has This Sensor Sent Information To?
This first query asks to explore the neighborhoods of data accessible from a given
sensor. We picked Sensor 1002688 for this example. We want to start with under‐
standing the first neighborhood; Example 6-3 shows the query and Example 6-4 dis‐
plays the results.

The step dev.V(vertex) compiles to the same query as
dev.V().hasLabel(label).has(key, value).has(key, value)…

and so on. A has() clause is required for every property in the ver‐
tex’s primary key.

Example 6-3.

1 sensor = dev.V().has("Sensor", "sensor_name", "1002688"). // look up the sensor
2                  next()             // return the sensor vertex
3 dev.V(sensor).                      // look up the sensor
4     out("send").                    // walk through all send edges
5     project("Label", "Name").       // for each vertex, create map with two keys
6       by(label).                          // the value for the first key "Label"
7       by(coalesce(values("tower_name",    // for the 2nd key "Name": if a tower
8                          "sensor_name"))) // else, return the sensor_name

Example 6-4.

{
  "Label": "Sensor",
  "Name": "1035508"
},{
  "Label": "Tower",
  "Name": "Georgetown"
}

Example 6-3 and Example 6-4 explore the first neighborhood for Sensor 1002688.
Lines 1 through 3 illustrate another way to access and use vertex objects with Data‐
Stax Graph. Lines 4 through 8 query the first neighborhood and shape the result set.
The results show that 1002688 sent data to one sensor and one tower: 1035508 and
Georgetown. This means that Sensor 1002688 is nearby and communicated with

Querying from Leaves to Roots in Development | 175



those Sensor 1035508 and the Georgetown tower throughout the entire scope of the
sample data.

Line 3 in Example 6-3 introduces one new concept: direct vertex lookup with the
V(vertex) syntax. We did this to show how to store an object in your application’s
memory and use it in a traversal; it might be useful for you at some point in your
application’s development.

If you feel comfortable with applying these steps and shaping the query results, you
can skip ahead to the next query.

For practice, let’s walk through the shaping process seen in Example 6-3. At the end
of line 3, our traverser is on the vertex for Sensor 1002688. Then we walk through all
outgoing send edges to arrive at any vertex in this sensor’s first neighborhood on line
4. The trick here is that a sensor can send information to other sensors or towers.
Therefore, we have to prepare for different types of data to process with branching
logic in Gremlin.

We would like the result payload to be structured JSON with the following keys:
Label and Name. We create this JSON object and its keys with the project("Label",
"Name") step. Line 6 fills the Label keys in our map with each vertex’s label via the
label() step within a by() modulator. Line 7 fills the values for the Name key in our
map with branching logic via the coalesce() step within a different by() modulator.

This example of the coalesce() step can be be broken down into the following pseu‐
docode:

# pseudocode for
# coalesce(values("tower_name"), values("sensor_name"))
    if(values("tower_name") is not None):
        return values("tower_name")
    else:
        return values("sensor_name")

Sensor 1002688 makes for an interesting example in our data because it directly
communicates to towers and sensors. Beyond the first neighborhood, however, we
can find more paths that connect this sensor to a tower. Let’s use the same query as
before to examine the second neighborhood of Sensor 1002688:

1 sensor = dev.V().has("Sensor", "sensor_name", "1002688"). // look up the sensor
2                  next()   // return the sensor vertex
3 dev.V(sensor).            // look up a sensor
4     out("send").          // walk to all vertices in the first neighborhood
5     out("send").          // walk to all vertices in the second neighborhood
6     project("Label", "Name").   // for each vertex, create a map with 2 keys
7       by(label).                // the value for the first key is the label
8       by(coalesce(values("tower_name",    // if a tower, return tower_name
9                          "sensor_name"))) // else return sensor_name

176 | Chapter 6: Using Trees in Development



{
  "Label": "Sensor",
  "Name": "1061624"
},{
  "Label": "Sensor",
  "Name": "1307588"
},{
  "Label": "Tower",
  "Name": "WhiteCenter"
}

These results show that the second neighborhood away from Sensor 1002688 discov‐
ers another tower, WhiteCenter. Let’s continue walking out and inspect the third
neighborhood from Sensor 1002688—see Example 6-5 and Example 6-6.

Example 6-5.

1 sensor = dev.V().has("Sensor", "sensor_name", "1002688"). // look up the sensor
2                  next()  // return the sensor vertex
3 dev.V(sensor).           // look up a sensor
4     out("send").         // walk to all vertices in the first neighborhood
5     out("send").         // walk to all vertices in the second neighborhood
6     out("send").         // walk to all vertices in the third neighborhood
7     project("Label", "Name").     // for each vertex, create a map with 2 keys
8       by(label).                  // the value for the first key is the label
9       by(coalesce(values("tower_name",    // if a tower, return tower_name
10                         "sensor_name"))) // else return sensor_name

Example 6-6.

{
  "Label": "Sensor",
  "Name": "1064041"
},{
  "Label": "Sensor",
  "Name": "1237824"
},{
  "Label": "Sensor",
  "Name": "1237824"
},{
  "Label": "Sensor",
  "Name": "1002688"    // Cycle
},{
  "Label": "Sensor",
  "Name": "1035508"    // Cycle
}

Querying from Leaves to Roots in Development | 177



Figure 6-15 visualizes all of the data from the first three neighborhoods of Sensor
1002688 and highlights the cycles in the data with thick edges.

Figure 6-15. The data reachable in the first three neighborhoods from our starting
Sensor 1002688

Figure 6-15 displays the vertices and edges that are within the first, second, and third
neighborhoods from Sensor 1002688. Close inspection of the bolded edges in
Figure 6-15 finds two cycles:

1035508 → 1307588 → 1035508
1002688 → 1035508 → 1307588 → 1002688

The cycles in our data will be a problem that we will resolve in the next query.

From This Sensor, What Was Its Path to Any Tower?
Writing multiple Gremlin statements to hardcode the number of steps you walk away
from the starting sensor is not an ideal way to write a query. Instead, we want to start
at Sensor 1002688 and explore all communication paths until one of them finds a
tower vertex at its root.

178 | Chapter 6: Using Trees in Development



We can achieve this with the until().repeat() pattern in Gremlin. The use of
repeat() with until() gives you the ability to loop over traversals given some break‐
ing condition. You specify the breaking condition with the until() step. If until()
comes before repeat(), it is while/do looping. If until() comes after repeat(), it is
do/while looping (see Figure 6-16).

Figure 6-16. Understanding the repeat() step with until()

Example 6-7 shows how to apply this pattern to the idea from Example 6-5 with the
until().repeat() pattern in Gremlin:

Example 6-7.

1 sensor = dev.V().has("Sensor", "sensor_name", "1002688").
2                  next()
3  dev.V(sensor).                 // look up the sensor
4      until(hasLabel("Tower")).  // until you reach a tower
5      repeat(out("send"))        // keep walking out the send edge

The query in Example 6-7 will not finish in a timely manner. This is due to the cycles
found as you walk from 1002688 up to any tower.

As we saw in Figure 6-15, we want to remove the cycles from our results. There is a
step for this in Gremlin: simplePath().

simplePath()
When it is important that a traverser not repeat its path through the graph, the
simplePath() step should be used. The path information of the traverser is ana‐
lyzed, and if the path has repeated objects in it, the traverser is filtered.

It really is that…simple.

All we have to do is add the simplePath() step within the repeat() step pattern.
This will insert a filter that eliminates a traverser if its history contains a cycle.
Example 6-8 displays the Gremlin code, and Example 6-9 shows the first three results.

Querying from Leaves to Roots in Development | 179



Example 6-8.

1 sensor = dev.V().has("Sensor", "sensor_name", "1002688").
2                  next()
3 dev.V(sensor).                // look up a sensor
4     until(hasLabel("Tower")). // until you reach a tower
5     repeat(out("send").       // keep walking out the send edge
6            simplePath())      // remove cycles

Example 6-9.

{
  "id": "dseg:/Tower/Georgetown",
  "label": "Tower",
  "type": "vertex",
  "properties": {}
},{
  "id": "dseg:/Tower/WhiteCenter",
  "label": "Tower",
  "type": "vertex",
  "properties": {}
},{
  "id": "dseg:/Tower/RainierValley",
  "label": "Tower",
  "type": "vertex",
  "properties": {}
},...

The only change from Example 6-7 to Example 6-8 is the use of simplePath on line 6.
We can see from Example 6-9 that the first three discovered towers are Georgetown,
WhiteCenter, and RainierValley. In our application, we want to know more than
just which towers were found. We want to know the path from Sensor 1002688 to
the tower.

This brings us to our last Gremlin step and topic for this section: path().

Using the path() step and manipulating its data structure

Let’s talk about what the path() step in Gremlin does. As you process data in a graph
traversal, you are moving around your data. The path() step in Gremlin gives you
access to the history of where you have been by providing access to all data that has
been processed by a traverser.

path()
The path() step (map) examines and returns the full history of a traverser.

This is roughly like leaving breadcrumbs around your graph as you move from place
to place.

180 | Chapter 6: Using Trees in Development



We introduce the path() step in Example 6-10 and display the results in
Example 6-11.

Example 6-10.

1 sensor = dev.V().has("Sensor", "sensor_name", "1002688").
2                  next()
3 dev.V(sensor).
4     until(hasLabel("Tower")). // until you reach a tower
5     repeat(out("send").       // keep walking out the send edge
6            simplePath()).     // remove cycles
7     path().  // all objects will be towers; get their full history
8        by(coalesce(values("tower_name",    // if the vertex in the path is a tower
9                           "sensor_name"))) // else the value from a sensor vertex

In the path data structure, labels is not the same as a vertex label
or an edge label.

Let’s walk through the new steps of Example 6-10. As before, lines 1 through 6 start at
a sensor and walk through the send edges to any tower, considering only noncyclic
paths. Then, for all reachable towers, the path() step on line 7 asks each traverser for
its full path through the data. Line 8 uses a by() modulator to indicate how we want
to see that data: we want to see the tower_name if the vertex is a tower, or else we want
to see the sensor_name.

Example 6-11 shows the first three results of Example 6-10. We see two of the paths
we drew in Figure 6-15.

Example 6-11.

{
  "labels": [[],[]],
  "objects": ["1002688", "Georgetown"]
},{
  "labels": [[],[],[]],
  "objects": ["1002688", "1035508", "WhiteCenter"]
},{
  "labels": [[],[],[],[]],
  "objects": ["1002688", "1035508", "1061624", "1237824", "RainierValley"]
},...

The results in Example 6-11 show three different ways in which you can arrive at
towers by starting from Sensor 1002688. The first two paths confirm what we dis‐
covered as we walked through the first and second neighborhoods of 1002688; we just

Querying from Leaves to Roots in Development | 181



see the data in a different structure: ["1002688", "1035508", "WhiteCenter"]. This
notation means the following path was found in the traversal:

1002688 → 1035508 → WhiteCenter

More than a thousand different ways to walk from Sensor 1002688 to a tower vertex
are shown in the accompanying Studio Notebook.

When you use path() there are two things you must understand deeply: how to
assign labels with as() and how to shape the results with by(). Let’s go through each
of these topics in detail.

How to assign labels with as().    There are two keys to the path() data structure:
labels and objects. A label is created for a path object with the as() step. Essen‐
tially, you are assigning a variable name to the data you are processing in your path.
We didn’t use the as() step in the first version of our query, so the labels key in the
result payload in Example 6-7 contained no data.

Let’s use the as() step now to assign variable names to our path data structure in
Example 6-12, and then we’ll reinspect the resulting payload in Example 6-13.

Example 6-12. 

1 sensor = dev.V().has("Sensor", "sensor_name", "1002688").
2                  next()
3 dev.V(sensor).
4       as("start").           // label 1002688 as "start"
5     until(hasLabel("Tower")).
6     repeat(out("send").
7              as("visited").  // label each vertex on the path as "visited"
8            simplePath()).
9     as("tower").             // label the end of the path as "tower"
10     path().
11       by(coalesce(values("tower_name",
12                          "sensor_name")))

Example 6-13.

{
  "labels": [["start"], ["visited", "tower"]],
  "objects": ["1002688", "Georgetown"]
},{
  "labels": [["start"], ["visited"], ["visited", "tower"]],
  "objects": ["1002688", "1035508", "WhiteCenter"]
},{
  "labels": [["start"], ["visited"], ["visited"], ["visited", "tower"]],
  "objects": ["1002688", "1035508", "1061624", "1237824", "RainierValley"]
},...

182 | Chapter 6: Using Trees in Development

https://oreil.ly/G1Lrz


Example 6-12 shows how the as() step introduces values within the labels key of
the path() data structure. The values within labels and objects have a 1:1 mapping.
Let’s look again at the second example from Example 6-13 to understand how the
labels map to the path:

{
  "labels": [["start"], ["visited"], ["visited", "tower"]],
  "objects": ["1002688", "1035508", "WhiteCenter"]
}

1. The value ["start"] maps to 1002688
2. The value ["visited"] maps to 1035508
3. The value ["visited", "tower"] maps to WhiteCenter

We can confirm this mapping by looking back to our query in Example 6-12. We
labeled the starting sensor with as("start"). Each vertex that was accessed within
the repeat(out("send")) step was labeled with as("visited"). Last, only towers are
passed to line 9 due to the conditional filter from line 5: until(hasLabel("Tower")).
Therefore, any tower vertex will receive a second label from line 9 with as("tower").

Using as("<some_label>") is powerful because we are able to use the path() step’s
data structure to provide specificity to the resulting payload.

There is one last concept to detail about using path() before we move on to other
queries.

How to shape path() results with by().    The use of by() in Example 6-12 allows you
to perform an operation, or another step, to each object in the path. In our example,
we wanted to return the primary key for each vertex in the path. However, the vertex’s
label could be a tower or a sensor. Therefore, we added a condition within the by()
modulator to process tower vertices one way and sensor vertices another way.

When formatting the elements of path(), the by() modulators in Gremlin are
applied in a round-robin fashion, meaning they are applied to the traversal objects in
a cyclical order. In a case in which there are two by() steps:

1. The first by() step operates on the first traversal object
2. The second by() step operates on the second traversal object
3. Back to the first by() step for the third traversal object
4. Back to the second by() step for the fourth traversal object
5. And so on…

Querying from Leaves to Roots in Development | 183



In the example here, all of the objects in the path were vertices, so we needed to create
only one by() modulator to handle vertex objects. You will see examples in the next
chapter in which we need multiple by() modulators because we are processing both
vertices and edges in our path’s data structure.

From Bottom Up to Top Down
All of the queries and code in this section were designed to teach you how to walk
from leaves to roots in a hierarchical graph. You can think of this as walking from the
bottom of your tree to its top.

Once at the top, you may want to walk back down. So let’s next explore how to start at
a tower and walk down to the sensors connected to it and the various concepts you
will encounter along the way.

The upcoming examples build up to a question that we cannot resolve with the infor‐
mation we have. We designed this experience on purpose to set the stage for the pro‐
duction tips in Chapter 7.

Querying from Roots to Leaves in Development
Edge Energy has to maintain an understanding of its network’s topology. It needs to
know, at all times, which sensor’s data an individual tower is processing.

Knowing which sensors connect to a particular tower helps answer two important
questions about this dynamic communication network. It helps Edge Energy under‐
stand whether a specific tower is overloaded or underutilized. We are going to help
Edge Energy understand its network by answering the following questions in this
section:

1. First, we need to find an interesting tower to explore in our data.
2. Which sensors have directly connected to that tower?
3. From that tower, find all sensors that have connected to it.

Our example data has the ability to answer the questions for these scenarios. How‐
ever, we do not have enough information to answer the whole scope of question 3—
just part of it. Figuring out how to answer question 3 in its entirety will be the pur‐
pose of Chapter 7.

Let’s continue to develop our queries and knowledge of the Gremlin query language
with our first question.

184 | Chapter 6: Using Trees in Development



Setup Query: Which Tower Has the Most Sensor Connections So That
We Could Explore It for Our Example?
The first thing we want to do is find a tower that has interesting connectivity in our
graph.

Why are we doing this right out of the gate?

When we start playing with new data, we run a couple queries to understand it better.
Keep in mind, this is not something we would put in production. This is something
we needed to do for educational purposes to find interesting data to work with.

So that we can find an interesting tower to work with, we will want to process all tow‐
ers in our graph and then order the towers according to the number of incoming
edges. Then we want the primary key of the tower with the highest degree. Let’s take a
look in Example 6-14 at the Gremlin query that achieves this.

The query in Example 6-14 is for exploration and development
purposes only. It is expensive to run in a distributed system because
it performs a full table scan of the towers and of each tower’s edge
table.

Example 6-14.

1 dev.V().hasLabel("Tower").          // for all towers
2         group("degreeDistribution").// create a map object
3           by(values("tower_name")). // the key for the map: tower_name
4           by(inE("send").count()).  // the value for each entry: its degree
5         cap("degreeDistribution").  // barrier step in Gremlin to fill the map
6         order(Scope.local).         // order the entries within the map object
7           by(values, Order.desc)    // sort by values, decreasing

In Example 6-14, we construct a map that represents the degree distribution of the
tower vertices in our graph. The group() step on line 2 creates a map object called
degreeDistribution. We need to follow the group() step with definitions for the
map’s keys and values. The by() modulator on line 3 defines that tower_name will be
the key for any entry in this map. Line 4 indicates that the value associated to a spe‐
cific tower_name will be the total number of incoming edges to that tower.

Line 5 introduces a new concept in Gremlin—barrier steps:

Barrier steps
Barrier steps force the traversal pipeline to complete up until that point before
continuing.

Querying from Roots to Leaves in Development | 185



The use of cap() on line 5 in Example 6-14 is an example of a barrier in Gremlin.
Here, cap() iterates the traversal up until that step and passes the object with the
name degreeDistribution into the next step in the pipeline. We mentioned in the
last chapter that local scope orders elements within an object, whereas global scope
would order all objects in a traversal pipeline. We see this in action again in line 6;
order(Scope.local) orders the elements within the map object degreeDistribu
tion.

Finally, line 7 in Example 6-14 provides the rule for this ordering: we want descend‐
ing order according to the values in the map. A sample of the results is:

{
  "Georgetown": "7",
  "WhiteCenter": "7",
  "PioneerSquare": "6",
  "InternationalDistrict": "6",
  "WestLake": "5",
  "RainierValley": "5",
  "HallerLake": "4",
  "SewardPark": "4",
  "BeaconHill": "4",
  ...
  }

We found a few useful towers, so let’s pick one. We see Georgetown has seven sensors;
let’s determine which ones connected directly to that tower.

Which Sensors Have Connected Directly to Georgetown?
We’ll start by querying a tower and the sensors that have directly connected to it. We
can follow the same pattern we did in Example 6-12 when we were working from
sensors:

1  sensor = dev.V().has("Sensor", "sensor_name", "1002688").next()
2  dev.V(sensor).
3      out("send").
4      project("Label", "Name").
5        by(label).
6        by(coalesce(values("tower_name", "sensor_name")))

This time, we want to start at a tower and access its incoming communication from
sensors. We can change the query in Example 6-12 to the query shown in
Example 6-15. The results of this query follow.

Example 6-15. 

tower = dev.V().has("Tower", "tower_name", "Georgetown").next() // get Georgetown
dev.V(tower).                    // look up Georgetown
    in("send").                  // traverse in to sensors

186 | Chapter 6: Using Trees in Development



    project("Label", "Name").    // create a map with two keys
      by(label).                 // of the values for "Label"
      by(values("sensor_name"))  // the values for "Name"

{
  "Label": "Sensor",
  "Name": "1002688"
},{
  "Label": "Sensor",
  "Name": "1027840"
},{
  "Label": "Sensor",
  "Name": "1306931"
},...

The results of Example 6-15 show that Sensor 1002688 connected to Georgetown, a
result we expected to see. Even though we didn’t show all seven in this text, the full
results in the Studio Notebook show that Georgetown has seven sensors that directly
connected to it.

Edge Energy needs to know all sensors that use this tower for communication. We
already know that Sensor 1002688 has an incoming edge from 1307588. This leads
us to ask, how many other sensors are using the network to send their information to
Georgetown?

To answer that question, we will want to walk recursively from this tower through all
incoming edges until we have found all sensors in this tree of communication. The
next and last section of this chapter applies the use of repeat()/until() from the
last section to walk from this tower down to all sensors.

Find All Sensors That Connected to Georgetown
We have been working through querying through our data for a few sections. This
last question is the final query needed to answer the question of our larger, complex
problem: what happens if a tower fails?

The logical way to approach this last query won’t actually work, but we are going to
show it to you anyway because it is the logical next step that everyone tries; we see it
all the time. We encourage learning through trying logical next steps, so that is
exactly what we are about to do.

It is very common to find patterns of working Gremlin queries and apply them to
new problems; this is the pattern we are talking about that will lead to a faulty solu‐
tion to our new question.

Querying from Roots to Leaves in Development | 187

https://oreil.ly/G1Lrz


Let’s take a look back at how we recursively walked up from sensors to towers:

dev.V(sensor).                // look up a sensor
    until(hasLabel("Tower")). // until you reach a tower
    repeat(out("send").       // keep walking out the send edge
           simplePath())      // remove cycles

The logical next step is to transform that query to do exactly the reverse: walk from
towers to sensor. Let’s apply the same pattern but switch the type of objects we start
and end with. In Example 6-16, we start with towers and recursively walk to sensors.

Example 6-16.

tower = dev.V().has("Tower", "tower_name", "Georgetown").next() // get Georgetown
dev.V(tower).                  // look up a tower
    until(hasLabel("Sensor")). // until you reach a sensor
    repeat(__.in("send").      // need to use the Anonymous traversal: __.
           simplePath())       // remove cycles

Example 6-16 requires a new step in Gremlin called the Anonymous traversal. In
Groovy, in() is a reserved keyword, and DataStax Studio uses the Groovy variant of
Gremlin for developing traversals. Therefore, the in() Gremlin step must be prefixed
with the Anonymous traversal for our example. The full result payload is shown in
Example 6-17.

The Anonymous traversal __. is used to resolve many variants of
Gremlin that have clashes with reserved language-specific key‐
words such as in, as, or values. Refer to the Apache TinkerPop
documentation for specifics within your coding language of choice.

Example 6-17.

{
  "id": "dseg:/Sensor/1002688",
  "label": "Sensor",
  "type": "vertex",
  "properties": {}
},{
  "id": "dseg:/Sensor/1027840",
  "label": "Sensor",
  "type": "vertex",
  "properties": {}
},{
  "id": "dseg:/Sensor/1306931",
  "label": "Sensor",
  "type": "vertex",
  "properties": {}
}...

188 | Chapter 6: Using Trees in Development

https://oreil.ly/ntOq7
https://oreil.ly/ntOq7


Wait a second. Inspecting the full result payload in Example 6-17 reveals that the
query from Example 6-16 found only the same seven sensors from the tower’s first
neighborhood.

This is not what we want.

The query in Example 6-16 does not give us what we want because it has a stopping
condition of any sensor vertex on line 2 with until(hasLabel("Sensor")). Instead,
we want to recursively walk any depth until we find all sensors. Let’s remove this con‐
dition and try again:

tower = dev.V().has("Tower", "tower_name", "Georgetown").next() // get Georgetown
dev.V(tower).                  // look up a tower
    repeat(__.in("send").      // keep walking in the send edge
           simplePath())       // remove cycles

If you ran this second version of our query in DataStax Studio, you most likely saw
the error in Table 6-5:

Table 6-5. An example of a system error due to a traversal taking longer than 30 seconds

System error
Request evaluation exceeded the configured threshold of

realtime_evaluation_timeout at 30000 ms for the request

At the heart of this error is the trouble of recursively walking through trees in a
graph. We were starting at the root of a tree and completing a full search down to all
the leaves in the tree.

This is extremely expensive.

Depth Limiting in Recursion
There are many ways to address the error in Table 6-5. One way is to limit how deep a
traverser travels away from its starting point.

You control the number of times a traverser executes a loop with the times(x) step. 
The pattern repeat(<traversal>).times(x) is one of the most popular ways to limit
the depth of a recursive traversal in Gremlin. In this pattern, the value x tells a traver‐
ser to perform the repeat loop x number of times.

In the following query, we show repeat(<traversal>).times(3). This means that
from a tower, a traversal walks out only three in() edges and then stops:

tower = dev.V().has("Tower", "tower_name", "Georgetown").next() // Georgetown

dev.V(tower).             // look up Georgetown
    repeat(__.in("send"). // repeat walking in the send edge
           simplePath()). // remove cycles

Querying from Roots to Leaves in Development | 189



    times(3).             // repeat only 3 times total
    path().               // get the path
      by(coalesce(values("tower_name",   // if a tower, return tower_name
                         "sensor_name")))// else, return the sensor name

The results are:

{
  "labels": [[],[],[],[]],
  "objects": ["Georgetown","1235466","1257118","1201412"]
},{
  "labels": [[],[],[],[]],
  "objects": ["Georgetown","1290383","1027840","1055155"]
},{
  "labels": [[],[],[],[]],
  "objects": ["Georgetown","1235466","1059089","1255230"]
},...

The benefits of depth limiting with our example data is that we can now perform part
of our final query for this chapter. However, we reduced the scope of the question
from finding all sensors to only those sensors within a specific depth, namely 3. There
are many more reachable sensors that we are missing by limiting depth.

To find them all, we need to revisit time in our example data.

Going Back in Time
We realize we left you hanging with that last query.

We set up the need to walk from a root (a tower) down to all leaves (sensors), and it
didn’t work as expected. All that is to say, your journey as a data engineer for Edge
Energy isn’t over quite yet. We will keep using Edge Energy’s example as we transition
into the next chapter where we explain how to adjust our setup to answer our
question.

Let’s travel deeper into the structure of our trees to find the branches that get us out
of this forest of problems. We are going to teach you how to prune the data you pro‐
cess in your query by limiting your branching factor, limiting by depth, and removing
cycles. And if your eyes aren’t rolling at the terrible puns by now, just wait.

190 | Chapter 6: Using Trees in Development



CHAPTER 7

Using Trees in Production

Whether you are modeling corporate structures or unbounded networks of IoT sen‐
sor communication, hierarchical data fits very well into graph technologies.

As we see it, especially with unbounded and hierarchical data, the mental distance
between the data on disk and using it is much shorter when you use graph technol‐
ogy. However, as we saw at the end of the previous chapter, simple questions with
expressive languages and natural models can open the door to unexpected behavior.

Namely, it is easy to think about starting at the root of a tree and walking all the way
down to its leaves. And graph technologies enable the code for this to be quite simple.

However, the simplicity that comes with reasoning about complex, tree-structured
problems obfuscates the complexity of processing the data’s natural hierarchical
structure.

Chapter Preview: Understanding Branching Factor,
Depth, and Time on Edges
This chapter will have four main sections. Each section builds upon the previous one
to walk through modeling the time property on edges to resolve our error at the end
of Chapter 6.

In the first section, we’ll build upon the data introduced in the last chapter by adding
two complexities: time on edges and valid paths. The second section delves into why a
valid communication tree reduces the amount of data to process. We will update and
walk through the production version of our graph schema in this section. The third
and fourth sections of this chapter revisit the same set of queries from the last chap‐
ter. This time, however, we will apply our knowledge of valid trees and the new pro‐
duction schema to significantly reduce the amount of data processed in each query.

191



At the end of this chapter, you will have everything you need to start working with
trees in your own data. We consider the content in Chapters 6 and 7 to contain a
streamlined yet complete introduction to working with hierarchical structured data
in a production application with graph technologies.

To help get you there, let’s go back to the data we created for this example and follow
the edges throughout time.

Understanding Time in the Sensor Data
The data we created and introduced in “Understanding Hierarchies with Our Sensor
Data” on page 162 simulates how sensors send data to each other and to cell towers.
We introduced this data within the context of a power company, Edge Energy. The
data engineers at Edge Energy have to build a system capable of reporting sensor cov‐
erage in the event of a tower failure.

This bring us to the concept of time in our data. The sensors collect and send data
throughout the network at specific time intervals. This means that the number of ver‐
tices in our graph will be fixed, and it is the relationships in the graph that grow over
time.

We model the dynamic communication over time intervals with a timestep property
on the edges. Let’s look at our data in Figure 7-1 to see how time is part of the com‐
munication network.

The only difference between the examples in Chapter 6 and Figure 7-1 is the inclu‐
sion of time on the edges.

Consider the Seattle tower at the bottom of Figure 7-1. Sensor S, to the lower right
of Seattle, has an edge with the values [0,3]. In our application, this means that the
sensor sent information to the Seattle tower at timestep 0 and timestep 3. In
other words, this sensor directly connected with the Seattle tower twice. You can
also see that Sensor S connected with a nearby neighbor at timesteps 1, 2, 4, and 5.

192 | Chapter 7: Using Trees in Production



Figure 7-1. Our first glimpse into how a timestep property on edges augments the com‐
munication network for this chapter’s example

To understand how to use time on our edges in our upcoming queries, we need to
introduce four topics. These four topics will be the next four sections:

1. Understanding time from the bottom up
2. Valid paths from the bottom up
3. Understanding time from the top down
4. Valid paths from the top down

Let’s start with showing you how to walk through the data from sensors up to towers.

Understanding time in hierarchies of data: From the bottom up
To help you understand how to use time, consider it in context. Recalling our setup
from Chapter 6, the first queries walk from the leaves up to the root. This is a walk
from the sensors to the tower that received their data.

Understanding Time in the Sensor Data | 193



Every walk from a sensor to a tower is no longer a valid walk because we have to con‐
sider the timing of the communication along the way. That is, a message passed from
a sensor at timestep 3 will be passed along from its recipient at timestep 4. Let’s
look at an example; we’ll start by zooming in on valid walks from Sensor S to nearby
towers in Figure 7-2.

Figure 7-2. Zooming in on valid walks from Sensor S to nearby towers

The examples in Figure 7-2 show five valid paths from Sensor S to towers. Let’s walk
through two scenarios and then show you where to start to find the other three.

The first valid path is to follow the first message sent by Sensor S at timestep 0.
This walk goes from Sensor S — 0 → Seattle. This one is pretty easy.

For a more complicated example, let’s follow the second communication path that
leaves from Sensor S. The second path starts at timestep 1. Here we find a much
deeper path. This walk goes from:

Sensor S — 1 → A
       A — 2 → B
       B — 3 → C
       C — 4 → D
       D — 5 → FirstHill

When we are following these paths, we walk through time by incrementing by one
along the way. You can keep walking through the other valid paths from Figure 7-2.
The third valid path starts at timestep 2, the fourth valid path starts at timestep 3,
and the last one starts at timestep 4.

In Chapter 6 we saw seven paths from Sensor S, but now we know that two of them
weren’t possible!

194 | Chapter 7: Using Trees in Production



We also can flatten the data and examine these paths in a more hierarchical form.
Let’s look at the hierarchy from Sensor S to nearby towers in Figure 7-3.

Figure 7-3. Understanding the hierarchy of communication from Sensor S to any
nearby tower throughout time

Figure 7-3 shows the same data as Figure 7-2 but in a more hierarchical form. It may
be easier to see the four unique paths of Figure 7-3 by counting the edges that go into
the tower vertices. Here, we can also see the other paths we didn’t cover from
Figure 7-2. We see the path of:

Sensor S — 2 → A
       A — 3 → FirstHill

Whichever mental model you prefer, we are digging into how these trees work for a
few reasons. First and most important, the dynamic nature of connections and com‐
munication between the vertices in this dataset represents a real-world scenario for
how devices in the field transmit their data back to databases.

Second, the use of time on edges sets us up to understand what type of communica‐
tion tree would be observable in the real world. Let’s take a look at valid and invalid
paths throughout time when walking up from sensors to towers.

Valid and invalid paths from the bottom up
Let’s start by thinking about how to correctly interpret time when you follow it from a
sensor to a tower.

Conceptually, you can think of a valid path from a sensor to a tower as passing the
data on to the next sensor in order. In the data, a valid path increments time by one as
you walk through the edges.

Continuing on conceptually, an invalid path is when you try to pass information to
another sensor out of order. This is like missing your train: you got there either too
late or too early.

To put this into practice, let’s explore examples of valid and invalid paths. First,
Figure 7-4 shows an invalid path; it’s invalid because the sensor’s data was received
late.

Understanding Time in the Sensor Data | 195



Figure 7-4. An example of valid (left) and invalid (right) paths from Sensor A to Seat
tle

Figure 7-4 shows two paths from Sensor A to the Seattle tower. The path on the left
is valid because time on the edges correctly increments by one along the way. The
path on the right is invalid because each exchange with a sensor is out of order. Sen
sor A sends its information to Sensor B after Sensor B has communicated with Sen
sor C. The same problem happens with every exchange along the path on the right in
Figure 7-4.

Let’s take a look at another type of invalid path in Figure 7-5; the paths on the right of
Figure 7-5 show instances of sensors communicating too early.

Figure 7-5. A second example of valid (left) and invalid (right) paths to Seattle

Figure 7-5 shows paths from Sensor D and Sensor A to the Seattle tower. On the
left, the paths are valid. Sensor D sends its data to Sensor C at timestep 3, as does

196 | Chapter 7: Using Trees in Production



Sensor A. Then Sensor C collects all the data and sends it on to the Seattle tower at
timestep 4.

The paths on the right in Figure 7-5 are invalid. Sensor D sends its data to Sensor C
at timestep 0; the data for Sensor D leaves Sensor C at timestep 1 (not shown).
Sensor A sends its data to Sensor C at timestep 1; the data for Sensor A leaves
Sensor C at timestep 2 (not shown). Figure 7-5 shows that Sensor C communicated
with the Seattle tower at timestep 3. This means that the data for D and A was not a
part of that communication because it was passed along different paths at timestep 1
and timestep 2, respectively.

That covers everything we need to know about our data when we walk from leaves to
roots. Let’s look at how we apply time in the reverse direction.

Understanding time in hierarchies of data: From the top down
The last concept for our example applies time as we walk from towers down to all
sensors. These paths represent how we would figure out which sensors connected to a
tower at a certain time.

The key here is that a valid path from a tower down to a sensor has to follow time in
decreasing order, exactly by 1.

To see this, let’s zoom in and examine the network that sends its information to the
WestLake tower in Figure 7-6. Figure 7-6 is dense with information. To understand
what it is showing, we recommend starting with what you know how to trace by fol‐
lowing valid paths from sensors up to the tower. Starting this way makes it much eas‐
ier to accomplish our ultimate goal: walking in reverse from WestLake down to
sensors.

Let’s start with Sensor M, at lower right in Figure 7-6. We want to follow the valid
path from the sensor up to WestLake:

Sensor M — 2 → I
       I — 3 → F
       F — 4 → WestLake

The goal is to be able to see this in reverse from WestLake back to Sensor M. So trace
that same path but in the opposite direction:

WestLake – 4 → F
       F – 3 → I
       I – 2 → Sensor M

Understanding Time in the Sensor Data | 197



Figure 7-6. Zooming in on valid walks from WestLake to all sensors that connect to it

Let’s unroll all valid paths that arrive at WestLake at timestep 4. The hierarchy from
the root, WestLake, down to all sensors that connected to it is shown in Figure 7-7.
All paths from Figure 7-7 can be found in Figure 7-6. We just untangled their repre‐
sentation on the map to look at their hierarchical structure.

Figure 7-7. Understanding the hierarchy of communication received by the WestLake
tower from any sensor at timestep 4

It is easier to walk backwards from towers to sensors in the hierarchical structure
shown in Figure 7-7. For example, follow the path backwards from the WestLake
tower to Sensor M in this image. The path is the same as before, but it is easier to see
how time decreases in this image.

We find it easier to see the paths when you look at the hierarchical structure of the
data as shown in Figure 7-7. But you may prefer to follow them according to their
geo-location, like in Figure 7-6.

198 | Chapter 7: Using Trees in Production



As long as you can see how to decrease time as we walk from a tower back down to
sensors, then we have achieved our goal.

Before we can update our production schema, we have one last concept to under‐
stand: valid paths from roots to leaves.

Valid and invalid paths from the top down
Think about what we are doing when we find a valid path from a tower down to all
sensors. We have reversed the process we used for walking up from sensors to a
tower.

In this reversal, we walked backwards in time. Specifically, we decreased the timestep
values on the edges by one along the way.

Let’s look at another side-by-side example of valid and invalid paths. This time, how‐
ever, we are considering the perspective from the tower down to the sensors, back
through time. The communication path on the right in Figure 7-8 is invalid because
communication was too late or too early along the path.

Figure 7-8. An example of valid and invalid paths from a tower

Figure 7-8 shows paths from the Seattle tower to Sensor A. On the left, the path is
valid:

Seattle – 4 → D
      D – 3 → C
      C – 2 → B
      B – 1 → A

Understanding Time in the Sensor Data | 199



Contrast the path on the left with its invalid representation on the right. The path on
the right is invalid because of the time at which Sensor D received its information:

Seattle – 3 → D (too late for the next connection)
      D – 4 → C (too early for the next connection)
      C – 2 → B
      B – 1 → A

Seattle sent its data to Sensor D too late; Sensor D had already passed its data to
Sensor C. The communication path is also invalid between D and B.

It is much harder to reason about time when going backwards. The trick here is that a
valid path from a tower down to a sensor has to follow our property in decreasing
order, exactly by 1.

Final Thoughts on Time Series Data in Graphs
Understanding time in this dataset is easy for modeling: we added it to our edges. We
will see the production schema in a coming section.

The detail and difficulty come in when we want to use time in our queries. Aside
from all of the images and detail in this chapter, using time in this example boils
down to the following tip:

Rule of Thumb #11

Time goes up on the way up, and time goes down on the way down.
When this rule of thumb isn’t true, the path is invalid and should
be filtered out of the results.

Now that we know how to use time on our edges, let’s explain why this resolves our
error from Chapter 6. We want to limit our results to valid paths, and therefore, we
are mitigating our graph’s branching factor.

Let’s explain what branching factor is and why you need to know about it for this
example and others.

Understanding Branching Factor in Our Example
We ended Chapter 6 with a problem. We were unable to walk from a tower down to
all sensors that connected to it because of the data’s branching factor.

Let’s dig into the details of this concept and illustrate the processing complexity that
comes with walking through highly branching data.

200 | Chapter 7: Using Trees in Production



What Is Branching Factor?
Branching factor is what happens when you walk from one vertex through relation‐
ships to many other vertices. Formally, we define branching factor as follows:

Branching factor
A graph’s branching factor (BF) is the expected, or average, number of edges for
any vertex.

You can think of this as splitting one process, or one traverser, into many. We illus‐
trate this in Figure 7-9.

Figure 7-9. An example of WestLake’s branching factor

In Figure 7-9, the WestLake tower vertex has seven edges adjacent to seven unique
vertices. We say the WestLake tower has a branching factor of 7.

Your data’s branching factor affects traversal performance. For example, a traversal
that starts at the WestLake tower creates one traverser in the pipeline. When you walk
from the WestLake tower to all incoming vertices, the single traverser splits for every
possible edge. We end up with seven total traversers on the sensor vertices, shown at
the bottom of Figure 7-9.

The processing overhead for a traversal correlates to a graph’s branching factor.
Roughly, the number of traversers maps to the number of threads required to execute
a traversal. You can calculate the number of threads required to process a query map
with the equation shown in Figure 7-10.

Figure 7-10. The computational overhead for a traversal according to its depth, n, and
the graph’s branching factor, BF

That sounds great and all, but why should you care?

Understanding Branching Factor in Our Example | 201



Let’s say your graph’s expected branching factor is 3. Starting at a single vertex, you
have 1 traverser. Walking one neighborhood away creates 3 traversers. Two neighbor‐
hoods away creates 9; three neighborhoods away creates 27. When you are four
neighborhoods away, you are processing 81 traversers, just for that level. The total
number of traversers you have created is 1 + 3 + 9 + 27 + 81 = 121.

The exponential growth can quickly get out of hand. Figure 7-11 shows just how
quickly.

Figure 7-11. Looking at the total pieces of data needed to process a traversal according to
the traversal’s depth, and the graph’s branching factor

The message from Figure 7-11 is that a graph’s branching factor yields exponential
growth on the amount of data that you have to process as you explore multiple neigh‐
borhoods of data. Loosely speaking, you can equate one Gremlin traverser to one
thread in your computer. This means that the number of threads required to explore
your data grows exponentially.

How Do We Get Around Branching Factor?
The beauty of working with graph data in Apache Cassandra is that we already have
all the tools necessary to tame your data’s branching factor. A primary way to mitigate
a query’s branching factor goes back to how you store your data on disk.

202 | Chapter 7: Using Trees in Production



One of the best tips we can offer is to use properties on edges to give yourself a way to
navigate your data’s branching factor during queries.

Rule of Thumb #12

Cluster your edges on disk so that you can sort through them in
your queries and mitigate the effect of your data’s branching factor.

Let’s apply our understanding of branching factor. We want to update our develop‐
ment schema so that our production queries are less affected by our tree’s branching
factor.

Production Schema for Our Sensor Data
Our new understanding of time on edges and our exploration in development give us
two optimizations for our production schema. First, our new understanding of time
on edges, valid paths, and branching factor indicates why we need to cluster our edges
by time. Second, our queries in Chapter 6 illustrated that we will be traversing the
send edge in both directions. Therefore, our second change will be to add a material‐
ized view on the send edge labels for bidirectional usage in traversals.

Figure 7-12 illustrates a production version of our conceptual data model with these
changes.

Figure 7-12. Our production schema model for the final set of tree queries in this chapter

In Figure 7-12, the use of materialized views on each send edge is indicated by a dot‐
ted line going in the reverse direction. We also see that our edges will be clustered by
time, decreasing with the timestep (CK↓) notation.

Applying the Graph Schema Language (GSL), we cluster our edges by time with:

schema.edgeLabel("send").
       ifNotExists().
       from("Sensor").
       to("Sensor").
       clusterBy("timestep", Int, Desc).
       create()

Production Schema for Our Sensor Data | 203



schema.edgeLabel("send").
       ifNotExists().
       from("Sensor").
       to("Tower").
       clusterBy("timestep", Int, Desc).
       create()

We create these indexes in our schema code with:

schema.edgeLabel("send").
       from("Sensor").
       to("Sensor").
       materializedView("sensor_sensor_inv").
       ifNotExists().
       inverse().
       create()

schema.edgeLabel("send").
       from("Sensor").
       to("Tower").
       materializedView("sensor_tower_inv").
       ifNotExists().
       inverse().
       create()

The edge label syntax in the preceding code creates materialized views for each
respective send edge label. By using the inverse() convenience method, we are
applying the same order to the edges in the reverse direction. This means that the
edges will have a clustering key of timestep in the reverse direction.

Bonus Rule of Thumb

To reinforce traversal driven modeling, you want your production
edge labels to be in the direction that you will most commonly tra‐
verse and the materialized views to be in the less common
direction.

Loading data with DataStax Bulk Loader
There are no changes from Chapter 6 to the provided data or to how we load it for
our example. However, recall the first five lines of Sensor_send_Sensor.csv, shown
in Table 7-1.

204 | Chapter 7: Using Trees in Production



Table 7-1. The first five lines of data from the file Sensor_send_Sensor.csv

out_sensor_name timestep in_sensor_name
103318117 1 126951211

1064041 2 1307588

1035508 2 1307588

1282094 1 1031441

In Chapter 6, our schema did not have a timestep on the send edge labels. Therefore,
our loading process omitted the timestamps on the edge data.

However, our schema for this chapter uses timestep to cluster our edges. Therefore,
when we load the exact same data with the same process, we will have edges with
time on them. To see the code, please head to the data directory within this book’s
GitHub repository for the data and loading scripts for this chapter.

Let’s apply our understanding of time, valid paths, and branching factor to refactor
our queries from Chapter 6.

Querying from Leaves to Roots in Production
We want to ask the same questions as before, but now we want to use time on the
edges to consider only valid paths. Let’s start with our first query and see when it
communicated data to another sensor or tower.

Where Has This Sensor Sent Information to, and at What Time?
This is the same question that we started with before, but we are using a different sen‐
sor this time: 104115939. We want to add the timestep property into the map of
results. This requires using the edge in our traversal and adding an additional ele‐
ment to our map. Let’s look at the query in Example 7-1 and then at the example
results. Then we will walk through the code below.

Example 7-1.

1 sensor = g.V().has("Sensor", "sensor_name", "104115939").next()
2 g.V(sensor).                             // look up the sensor
3     outE("send").                        // walk out and stop on all edges
4     project("Label", "Name", "Time").    // create a map for each edge
5       by(__.inV().                       // traverse in
6             label()).                    // values for the first key
7       by(__.inV().                       // traverse in
8            coalesce(values("tower_name"),// values for the 2nd key if a tower
9                     values("sensor_name"))). // otherwise return sensor_name
10      by(values("timestep"))             // values for the 3rd key: "Time"

Querying from Leaves to Roots in Production | 205

https://oreil.ly/graph-book
https://oreil.ly/graph-book


And the results are:

{
  "Label": "Sensor",
  "Name": "104115918",
  "Time": "1"
},{
  "Label": "Sensor",
  "Name": "10330844",
  "Time": "0"
}

In Example 7-1, the query sets up as we have seen before. We create a traversal and
populate the traversal pipeline on line 2 with a single vertex. On line 3, we move to all
outgoing edges from the sensor. Line 4 uses project to create a map object with three
keys: Label, Name, and Time. The values in the map for Label will be filled with the
traversal from line 5: the label of the incoming vertex on the other side of the edge.
The values in the map for Name will be filled with the try/catch pattern of the coa
lesce step on line 7: either the name of a tower or the name of a sensor. Last, the
values in the map for the key Time will be filled with the traversal from line 10: access‐
ing the property value timestep from the edge.

Let’s use the pattern from Example 7-1 and follow any path to a tower, but we want to
also look at the timestep values along the way.

From This Sensor, Find All Trees up to a Tower by Time
The next query is the same one we set up in Chapter 6, but we are adding the time
step property from the edge into the result payload. From here, we will be able to
understand which paths are valid and which are invalid. Let’s look at the query in
Example 7-2. We will delve into the details afterward.

Example 7-2. 

1 sensor = g.V().has("Sensor", "sensor_name", "104115939").next()
2 g.V(sensor).                              // look up a sensor
3     as("start").                          // label it "startingSensor"
4   until(hasLabel("Tower")).               // until we reach a tower
5   repeat(outE("send").                    // walk out and stop on the send edge
6            as("send_edge").               // label it "send_edge"
7          inV().                           // walk into the adjacent vertex
8            as("visited").                 // label it "visited"
9           simplePath()).                  // remove cycles
10  as("tower").                            // label it "tower"
11  path().      // get path of vertices and edges from "start" to "tower"
12    by(coalesce(values("tower_name",      // 1st object in the path is a vertex
13                       "sensor_name"))).
14    by(values("timestep"))                // 2nd object in the path is an edge

206 | Chapter 7: Using Trees in Production



Let’s walk through the code from Example 7-2 before we show the results. Line 2 pop‐
ulates the traversal pipeline with a single vertex. The use of until()/repeat() on
lines 4 and 5 uses the while/do pattern in Gremlin. Line 5 ensures each traverser in
the pipeline accesses the send edge and labels it as send_edge so that we can reference
it in the path object. Line 8 labels any vertex along the way as a visited vertex, while
line 10 adds the label tower to the last vertex in the path. The last vertex on this walk
will always be a tower due to the stopping condition in line 4.

The trickiest part of Example 7-2 occurs from lines 11 through 14. Here, we apply
by() modulators in round-robin order to mutate the objects in the path structure so
as to populate our query’s results with meaningful information about each path.

Let’s break this down.

Line 11 from Example 7-2 asks each traverser to populate its path object into the tra‐
versal pipeline. Every path will follow the structure [Start, Edge, Vertex, … ,
Edge, Tower]. This is true because we started at a sensor and then repeatedly
accessed an edge and its adjacent vertex.

We use this pattern with the by() modulators on lines 12 and 14. The by() modulator
on line 12 will map to the even-numbered objects in the path object [0, 2, 4, … ].
The objects at even-numbered positions in the path object are guaranteed to be verti‐
ces. For any vertex, we want to mutate the object in the path to include only the ver‐
tex’s tower_name or its sensor_name; we use the try/catch pattern of the coalesce()
step to do this.

On line 14, the by() modulator will map to the odd-numbered objects in the path
object, [1, 3, 5, … ]. The odd-numbered objects in the path are guaranteed to be
edges. We want the path object to show the timestep from a particular edge; we use
values("timestep") to do this mutation.

In Example 7-3, we show two results from the query in Example 7-2. These results
show the labels payload from the path object so that you can map each of the as()
labels from the query to the path object. For space reasons, the results in Example 7-3
are the only time we will be showing the labels payload; this section of the results
will be omitted throughout the rest of our examples.

Querying from Leaves to Roots in Production | 207



Example 7-3.

...,
{
  "labels": [
    ["start"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited", "tower"],
  ],
  "objects": [
    "104115939",
    "0", "10330844",
    "1", "126951211",
    "2", "127620712",
    "3", "103318129",
    "4", "103318117",
    "5", "Bellevue"
  ]
},{
  "labels": [
    ["start"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited"],
    ["send_edge"], ["visited", "tower"],
  ],
  "objects": [
    "104115939",
    "0", "10330844",
    "1", "126951211",
    "2", "127620712",
    "3", "103318129",
    "0", "103318117",
    "5", "Bellevue"
  ]
}, ...

The first result in Example 7-3 is a valid path because time correctly follows in
sequence: 0,1,2,3,4,5. The second result is an invalid path because the sequence of
time on the edges is out of order: 0,1,2,3,0,5. The second result is an example of
the communication path breaking after timestep 3.

208 | Chapter 7: Using Trees in Production



The two paths shown in Example 7-3 point to the details of valid and invalid trees.
The first path is valid because it follows time sequentially, whereas the second path
does not. We have visualized the resulting paths in Figure 7-13 to see how one is valid
and the other is invalid.

Figure 7-13. Visualizing the results of Example 7-2 to see how one tree is valid and the
other is invalid

The top path in Figure 7-13 is valid because it follows an incremental pattern from
start to finish. The bottom path in Figure 7-13 is broken because Sensor 103318129
receives its data at timestep 3, but the next edge out of 103318129 occurs at an ear‐
lier time, timestep 0.

We need to consider only valid trees as we walk from a sensor up to a tower. Monitor‐
ing the value of timestep as we walk through our data is the final example for this
section.

From This Sensor, Find a Valid Tree
We want to use the pattern from Example 7-2, but we want to check the value on the
send edges as we walk through the data. The idea is essentially to accomplish what
you see in Example 7-4, but without hardcoding the timestep values.

Example 7-4.

1 sensor = g.V().has("Sensor", "sensor_name", "104115939").next()
2 g.V(sensor).                               // look up a sensor
3     outE("send").has("timestep", 0).inV(). // traverse edges with timestep = 0
4     outE("send").has("timestep", 1).inV(). // traverse edges with timestep = 1
5     outE("send").has("timestep", 2).inV(). // traverse edges with timestep = 2
6     outE("send").has("timestep", 3).inV(). // traverse edges with timestep = 3
7     outE("send").has("timestep", 4).inV(). // traverse edges with timestep = 4
8     outE("send").has("timestep", 5).inV(). // traverse edges with timestep = 5
9     path().                                // get the path from the sensor
10      by(coalesce(values("tower_name",     // for the even position elements
11                         "sensor_name"))). // get the vertex's ID
12      by(values("timestep"))               // for the odd position elements

Querying from Leaves to Roots in Production | 209



The query in Example 7-4 works if we already know how deep the tree is. For any
sensor, we won’t know this, and we’ll need to use a counter variable. We will want to
use a counter variable to start at 0 and increment by one until we find a tower.

Gremlin has a step for this: loops(). The loops() step keeps track of the number of
times a repeat is executed; loops() starts at zero and will increment by one for every
iteration of the repeat step.

Loops()
The loops() step extracts the number of times the traverser has gone through
the current loop.

We can use the counter from loops() and compare it to the value of an edge’s time
step. Comparing the counter to an edge’s timestep will give us the ability to consider
only valid trees from our starting sensor to a tower.

Let’s use loops() and create a filter on an edge. We want an edge to pass through the
filter when its timestep is equal to the loops() variable. We want an edge to fail to
pass through the filter if its timestep is not equal to the loops() variable. While this
requirement seems rather contrived, it is very common to walk edges in a sequential
fashion. The overarching problem and solution provide context and transferable sol‐
utions to a common application pattern.

Example 7-5 shows how to use loops() and create a filter on an edge in Gremlin.

Example 7-5. 

1 sensor = g.V().has("Sensor", "sensor_name", "104115939").next()
2 g.V(sensor).as("start").          // look up a sensor, label it
3    until(hasLabel("Tower")).      // until you reach a tower
4    repeat(outE("send").           // traverse out to a send edge
5             as("send_edge").      // label it "send_edge"
6           where(eq("send_edge")). // filter: an equality test
7             by(loops()).          // an edge passes if loops() is equal to
8             by("timestep").       // the timestep on the edge
9           inV().                  // walk to adjacent vertex
10            as("visited")).       // label it "visited"
11   as("tower").                   // guaranteed tower; label it "tower"
12   path().                        // path from "start" to "tower"
13    by(coalesce(values("tower_name",     // for the even position elements
14                       "sensor_name"))). // get vertex's ID based on its label
15    by(values("timestep"))               // for the odd position elements: time

210 | Chapter 7: Using Trees in Production



And here are the results of Example 7-5; we omitted the labels payload from the
path() object:

{ ... ,
  "objects": [
    "104115939",
    "0", "10330844",
    "1", "126951211",
    "2", "127620712",
    "3", "103318129",
    "4", "103318117",
    "5", "Bellevue"
  ]
}

Let’s walk through the steps in Example 7-5. Line 2 fills the traversal pipeline with a
starting vertex. Lines 3 through 9 set up our recursive walk from the sensor to any
tower by accessing outgoing edges and then incoming vertices. Lines 6, 7, and 8
define a filter for an edge. A traverser passes through this filter if its timestep is equal
to the loop counter. A traverser fails to pass through this filter if the edge’s timestep
is not equal to the loop counter.

The only traverser that will pass through this recursive loop and the filter will be the
traverser that forms a valid walk from the starting sensor to the tower. We use the
same pattern to format the path results and confirm that we found the only valid walk
from sensor 104115939 up to the Bellevue tower.

Advanced Gremlin: Understanding the where().by() Pattern
Using the where().by() pattern in Example 7-5 was probably a surprise to you.

We would like to show you a common way people try to solve this problem and then
explain why it doesn’t work, to help you understand a deeper topic from the Gremlin
query language.

Understanding a common Gremlin mistake: Overloading has()

Most people would start by using has("timestep", loops()) as a filter on the edges.
We will take a look at using it in Example 7-6 and then we will explain why it is
wrong.

The query in Example 7-6 doesn’t accurately answer the question
for this chapter. It is included for educational purposes.

Querying from Leaves to Roots in Production | 211



Example 7-6. 

1 g.V(sensor).
2     until(hasLabel("Tower")).
3     repeat(outE("send").as("send_edge").
4            has("timestep", loops()). // this does not work; details in text
5            inV().as("visited")).
6     as("tower").
7     path().
8       by(coalesce(values("tower_name", "sensor_name"))).
9       by(values("timestep"))

The results of Example 7-6 follow; we omitted the labels payload from the path()
object:

{ ... ,
  "objects": [
    "104115939",
    "0", "10330844",
    "1", "126951211",
    "2", "127620712",
    "3", "103318129",
    "4", "103318117",
    "5", "Bellevue"
  ], ... ,
  "objects": [
    "104115939",
    "0", "10330844",
    "1", "126951211",
    "2", "127620712",
    "3", "103318129",
    "0", "103318117", //incorrect result: time is out of order: 3, 0, 5
    "5", "Bellevue"
  ]
}, ...

The results for Example 7-6 exactly match the results from Example 7-2. This is
because the use of has("timestep", loops()) is overloaded, and every traverser
passes for all edges.

The mistake we are making here is that we are asking the question “Is loops() acces‐
sible,” instead of “Does the value of loops() match the value of the timestep prop‐
erty on the edge?”

Let’s dig in and see why.

The use of the has() step in Example 7-6 creates a filter with the structure has(key,
traversal). With this structure, the has() step creates a traversal that starts from the
property value timestep. The edge will pass through the has() filter if the traverser

212 | Chapter 7: Using Trees in Production



survives. The condition that determines whether a traverser survives is loops(),
which will always work because loops() will return a value.

Essentially, we created the logic of has(True) in Example 7-6.

The overloaded use of has(key, traversal) is one of the most common mistakes
we find when helping Gremlin users write recursive queries. We hope this helps you
avoid making that same mistake.

Resolution: The where().by() pattern

If has("timestep", loops()) doesn’t work, why does the where().by() pattern
work?

Let’s dig into why.

In Example 7-5, we used the following Gremlin pattern to create an edge filter:

where(eq("sendEdge")).
        by(loops()).
        by("timestep")

The basic form of where() in Gremlin is where(a, pred(b)). Our usage applies the
shorthand of where(pred(b)), in which the incoming traverser is implicitly assigned
to a.

Since the incoming traverser was labeled sendEdge, you actually have:

where("sendEdge", eq("sendEdge"))

This pattern will only ever evaluate false if you use two different by() modulators,
which are then applied to sendEdge and eq("sendEdge"), respectively—or in this
case, when the by() modulators emit two different values from the same edge.

Our two by() modulators are emitting the values for loops() and timestep, respec‐
tively. If those values are different, the expression evaluates to false and the incoming
traverser is eliminated.

At this point, we have completed exploring all concepts required for walking from
sensors up to towers. Last up for this example: we go back to the top of our trees and
walk from the towers down to the sensors.

Querying from Roots to Leaves in Production
The final technical section of this chapter uses the sensor network data to avoid the
branching factor issues as we walk from towers to sensors. The queries here apply the
sorted order of send edges to navigate specific edges and solve the error we concluded
with in Chapter 6.

Querying from Roots to Leaves in Production | 213



Let’s start with the tower we explored in the last chapter to answer our first query.

Which Sensors Have Connected to Georgetown Directly, by Time?
For this question, we want to inspect the Georgetown tower and see how many mes‐
sages it received and at what time it received each message. As always, we want to
construct a JSON object that shows which sensor sent it and at what time. Let’s look
at the query in Example 7-7 and then at some results.

Example 7-7.

1 tower = dev.V().has("Tower", "tower_name", "Georgetown").next()
2 g.V(tower).
3     inE("send").
4     project("Label", "Name", "Time"). // create a map for each edge
5       by(outV().label()).             // value for the first key "Label"
6       by(outV().                      // value for the second key "Name"
7          coalesce(values("tower_name"),    // if a tower, return tower_name
8                   values("sensor_name"))). // else, return sensor_name
9       by(values("timestep"))         // value for the third key "Time"

And here are the results of Example 7-7:

{
  "Label": "Sensor",
  "Name": "1302832",
  "Time": "3"
},{
  "Label": "Sensor",
  "Name": "1002688",
  "Time": "2"
},...,{
  "Label": "Sensor",
  "Name": "1306931",
  "Time": "1"
}

This example follows the same construction pattern with project() that we have
been using for most of our queries. Let’s walk through what this query is doing, one
line at a time.

On line 2 of Example 7-7, we populate our traversal with one vertex: the Georgetown
tower. Line 3 splits the one traverser into many traversers; one traverser for each of
the seven adjacent edges. This means that the Georgetown tower has a branching fac‐
tor of 7, and we now have seven traversers to process in our pipeline. Lines 4 through
9 tell each traverser how to report back the necessary data into the result payload. We
create a map with the keys Label, Name, and Time on line 4. Line 5 fills the key Label
with the label of the outgoing vertex. Lines 6 through 8 fill the Name key with the par‐

214 | Chapter 7: Using Trees in Production



tition key from the outgoing vertex. Last, line 9 fills the Time key with the edge’s
timestep.

We have used this pattern multiple times to construct JSON payloads of our graph
data. Hopefully this is becoming ingrained as a useful Gremlin step for shaping query
results.

Believe it or not, we have only one more question to ask for this chapter. We want to
walk from the Georgetown tower to find valid paths down to sensors.

What Valid Paths Can We Find from Georgetown Down to All Sensors?
For this query, we have to define where we want to start in time. Our examination of
the results of Example 7-7 shows that we can find trees that end at timestep 3, 2, or 1.
Let’s look at trees that ended at timestep 3.

For this query, we are first going to sketch out our approach in pseudocode, as shown
in Example 7-8.

Example 7-8.

Question: What Valid Paths Can We Find from Georgetown Down to All Sensors?
Process:
   Initialize a counter variable
   For a total of counter + 1 times (to account for the zero-th edge),
   Do the following:
       Walk to incoming send edges
       Create a filter to compare an edge's timestep with the counter
       Decrease the counter by 1
   Show and shape the path from the tower to the ending sensor

To write this type of query, we need to dive into a new Gremlin concept: the sack()
operator.

As we walk from a tower down through different levels of the tree, we want a data
structure that tracks how many steps we have taken. In Example 7-5, we used the
loops() step. Loops() increments by one, but we need to decrease by one for each
depth.

We need something different.

We can customize a variable in a Gremlin traversal with the sack() step. You can
think of the sack step as giving each traverser a backpack at the beginning of its jour‐
ney in your graph data. You can initialize the sack with whatever you would like. As
your traverser moves through graph data, it can mutate the contents of its sack
according to what it is processing from the graph data.

Querying from Roots to Leaves in Production | 215



Sack()

A traverser can contain a local data structure called a sack. The sack()-step is
used to read and write to a traverser’s sack.

WithSack()

The withSack() step is used to initialize the sack data structure.

In the next query, we will start at timestep 3 and walk through edges with timestep
values of 2, 1, and 0, respectively. You can change this to any start time for additional
practice. We picked start = 3 to teach the concepts in this query.

Let’s see how to use repeat() with times() and the sack() operator in Gremlin to
answer the pseudocode we outlined in Example 7-8. The query is in Example 7-9.

Example 7-9. 

1 start = 3
2 tower = dev.V().has("Tower", "tower_name", "Georgetown").next()
3 g.withSack(start).  // every traverser starts with a sack with a value of 3
4   V(tower).as("start").              // look up Georgetown
5   repeat(inE("send").as("send_edge").// traverse to incoming edges
6          where(eq("send_edge")).     // create an equality filter:
7            by(sack()).               // test if the sack() value
8            by("timestep").           // equals the edge's timestep
9          sack(minus).                // decrease the sack's value
10           by(constant(1)).          // by 1
11         outV().as("visited")).      // traverse to adjacent vertex
12   times(start+1).                   // do lines 5-10 four times
13   as("tower").         // this vertex passed all edge filters
14   path().              // get the path to it starting from Georgetown
15     by(coalesce(values("tower_name", // first object in path is a vertex
16                        "sensor_name"))).
17     by(values("timestep"))           // second object in path is an edge

Let’s step through the query one line at a time and then take a look at the results.

Line 1 of Example 7-9 initialized a starting variable to be 3. We will use this variable
multiple times in the query. The first place we use the variable is on line 3, where we
initialize a traverser’s sack to be 3. Line 4 populates our traversal pipeline with the
Georgetown tower. Then we see the repeat()/times() pattern on lines 5 and 12.
Here, we use the value start + 1 as the stopping condition for any traverser. This
means that the traversal from lines 5 through 12 will be completed after start + 1 =
4 iterations.

Within the repeat clause, we construct a filter for every edge that we process. We use
the same where()/by() pattern that we did before. This time, however, we replace
loops() with sack(), which means that an edge’s timestep will be compared to the
value in sack().

216 | Chapter 7: Using Trees in Production



Let’s walk through how sack() works within this loop.

The first time we process the traversal within the repeat step, each traverser will have
3 stored within its sack. This means that the first time we use the filter on lines 6, 7,
and 8, we will compare an edge’s timestep to the integer 3. Only the edges adjacent to
Georgetown with a timestep of 3 will pass through this filter.

On line 9, we mutate the value in a traverser’s sack. We decrease the sack’s value with
the sack(minus) step. The by() modulator on line 10 tells the traverser how much to
subtract from the sack. We want to subtract one, so we use by(constant(1)).

On line 11, we move to the other vertex, and line 12 checks the looping condition.
Lines 14 through 17 format the path results, as we have done many times. The results
of Example 7-9 follow; we omitted the labels payload from the path() object:

{...,
  "objects": [
    "Georgetown",
    "3", "1302832",
    "2", "1059089",
    "1", "1255230",
    "0", "1248210"
  ] , ... ,
  "objects": [
    "Georgetown",
    "3", "1302832",
    "2", "1059089",
    "1", "1302832",  // cycle
    "0", "1010055"
  ]
}, ...

A keen observer will see an unexpected result. The second object contains a repeated
sensor, 1302832, even though the path follows the correct time values. We need to
remove cycles from our results, as we did in Chapter 6.

The resulting query, shown in Example 7-10, is the same as before, but with this new
step on line 12.

Example 7-10. 

1 start = 3
2 tower = dev.V().has("Tower", "tower_name", "Georgetown").next()
3 g.withSack(start).
4   V(tower).as("start").
5   repeat(inE("send").as("send_edge").
6          where(eq("send_edge")).
7            by(sack()).
8            by("timestep").
9          sack(minus).

Querying from Roots to Leaves in Production | 217



10           by(constant(1)).
11         outV().as("visited").
12         simplePath()).        // remove cycles
13   times(start+1).
14   as("tower").
15   path().
16     by(coalesce(values("tower_name",
17                        "sensor_name"))).
18     by(values("timestep"))

The results of Example 7-10 follow; we omitted the labels payload from the path()
object:

{...,
  "objects": [
    "Georgetown",
    "3", "1302832",
    "2", "1059089",
    "1", "1255230",
    "0", "1248210"
  ]
}, ... ,
  "objects": [
    "Georgetown",
    "3", "1302832",
    "2", "1059089",
    "1", "1255230",
    "0", "1280634"
  ]
}

Inspecting the result payloads, we see two different valid trees that start from the Geor
getown tower. One tree ends at sensor 1248210. The other ends at sensor 1280634.

And that is it for our query creation!

We have successfully addressed the errors from the end of Chapter 6 and are able to
walk to and from the leaves and roots in our example data.

Applying Your Queries to Tower Failure Scenarios
As a data engineer for Edge Energy, your final task is to apply what you have built to
address Edge Energy’s larger problem: what is the impact of a shutdown or tower fail‐
ure on the network?

The art of understanding your data and graph technology derives from integrating
multiple components to solve complex problems. Over the past two chapters, we have
been setting up data, schema, and queries to do just that: use the relationships within
our data to provide insights into a network’s dynamic and evolving topology.

218 | Chapter 7: Using Trees in Production



So how do we integrate our results over the past two chapters to resolve Edge Ener‐
gy’s complex problem? We break down the company’s complex problem using the
tools we have set up.

We have been querying around the Georgetown tower for a while now. Let’s revisit the
image we saw in Chapter 6 and think about the impact if the Georgetown tower were
to fail. The image in Figure 7-14 shows the Georgetown tower in orange. The green
arteries are all nearby sensors. The blue diamonds are other nearby towers.

Figure 7-14. Visualizing the sensors and towers around Georgetown; network edges not
shown for image clarity

Consider what would happen if the Georgetown tower were to go down. Which sen‐
sors, if any, will we lose connection to? Will they be only the sensors that surround
the tower?

Let’s query our graph and let the data tell us what would happen. We have ironed out
two tools to use to answer this question:

1. We can report, for any tower, all of the sensors that communicated with it.
2. For any sensor, we can tell which towers connected with.

To resolve Edge Energy’s complex network failure problem, we can apply the follow‐
ing procedure for the Georgetown tower:

Applying Your Queries to Tower Failure Scenarios | 219



1. Get a list of sensors that connected with Georgetown in any time window.
2. For each sensor, query the network to see if they used a different tower in that

time window.

Let’s answer each question using the queries we already built.

Get a list of sensors that connected with Georgetown in any time window
Example 7-11 shows what we did in the accompanying Studio Notebook:

Example 7-11.

Question: Get a list of sensors that connected with Georgetown in any time window
Process:
    Wrap our query from a tower to sensors in a method: getSensorsFromTower()
    For each step in time:
        Find all sensors that connected with Georgetown
    Create a unique list of the sensors

The code for the pseudocode in Example 7-11 is shown in Example 7-12.

Example 7-12.

// wrap our query of valid paths in a method called getSensorsFromTower
def getSensorsFromTower(g, start, tower){
    sensors = g.withSack(start).V(tower).
                        repeat(inE("send").as("sendEdge").
                               where(eq("sendEdge")).
                                   by(sack()).
                                   by("timestep").
                               sack(minus).
                               by(constant(1)).
                               outV().
                               simplePath()).
                        times(start+1).
                        values("sensor_name").
                        toList()
    return sensors;
}
atRiskSensors = [] as Set;         // create a list of sensors

tower = g.V().has("Tower", "tower_name", "Georgetown").next();
for(time = 0; time < 6; time++){  // loop through a window of time
    // all sensors into Georgetown's list at this time via getSensorsFromTower()
    atRiskSensors.addAll(getSensorsFromTower(g, time, tower));
}

220 | Chapter 7: Using Trees in Production

https://oreil.ly/egfkr


The main result from Example 7-12 is the object atRiskSensors. This is a list of all
sensors that had valid communication paths with the Georgetown tower. The first
four sensors are:

"1302832",
"1059089",
"1290383",
"1201412",
...

There is one last thing we need to know to provide proactive information to Edge
Energy. We need to know which of the other towers the at-risk sensors communica‐
ted with.

For each at-risk sensor, find all towers it communicated with
Example 7-13 shows what we did in the accompanying Studio Notebook.

Example 7-13.

Question: For each at-risk sensor, find all towers it communicated with
Process:
    Wrap our query from a sensor to towers in a method: getTowersFromSensor()
    For each sensor in atRiskSensors:
        For each step in time:
            Find the towers the sensors connected with
        Add to a map of the unique towers a sensor connected to
    Find sensors that connected only to Georgetown

As we analyze all of the paths in our data, we ultimately are looking for sensors that
uniquely connected to Georgetown. The code for our pseudocode in Example 7-13 is
shown in Example 7-14.

Example 7-14.

// wrap our query of valid paths in a method called getTowersFromSensor
def getTowersFromSensor(g, start, sensor) {
    towers = g.withSack(start).V(sensor).
                until(hasLabel("Tower")).
                repeat(outE("send").as("sendEdge").
                       where(eq("sendEdge")).
                         by(sack()).
                         by("timestep").
                       inV().
                       sack(sum).
                       by(constant(1))).
                values("tower_name").
                dedup().
                toList()

Applying Your Queries to Tower Failure Scenarios | 221

https://oreil.ly/egfkr


    return towers;
}

otherTowers = [:];                               // create a map

for(i=0; i < atRiskSensors.size(); i++){         // loop through all sensors
    otherTowers[atRiskSensors[i]] = [] as Set;   // initialize the map for a sensor
    sensor = g.V().has("Sensor", "sensor_name", atRiskSensors[i]).next();
    for(time = 0; time < 6; time++){      // loop through a window of time
        // use getTowersFromSensor to add all towers
        // into the map for this sensor at this time
        otherTowers[atRiskSensors[i]].addAll(getTowersFromSensor(g, time, sensor));
    }
}

The main result from Example 7-12 is the object otherTowers. This is a hashMap of
all unique towers that had valid communication paths from the starting sensor. Let’s
take a look at the first few entries in otherTowers.

Example 7-15.

{   "1035508": ["Georgetown", "WhiteCenter", "RainierValley"]
},{ "1201412": ["Georgetown", "Youngstown"]
},{ "1255230": ["Georgetown"]
}, ...

Example 7-15 brings everything from the past two chapters together into one pay‐
load. We interpret this data to mean that 1035508 has two other options in the event
that Georgetown fails: WhiteCenter or RainierValley. However, for the time window
we looked at, 1255230 is a sensor at risk because it communicated only with George
town during the time window we studied.

We visualize all at-risk sensors from Example 7-15 in Figure 7-15.

The map in Figure 7-15 visualizes a network failure scenario for the Georgetown
tower. The Georgetown tower is shown in red. All sensors that communicated only
with Georgetown during a particular time window of interest are shown in orange.
All sensors that successfully communicated with other nearby towers are shown in
green. The other towers are shown as blue diamonds.

Let’s step back a bit to understand where we are.

222 | Chapter 7: Using Trees in Production



Figure 7-15. Simulating failure and visualizing the at-risk sensors around the George
town tower; network edges are not shown for image clarity

Applying the Final Results of Our Complex Problem
What we have built toward is the start of a proactive conversation with the Edge
Energy team. We can take these results, the data, and its observable relationships
within the network to determine Edge Energy’s next step.

The orange sensors are not failures to report back to Edge Energy. They represent
sensors that are at risk. Examining the geo-location from Figure 7-13 reveals that
there are many nearby sensors and towers that each at-risk sensor can connect with.
Only through additional observations over time will Edge Energy be able to fully
understand any sensor’s individual risk in the network.

With distributed graph technology, we are helping Edge Energy monitor its network.
It can use the evolving structure of this graph’s topology to be proactive about differ‐
ent network failure scenarios.

Seeing the Forest for the Trees
Our work over Chapters 6 and 7 explored the hierarchical structure of time series
data from a self-organizing network of sensors so that we could solve a complex
problem about Edge Energy’s dynamic network. We stitched together our queries and

Seeing the Forest for the Trees | 223



understanding of the data to help Edge Energy with a complex problem: how to use
time series data in a graph to be proactive about network failures.

Who knew that traversing through trees could be a walk in a park?

If you haven’t already done so, we recommend you take all of this for a drive yourself.
The accompanying Studio Notebooks, found at https://oreil.ly/graph-book walk
through each of these queries, with a few more bonus items not mentioned in these
chapters.

So far in this book, we have covered the data models and queries for two of the most
popular graph models in distributed systems: neighborhoods and hierarchies. The
next chapter introduces another popular data pattern. We will be introducing and
using the third most popular data model and queries for distributed graph applica‐
tions: network paths.

224 | Chapter 7: Using Trees in Production

https://oreil.ly/graph-book


1 Kelvin Lawrence, Practical Gremlin: An Apache TinkerPop Tutorial, January 6, 2020, https://github.com/krla
wrence/graph.

CHAPTER 8

Finding Paths in Development

Pathfinding in graph data is the next most popular use of graph technology, after
neighborhood retrieval and unbounded hierarchies.

In addition to interviewing graph users around the world for this book, we also spent
a significant amount of time working with them. More often than not, our working
sessions centered on finding unknown paths within graph data.

During one of those working sessions, we were training a team on popular pathfind‐
ing techniques. We were using a graph of flight paths between airports to reason
about flight patterns between cities.1 We started our exercise with the two most popu‐
lar questions about air travel: how many direct connections are there from this spe‐
cific airport? And how many airports are reachable within two flights?

The troubleshooting discussion during the workshop led me to question how people
use path information to make an informed decision.

One particularly interesting implication is related to trust.

How do you decide if you trust somebody? You trust your friends. And you probably
trust friends of your friends more than you trust a random stranger. Why is that?

It is your trust in different paths between you and something else that motivates and
informs your preferences.

225

https://github.com/krlawrence/graph
https://github.com/krlawrence/graph


Chapter Preview: Quantifying Trust in Networks
There are four main sections of this chapter.

We’ll first cover some more examples of how we all use paths to quantify trust. Then
we’ll start with an overview of the required concepts from mathematics and computer
science for working with paths in graph data. After that, we’ll set up this chapter’s
example, in which we’ll be working with, querying, and finding paths throughout the
Bitcoin trust network to answer the fundamental question: how much should you
trust someone before you interact with them? The final section of this chapter applies
path queries to the Bitcoin trust network. We will start with exploring and under‐
standing trust within the data. Then we’ll show you how to use path queries to inform
a decision about whether to trust a particular Bitcoin wallet.

We’ll conclude the chapter with a mathematical quantification of trust that leads to a
problem we’ll solve in the next chapter.

Thinking About Trust: Three Examples
The theme of using data to quantify trust extends beyond the air travel example pre‐
viously mentioned. The correlation between trust and paths in graph data applies to
almost all of the path applications we work on with our customers around the world.

We have seen this in how people use social media, in how detectives build criminal
cases, and in logistics optimizations.

How Much Do You Trust That Open Invitation?
Think about the social media platform that you use most regularly.

How do you determine whether you are going to accept that connection, follower, or
friend request?

If you are like most people, you undertake a very common process for new connec‐
tion requests. Typically, you first look at the shared connections between you and the
potential new friend, connection, or follower. Figure 8-1 offers a graph of the possible
connections you might look for.

You likely ask yourself, “How many friends do I have in common with the person?” Is
it 3 shared friends or 30? Then you look at the quality of those shared connections.
Are any of your closest friends or family members in the list of shared connections?
Are your shared connections all from a specific point in your life, like a particular job
or school?

226 | Chapter 8: Finding Paths in Development



Your analysis consists of walking through the quantity and quality of your shared
connections. You are using the paths between you and the new connection to contex‐
tualize and inform how you know that person. Ultimately, it is your trust in those
paths that leads you to accept or reject that new connection.

Figure 8-1. An example of seeing paths between you and an open invitation on social
media

Accepting a new connection on social media starts with your shortest path and then
naturally evolves into the quality and context of those paths.

Social media helps us quantify how much we trust anyone new. We use our shared
connections to construct a story about how we know someone and therefore whether
we trust them.

It may be something that we now do naturally every time we engage with our net‐
works. But this isn’t the first use of this technique. Investigators have been using trus‐
ted sources to create connections between two previously disconnected individuals
for a long time.

How Defensible Is an Investigator’s Story?
The long history of criminal investigations, together with rising volumes of data and
emerging patterns of graph technology, serves as the perfect environment for quanti‐
fying trust in relationships across data.

A detective’s work is to pull together sources of information to understand how two
individuals are connected. Detectives obtain access to records by subpoenaing data
sources related to the case. Then investigators unify the data sources and directly
search for unknown connections within their open case. Figure 8-2 shows a graph of
some of these data sources. The figure depicts what we came up with for a detective’s
story, but you should think about this conceptually, too.

Thinking About Trust: Three Examples | 227



Figure 8-2. An example of analyzing paths to inform an investigation into a suspicious
person

Drawing correlations about the connections between two individuals in a criminal
investigation uses paths through data to tell stories about what happened. The investi‐
gators are reporting information governed by law; they have to trust the quality of the
connections that construct the story.

On a less serious scale, you do the same type of investigations when you make a deci‐
sion regarding your personal flight schedule. You make decisions about your air
travel based on the context and quality of the route you purchase in the same way
investigators derive conclusions about a case.

Let’s look at a third example of using paths in networks to quantify trust.

How Do Companies Model Package Delivery?
A logistics company might seek to minimize costs and time along its delivery routes.
As part of that minimization, it may consider the number of times a package has to be
transferred between the warehouse and your front door. Fewer transfers minimizes
the number of chances for a package to be lost or misplaced. We drew a graph that
represents this network in Figure 8-3.

228 | Chapter 8: Finding Paths in Development



Figure 8-3. An example of analyzing paths to determine an optimal route for a logistics
company

Figure 8-3 depicts how a package travels from a warehouse to your home. You see
three potential paths, each with different combinations of length and types of trans‐
fer. Depending on a multitude of factors, one path in our logistics network may be
more trusted than another.

For example, if you are someone who watches your package’s path, you also feel the
effect of route optimization for shipping. The more stops you see your package take,
the lower your trust in its on-time arrival.

Route optimization is one of the most popular uses of graphs in computer science.
Whether you are making decisions for personal travel or waiting for a package, the
most trusted solutions seek the shortest path through the data.

It is the trust in the path between the source and the destination that matters.

Quantifying trust between two concepts through understanding shared relationships
is (probably) the most relatable and approachable application of distributed graph
technology today.

Fundamental Concepts About Paths
Pathfinding queries are popular uses of graph technology when you do not know
exactly how to walk between vertices in your graph.

However, discovering paths throughout graph structure may become a double-edged
sword: on the one hand, pathfinding with graph technology will provide you with

Fundamental Concepts About Paths | 229



short and elegant solutions; on the other hand, naive pathfinding queries may quickly
get out of control.

Pathfinding questions are simple to ask but expensive to compute. This is where
things can get out of hand very quickly.

Let’s start by walking through the fundamental problem definitions for discovering
paths in graph structure.

Shortest Paths
In this chapter, we will introduce shortest paths according to a path’s distance.

Recall from Chapter 2 the definition of distance as the smallest number of edges it
takes to walk from one vertex to another. The shortest path problem is to find the path
with the smallest distance, or shortest walk, from one vertex to another in your graph.
Here are the four terms and their definitions that we will be applying throughout the
next two chapters.

Path
A path in a graph is a sequence of consecutive edges in a graph.

Length
The length of a path is the number of edges in the path.

Shortest path
The shortest path between two vertices is the path that connects the two vertices
and has the shortest length or distance.

Distance
The distance between two vertices in a graph is the number of edges in a shortest
path.

In Figure 8-4, there are three ways to walk from A to D:

1. A → D
2. A → C → D
3. A → B → C → D

The shortest path is the path with the smallest distance. That is the path from A to D,
which has a distance of 1. The other paths have distances of 2 and 3, respectively.

230 | Chapter 8: Finding Paths in Development



Figure 8-4. An example of the shortest path from A to D

There are three types of shortest path problems:

Shortest path
The goal of a shortest path problem is to discover the smallest distance walk from
A to B.

Single-source shortest path
The goal of a single-source shortest path problem is to discover the smallest-
distance walk from A to all other vertices in the graph.

All-pairs shortest path
The goal of an all-pairs shortest path problem is to discover the smallest-distance
walk between any two vertices in the graph.

These definitions give us a classification of the three types of path‐
finding problems that you may have run into or will run into. This
chapter focuses on solutions to the first type of problem: finding
the shortest path between two known points.

Any solution to a path problem relies on understanding how to procedurally walk
through graph data. Let’s dig into depth-first search (DFS) and breadth-first search
(BFS), two fundamental techniques for finding shortest paths.

Depth-first search
Depth-first search is an algorithm for traversing graph data structures. It explores
a path as deep as possible along each branch before backtracking.

Fundamental Concepts About Paths | 231



Breadth-First Search
Breadth-first search is an algorithm for traversing graph data structures. It
explores all of the neighbor vertices at the present depth prior to moving on to
the vertices at the next depth level.

You may be wondering: “Why do we need to go into DFS versus BFS?”

First, most engineers start their research about pathfinding by searching for informa‐
tion on a certain pathfinding algorithm. To us, that is a backwards approach. Second,
because paths are so natural to understand, it is easy to confuse the solution with the
underlying problem.

You first need to understand which path problem you are trying to solve before you
apply a certain algorithm.

Depth-First Search and Breadth-First Search
Depth-first search and breadth-first search are two of the most popular ways to illus‐
trate procedural visitation of graph-structured data. Diving deep into understanding
each technique gives you the foundation you need to explore the world of pathfind‐
ing algorithms, because at some level, all other solutions to pathfinding problems
build upon these two techniques.

The difference between the two approaches is easy to understand. Depth-first search
prioritizes exploring one path as deeply as you can before returning to a different
path. Breadth-first search prioritizes exploring all paths up to a certain distance
before moving deeper into the data.

Let’s take a look at these differences in Figure 8-5. As you walk through the figure, the
main idea is to consider the order in which a vertex is visited for each process; we call
this the visited set. We numerically label each vertex in Figure 8-5 with the order in
which it is visited (or reached) by each algorithm.

For each graph in Figure 8-5, the goal is to walk procedurally from the starting vertex
at the top to the end. The graph on the left shows the order in which every vertex is
visited according to DFS. Here, you see that each branch is explored until its end
before you return back to the top to select a different path. The graph on the right
shows the order in which every vertex is visited according to BFS. Here, you see that
each level or neighborhood is fully explored before you move deeper into the graph.

232 | Chapter 8: Finding Paths in Development



Figure 8-5. Illustrating the visited set for the two most common graph-searching
algorithms

The implementation details between DFS and BFS come down to which data struc‐
ture you use. DFS uses a last in, first out (LIFO) stack. You can remember this by vis‐
ualizing a stack. Stacks are typically thought of as vertical structures, just like how
DFS explores data deeply before going wide. BFS uses a first in, first out (FIFO)
queue. You can remember this by visualizing a queue. Queues are typically thought of
as horizontal structures, just like how BFS explores widely before going deep.

However long it takes you to think like a graph, it is vital that you understand the
runtime and overhead required to process your data. So keep practicing how to pro‐
cedurally think through how much data you need to visit during a traversal. From
there, you can quantify an expectation for how long a traversal or algorithm will run
or the overhead it requires for your data.

Learning to See Application Features as Different Path Problems
Think about the last time you used LinkedIn. You likely opened the LinkedIn applica‐
tion to search for someone else. When you found candidates, you received a metric
indicating how closely connected you were to each person in your search results. You
knew right away whether someone was a first-, second-, or third-degree connection.

Now think like an engineer working for LinkedIn.

In this scenario, you are designing the connected badge feature that you just used. It
is a requirement that any user of LinkedIn knows the distance from themselves to

Fundamental Concepts About Paths | 233



anyone else when they search. From there, you and your engineering team have a
long list of approaches to consider.

Do you precalculate all distance values for the connected badge by solving the all-
pairs shortest path problem for your graph? If you do, what happens when new con‐
nections are added to or removed from LinkedIn’s network?

What are the end user’s expectations for knowing their connectedness to another per‐
son? What requirements can you relax in order to prioritize speed of delivering the
information to the end user?

Though presented in the context of pathfinding at LinkedIn, all of these questions are
common considerations for any team wanting to use path distance in an application.

To answer any of those questions about your application’s design, you need to under‐
stand the performance implications of processing graph-structured data. And the
fundamental approach to walking through graph-structured data to solve problems at
LinkedIn scale builds procedures off of BFS or DFS.

We will be using these fundamental techniques in the coming sections as we explore
the example data and find paths of trust throughout it. To that end, let’s introduce the
data for this chapter’s example and apply shortest paths to our sample problem.

Finding Paths in a Trust Network
Distance between concepts quantifies trust.

To bring that axiom to life, our running example from now until the end of Chapter 9
dives into the world of Bitcoin. Exploring a network of trust between Bitcoin traders
creates an interesting intersection between paths in graph data and trust. Ironically,
the advent of Bitcoin centers on a distrust of centralized institutions.

In this section, we will introduce the data, walk through a brief primer on Bitcoin ter‐
minology, and develop our data model.

Source Data
We will be exploring a network of people who trade Bitcoin on the Bitcoin OTC
(Over The Counter) Marketplace. The Bitcoin OTC Marketplace allows its members
to rate how much they trust other members, and those ratings form who-trusts-
whom networks, which we will be using in the dataset. These ratings are given on a
scale of [–10, 10]. You will see the ratings in the details to come, but we won’t use

234 | Chapter 8: Finding Paths in Development



2 Kumar, Srijan, et al. “Edge Weight Prediction in Weighted Signed Networks,” in 2016 IEEE 16th International
Conference on Data Mining (ICDM), Barcelona, Spain, December 12–15, 2016 (Piscataway, NJ: Institute of
Electrical and Electronics Engineers, 2017), 221–30.

3 Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and V.S. Subrahmanian, “REV2:
Fraudulent User Prediction in Rating Platforms,” in WSM ’18: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining , Marina del Rey, California, February 5–9, 2018 (New York:
ACM, 2018), 333–41.

them in our queries until Chapter 9. The data comes from the research work of Srijan
Kumar et al. and can be found on the Stanford Network Analysis Platform.2 3

Stanford Network Analysis Platform (SNAP) is a general-purpose
network analysis and graph mining library.

Each line in the dataset has one rating, sorted by time, with the following format:

SOURCE, TARGET, RATING, TIME

The meaning for each piece of the data is as follows:

Source
The vertex ID of the rater

Target
The vertex ID of the ratee

Rating
The source’s rating for the target, ranging from –10 to +10 in steps of 1

Time
The time of the rating, measured as seconds since epoch

Let’s look at the first five lines of the data in Example 8-1.

Example 8-1.

$ head -5 soc-sign-Bitcoinotc.csv
6,2,4,1289241911.72836
6,5,2,1289241941.53378
1,15,1,1289243140.39049
4,3,7,1289245277.36975
13,16,8,1289254254.44746

Let’s examine the first line of data from Example 8-1: 6,2,4,1289241911.72836. This
means that the person with ID 6 trusts the person with ID 2 a total of 4. This rating

Finding Paths in a Trust Network | 235

https://oreil.ly/qaDcg


was captured at 1289241911.72836 epoch time, or Monday, November 8, 2010, at
13:45 GMT.

The original source data has time in epoch. The data that accompa‐
nies this book uses the ISO 8601 standard because we converted
the timestamps for ease of understanding in our examples. For
example, 1289241911.72836 in epoch time converts to
2010-11-08T13:45:11.728360Z in the ISO 8601 standard.

Before we can build out interesting queries and a data model, let’s take a tour of the
world of Bitcoin terminology.

A Brief Primer on Bitcoin Terminology
Bitcoin is a cryptocurrency, which is used as a decentralized digital currency, mean‐
ing there is no central bank or institution that controls its value. Instead, Bitcoin is
exchanged on a peer-to-peer network.

Each bitcoin is basically a computer file stored in a digital wallet application on a
smartphone or computer. People can send whole bitcoins or fractions thereof to your
digital wallet, and you can send bitcoins to other people. Every transaction is recor‐
ded in a public list called the blockchain.

Address
An address is a Bitcoin public key to which transactions can be sent.

Wallet
A wallet is a collection of private keys that correspond to addresses.

In our data, we are working with what we can observe on the blockchain. We can
observe the exchange of bitcoins between two people. We say you send bitcoins to or
receive bitcoins from an address. You encrypt, export, back up, and import your wal‐
let. A wallet can have multiple private keys that correspond to addresses.

From here, we are able to define a schema to use in development for our example.

Creating Our Development Schema
Though the sample data shows integers, real Bitcoin addresses actually are alphanu‐
meric strings with up to 34 characters. Therefore, we will be using the Text data type
in our graph schema for the addresses.

The data model we will need is quite simple. We have a list of addresses that rated
other addresses. An address can rate another address many times; we would like to
capture each rating by its unique rating value.

236 | Chapter 8: Finding Paths in Development



We talk about the data with the phrase “this address rated that address.” Applying our
data modeling tips gives us one vertex label, Address, and one edge label, rated.
Figure 8-6 illustrates the conceptual model for our example.

Figure 8-6. The conceptual model of our graph data

Using the GSL (graph schema language from Chapter 2), we translate the conceptual
model from Figure 8-6 into the schema code in Example 8-2.

Example 8-2.

schema.vertexLabel("Address").
       ifNotExists().
       partitionBy("public_key", Text).
       create();

schema.edgeLabel("rated").
       ifNotExists().
       from("Address").
       to("Address").
       clusterBy("trust", Int, Desc).
       property("datetime", Text).
       create()

Following our setup from Chapter 4, we are again using Text as the type for time to
make it easier to teach concepts in our upcoming examples. We are using Text for
time because we will be using the ISO 8601 standard format stored as text: YYYY-MM-
DD’T’hh:mm:ss’Z’, where 2016-01-01T00:00:00.000000Z represents the very begin‐
ning of January 2016.

Once we have created our graph schema, we are ready to load data.

Loading Data
We did some basic ETL (extract-transform-load) on soc-sign-Bitcoinotc.csv to
create two separate files: Address.csv and rated.csv. This work was required to
translate the datetime data from epoch into ISO 8601 standard so that the data was
ready to be loaded into DataStax Graph.

Finding Paths in a Trust Network | 237



4 See the DataStax Bulk Loader Documentation at https://docs.datastax.com/en/dsbulk/doc/dsbulk/reference/sche
maOptions.html#schemaOptions__schemaMapping.

To get an idea of our data, let’s take a look at the top five lines of rated.csv in
Table 8-1. As before, we set up our csv file to have a header. The header line needs to
match the names of the properties from your DataStax Graph schema definition in
Example 8-2. You can also define a mapping between your csv file and database
schema when using the loading tool.4

Table 8-1. The first five lines of data from the file rated.csv

out_public_key in_public_key datetime trust
1128 13 2016-01-24T20:12:03.757280 2

13 1128 2016-01-24T18:53:52.985710 1

2731 4897 2016-01-24T18:50:34.034020 5

2731 3901 2016-01-24T18:50:28.049490 5

From Table 8-1, we can get an idea of the type of data in our example. We will have
edges between two public keys, and those edges will have two properties: datetime
and trust. The edge represents a trust rating from one key to another that was cre‐
ated at a certain time and given a rating. For example, let’s examine one line of data:

|1128|13|2016-01-24T20:12:03.757280|2

This line means that the wallet with the key 1128 gave wallet 13 a trust rating of 2 on
January 24, 2016, at the time 20:12:04 (rounded).

The accompanying scripts use the same loading process that we have stepped through
a few times now. If you would like to see the code, please head to the Chapter 8 data
directory within the book’s GitHub repository for the data and loading scripts for
these examples.

Let’s do some basic exploratory queries to ensure that we understand our data and
that it loaded correctly.

Exploring Communities of Trust
The exploration exercise in DataStax Studio observes communities of trust within the
data.

We start by confirming that the correct number of vertices and edges have been
loaded into our graph. Example 8-3 starts by counting the total number of vertices
loaded into DataStax Graph to compare it to the SNAP dataset.

238 | Chapter 8: Finding Paths in Development

https://docs.datastax.com/en/dsbulk/doc/dsbulk/reference/schemaOptions.html#schemaOptions__schemaMapping
https://docs.datastax.com/en/dsbulk/doc/dsbulk/reference/schemaOptions.html#schemaOptions__schemaMapping
https://oreil.ly/OBYdY
https://oreil.ly/OBYdY


Example 8-3.

dev.V().hasLabel("Address").count()

Example 8-3 returns “5881,” which matches the total number of unique public keys
loaded from the SNAP dataset: 5,881. Next, Example 8-4 counts the total number of
edges loaded into DataStax Graph to compare it to the SNAP dataset.

Example 8-4.

dev.E().hasLabel("rated").count()

Example 8-4 returns “35592,” confirming the total number of unique ratings from the
SNAP dataset: 35,592.

Let’s look at a subgraph of trust communities in Figure 8-7, which shows the second
neighborhood from a starting address.

Figure 8-7. Visualizing a community of trust from a starting public key

DataStax Studio uses modularity maximization via the Louvain Community Detec‐
tion Algorithm to assign colors to the subgraph within the Studio client application.

Finding Paths in a Trust Network | 239



Figure 8-7 displays the second neighborhood from a single starting vertex. We turned
on DataStax Studio’s graph visualization option to display a graph view of the results
and configured the visualization to show community detection within this subgraph.

As we show in Figure 8-7, exploring graph data can be very fun. By creating a simple
schema and using bulk loading tools, we hope you were able to follow along from
schema creation to data loading and graph visualizations in a matter of minutes.

From here, we want to move away from data exploration and into defining our quer‐
ies. Our objective is to quantify trust between two wallets by finding the shortest path
from one public key to another in this dataset.

Understanding Traversals with Our Bitcoin Trust Network
Our main objective is to find a good pair of addresses that we’ll use in our pathfind‐
ing examples in the next section. For the first address in our pair, we cheated a bit. We
just randomly selected a starting address: public_key: 1094. The interesting work in
this section queries the neighborhoods around 1094 to find a good candidate for
pathfinding queries. For our purposes, we will be looking for an address that has not
previously transacted with 1094 but has many shared connections.

We are constructing a pair of vertices so that we can validate our longer queries later.
We admit that this makes our example feel concocted, but we are weaving in practices
of test-driven development to illustrate how to test a new Gremlin query for valid and
expected results.

Let’s start by identifying the addresses that 1094 has previously rated.

Which Addresses Are in the First Neighborhood?
The addresses in the first neighborhood of 1094 are the same as the addresses that
1094 has previously rated. Example 8-5 reviews how to explore the first neighbor‐
hood in Gremlin:

Example 8-5.

dev.V().has("Address", "public_key", "1094").
    out("rated").
    values("public_key")

There are 31 unique addresses in the results of Example 8-5. The first 5 of them are:

"1053", "1173", "1237", "1242", "1268",...

The 31 addresses in the first neighborhood would not be good candidates for our
example because they have a distance of 1 from 1094, like what you see in Figure 8-8.

240 | Chapter 8: Finding Paths in Development



Let’s move into the second neighborhood.

Which Addresses Are in the Second Neighborhood?
From the first neighborhood, we need to walk out one more edge to reach the second
neighborhood. Example 8-6 shows how to walk to the second neighborhood in
Gremlin.

Figure 8-8. Visualizing some of the addresses in the first neighborhood (a star graph) of
1094

Example 8-6.

dev.V().has("Address", "public_key", "1094").
    out("rated").
    out("rated").
    dedup().      // remove duplicates to get the list of unique neighbors
    values("public_key")

There are 613 unique addresses. The first 5 are:

"1053", "1173", "1162", "1334", "1241", ...

You may be wondering why we needed the dedup() step in Example 8-6. We have to
use dedup() because we want the unique set of addresses in the second neighbor‐

Understanding Traversals with Our Bitcoin Trust Network | 241



hood. Without dedup(), the query returns 876 results; those additional 263 results
represent multiple ways to walk out two edges from 1094.

To see this, consider Figure 8-9.

Figure 8-9. Showing why you need to remove duplicates from the traversal stream

The address with public_key 1334 has two different ways to reach public_key
1094: via the 1053 or the 1173 vertex. Therefore, public_key 1334 will be listed at
least twice in the second neighborhood of 1094. Using dedup() removes duplicate
objects in the traversal stream. For Example 8-6, it takes all observations of 1334 and
reduces them to just 1 in the result set.

Using dedup() shows how we arrived at a result set size of 613 instead of 876.

What we really want for our example, however, is an address that is in the second
neighborhood but not the first. Let’s take a look at how we can find that set of objects
in Gremlin.

Which Addresses Are in the Second Neighborhood, but Not the First?
Before we dive into the query, let’s think about what we are asking for here. To see
that, let’s go back to our sample graph data that shows part of the second neighbor‐
hood of 1094, as seen in Figure 8-10.

242 | Chapter 8: Finding Paths in Development



Figure 8-10. An example of how elements from the first neighborhood of 1094 can also
belong to the second neighborhood of 1094

Figure 8-10 shows how vertices 1053 and 1173 are members of both the first and the
second neighborhood of 1094. Our original question is looking for a good example
that is not directly connected to 1094. We need to eliminate vertices such as 1053 and
1173 from our result set.

In Gremlin, we can use aggregate("x") step to fill an object, named x in this exam‐
ple. Then we can eliminate the unwanted vertices from the result set with the
where(without("x")) pattern. Let’s see this in action in Example 8-7.

Example 8-7.

1 dev.V().has("Address", "public_key", "1094").aggregate("x").
2       out("rated").aggregate("x").
3       out("rated").
4       dedup().
5         where(without("x")).
6       values("public_key")

The result set for Example 8-7 has 590 unique elements. The first 5 are:

"628", "1905", "1013", "1337", "3062"...

Let’s walk through Example 8-7. On line 1, we query for 1094 and initialize an object,
x, with that vertex. On line 2, we traverse to the first neighborhood and add all of
those vertices into x. Then we walk out to the second neighborhood on line 3.

Understanding Traversals with Our Bitcoin Trust Network | 243



Let’s talk in detail about what is happening between lines 4 and 5 in Example 8-7. The
use of dedup() on line 4 forces all traversers to complete their work before moving to
line 5. In this case, we are waiting for all traversers to reach the second neighborhood
away from 1094 before we continue. Then on line 5, we apply a filter with the
where(without("x")) pattern. Line 5 is essentially asking every traverser in the pipe‐
line, “Are you in the set x?” If a vertex is in x, it is removed from the pipeline. If not,
the traverser is allowed to continue.

If you have a strong background in relational systems, Example 8-7
is very similar to performing a right outer self join on the address
table.

With Example 8-7 in mind, let’s take a side tour into the differences between lazy and
eager evaluation in the Gremlin query language. We need to dig into the evaluation
strategies of the Gremlin query language because they change the behavior of your
traversal, which in turn can produce unexpected query results.

We are about to go really deep into functional programming. If you
don’t fully understand the next section, it is OK. You just need to
get the big-picture point: that barrier steps affect BFS-like and
DFS-like behavior in pathfinding with Gremlin.

Evaluation Strategies with the Gremlin Query Language
Gremlin is primarily a lazy stream-processing language. This means that Gremlin
tries to process any traversers all the way through the traversal pipeline before getting
more data from the start of the traversal. This is different from an eager evaluation
strategy, which does the work right away before moving on to the next step.

Lazy evaluation
Lazy evaluation delays the evaluation of an expression until its value is needed.

Eager evaluation
Eager evaluation evaluates an expression as soon as it is bound to a variable.

There are numerous situations in which the Gremlin language cannot use lazy
evaluation.

We are talking about this concept now because we have been using eager evaluation
in our recent traversals with the dedup() and aggregate() steps.

244 | Chapter 8: Finding Paths in Development



In your daily life, you may choose to perform a task with either
evaluation strategy. You probably use eager evaluation when you
are cooking because you prepare each ingredient of your meal and
then assemble individual plates. Contrast this with creating plate-
sized portions that you cook individually from beginning to end.

In Gremlin, the key to knowing when a traversal changes between lazy and eager
evaluation is to recognize the barrier steps. When a barrier step exists, a Gremlin tra‐
versal changes from lazy to eager evaluation.

Barrier steps in Gremlin
The definition of a barrier step in the Gremlin query language is:

Barrier step
A barrier step is a function that turns the lazy traversal pipeline into a bulk-
synchronous pipeline.

We want to make this distinction about barrier steps because the Gremlin query lan‐
guage mixes the use of lazy evaluation strategies and eager evaluation strategies when
there are barrier steps.

Barrier steps change the behavior of a query to operate like breadth-first search or
depth-first search.

Examples of barrier steps used in this book are dedup, aggregate, count, order,
group, groupCount, cap, iterate, and fold.

One way to think about these concepts together is that barrier steps force a pipeline
to execute like breadth-first search. That is, barrier steps force every traverser to wait
until all other traversers in the pipeline have completed the same set of work. After all
traversers complete the work up to a barrier step, they can continue.

The queries we demonstrate in this book aim to teach the common patterns found in
real-time applications. As such, we are mixing BFS and DFS behavior as we write our
queries.

We will apply the connection between barrier steps and BFS in a later example to
guarantee shortest paths in our queries.

Pick a Random Address to Use for Our Example
Previously, we successfully found the vertices that are in the second neighborhood,
but not the first. Now let’s use the sample() step, as demonstrated in Example 8-8, to
randomly select one of them to use for the rest of our queries.

Understanding Traversals with Our Bitcoin Trust Network | 245



Example 8-8.

dev.V().has("Address", "public_key", "1094").aggregate("first_neighborhood").
    out("rated").aggregate("first_neighborhood").
    out("rated").
    dedup().
      where(neq("first_neighborhood")).
    values("public_key").
    sample(1)

The result is:

"1337"

Believe it or not, 1337 was the first public_key we randomly sampled for the rest of
our pathfinding examples. We are going to take that as a good omen and go with it.

Now we have two addresses: 1094 and 1337. Let’s use them to show how to find paths
between them with Gremlin.

Shortest Path Queries
As we mentioned earlier, we selected this dataset and example to illustrate the power
of using paths to solve complex problems. Distance between concepts or people pro‐
vides context and meaning for assessing how related they are and whether you can
trust them.

For the rest of these exercises, we want you to imagine you have joined a Bitcoin mar‐
ketplace, specifically the Bitcoin OTC. When you joined, you received the public key
1094. Think about your first transaction on that marketplace with a member who has
the public key of 1337.

How much trust do you have in the other address?

Quantifying your trust in another entity with path analysis is the complex question
we are going to determine in the next series of exercises.

The upcoming example has five main sections.

The first section begins with finding paths of fixed lengths between our example
addresses. We will build upon the queries from the first section to find paths of any
length in the second section. The second section illustrates a common progression
through applying pathfinding techniques, but it purposefully leads to an error.

The third section explains how we can resolve our error by revisiting lazy and eager
evaluation with Gremlin. The fourth section explores understanding path weight for
the shortest paths in our example data.

246 | Chapter 8: Finding Paths in Development



We will conclude with a discussion of how to interpret path length and context for
quantifying trust to our question. This sets up how we will transform this dataset to
find weighted shortest paths in Chapter 9.

Finding Paths of a Fixed Length
We are starting with finding paths of a fixed length by exploring neighborhoods so
that we can validate the results that show up in our shortest path queries at the end of
this section.

To get into the mindset of these walks, consider what you would want to know before
you accepted someone’s invitation to exchange bitcoins.

If you were about to transact with a new address on a Bitcoin OTC marketplace, you
would likely want to know whether you can trust the other person. The place to start
in quantifying your trust in 1337 is to find out whether you have shared connections.
Finding shared connections in this dataset is the same as looking for addresses you
rated that also rated 1337, or vice versa. This type of shared connection doesn’t care
about the direction of the rating; we just want to see what shared addresses we have
according to who rated whom.

One way to do this is to count the number of ways you can reach 1337 in your second
neighborhood. Let’s do this query in Example 8-9.

Example 8-9.

dev.V().has("Address", "public_key", "1094").as("start").
        both("rated").
        both("rated").
        has("Address", "public_key", "1337").
        count()

The result of Example 8-9 is 4. This means that within your second neighborhood,
there are four ways to walk from your address, 1094, to 1337. Let’s look at the path
information to understand those walks.

Recalling our discussion from Chapter 6, the path() step will give you access to each
traverser’s full history. Then you want to look at the results according to two features:
(1) the vertices visited along the way and (2) the path’s length. Let’s do this in
Example 8-10 and then walk through the process and results.

Example 8-10.

1 dev.V().has("Address", "public_key", "1094").
2         both("rated").
3         both("rated").
4         has("Address", "public_key", "1337").

Shortest Path Queries | 247



5         path().                                  // traverser's full path history
6           by("public_key").as("traverser_path"). // get each vertex's public key
7         count(local).as("total_vertices").       // count the elements in the path
8         select("traverser_path", "total_vertices")  // select the path information

Let’s step through the query in Example 8-10 before we look at the results in
Example 8-11.

Lines 1 through 3 in Example 8-10 walk to the second neighborhood from 1094. Line
4 considers only those walks that ended at 1337. Then we want to get the path infor‐
mation from each of the four traversers via the path() step on line 5. Line 6 mutates
the path objects to show only their public_key and stores a reference to it. Then on
line 7, we count the total number of objects within each path with count(local).
Here, the local scope asks to count the total number of objects within the path instead
of using the default global scope of count(), which would count the total number of
paths. On line 8, we select each path object alongside the total number of vertices
within each path.

The results are shown in Example 8-11.

Example 8-11.

{
  "traverser_path": { "labels": [[],[],[]],
                      "objects": ["1094", "1268", "1337"]},
  "total_vertices": "3"
},{
  "traverser_path": { "labels": [[],[],[]],
                      "objects": ["1094", "1268", "1337"]},
  "total_vertices": "3"
},{
  "traverser_path": { "labels": [[],[],[]],
                      "objects": ["1094", "1268", "1337"]},
  "total_vertices": "3"
},{
  "traverser_path": { "labels": [[],[],[]],
                      "objects": ["1094", "1268", "1337"]},
  "total_vertices": "3"
},

The path object has very useful information. We see that we only really share address
1268 in common. There are four paths because there were four different combina‐
tions of how 1094 or 1337 rated 1268. If you would like, you could confirm this for
yourself by inspecting the edges along the paths. But we are going to move on to the
next query.

It has been helpful to find any path in our second neighborhood to 1337.

248 | Chapter 8: Finding Paths in Development



However, let’s start looking deeper into the data and consider only one direction:
out(). Specifically, we want to know: how many outgoing paths to 1337 can we find
in our third neighborhood? Further, let’s simplify this query by using the
repeat().times(x) pattern to discover the paths in our third neighborhood in
Example 8-12.

Example 8-12.

1 dev.V().has("Address", "public_key", "1094").  // start at 1094
2        repeat(out("rated")).                   // walk out "rated" edges
3        times(3).                               // three times
4        has("Address", "public_key", "1337").   // until you reach 1337
5        path().                                 // get the path of each traverser
6          by("public_key").as("traverser_path").// for each path, get vertex's key
7        count(local).as("total_vertices").      // count the number of objects
8        select("traverser_path", "total_vertices") // select the path, length

The first three results are shown in Example 8-13.

Example 8-13.

{
  "traverser_path": { "labels": [[],[],[],[]],
                      "objects": ["1094","1268","35","1337"]},
  "total_vertices": "4"
},{
  "traverser_path": { "labels": [[],[],[],[]],
                      "objects": ["1094","280","35","1337"]},
  "total_vertices": "4"
},{
  "traverser_path": { "labels": [[],[],[],[]],
                      "objects": ["1094","1053","1268","1337"]},
  "total_vertices": "4"
},...

We can see some interesting paths from 1094 to 1337 in Example 8-13. The third
result shows that 1094 rated 1053, who rated 1268, who rated 1337. There are 11 total
outgoing paths in our third neighborhood from 1094 to 1337.

We can generalize the repeat().times(x) pattern to find paths of a known length.
However, our overarching goal is to find paths of any length to eventually discover
how to use Gremlin to discover shortest paths.

Shortest Path Queries | 249



Finding Paths of Any Length
Pathfinding queries are for discovering the relationships that connect two things in
your graph together. We want to discover both the quantity and the depth of the rela‐
tionships that exist in the data.

That is, instead of querying for paths of a known length, we want to find paths of any
length.

More often than not, we see engineers make the leap from paths of defined length to
paths of unbounded length with queries like what we have in Example 8-14. As you
see in Table 8-2, this is likely going to lead to an execution error.

Example 8-14.

1 dev.V().has("Address", "public_key", "1094").        // start at 1094
2         repeat(out("rated")).                        // walk out rated edges
3         until(has("Address", "public_key", "1337")). // WARNING: this is all-paths!
4         path().
5           by("public_key").as("traverser_path").
6         count(local).as("total_vertices").
7         select("traverser_path", "total_vertices")

If you ran Example 8-14 in DataStax Studio, you most likely saw the error shown in
Table 8-2:

Table 8-2. An example of a system error due to a traversal taking longer than 30 seconds

System error
Request evaluation exceeded the configured threshold of

realtime_evaluation_timeout at 30000 ms for the request

Let’s walk through what is happening in Example 8-14 so that we can understand the
error from Table 8-2. Line 1 in Example 8-14 accesses the starting address, 1094.
Lines 2 and 3 apply the repeat().until() pattern. The repeat() step tells a traver‐
ser what it is supposed to do until the breaking condition from the until() step. We
have just asked our traversers to keep searching for any path that starts at 1094 and
ends at 1337. This is going to explore the entire connected graph for all paths that end
at 1337. This is why we get the timeout error in Table 8-2.

For our problem we do not want all paths. We want to find the shortest path. Let’s
connect some concepts together to try a different approach.

250 | Chapter 8: Finding Paths in Development



Connecting concepts: BFS and traversal strategies
Recall our discussion from “Evaluation Strategies with the Gremlin Query Language”
on page 244. We went through evaluation strategies, barrier steps, and thinking
through how breadth-first or depth-first searching applies to traversals.

We told you we were going to apply those facts to find shortest paths. Let’s do that
now.

We need to figure out whether our pathfinding traversal is using BFS or DFS. If it is
using BFS, then we can guarantee that the first traverser that satisfies the stopping
condition is the shortest path.

Thinking in Gremlin, traversals that are eagerly evaluated provide the behavior we
need to guarantee BFS behavior. The key to figuring out if your traversal uses eager
evaluation is to find out whether its execution strategy uses barrier steps.

Looking at our traversal from Example 8-14, the query did not use any of the barrier
steps we talked about before. What are we missing?

The definitive way to answer this for yourself is to inspect the explain() step to see
what traversal strategies are applied, as we have done in the query in Example 8-15.

Example 8-15.

g.V().has("Address", "public_key", "1094").
      repeat(out("rated").
      until(has("Address", "public_key", "1337")).
      explain()

==>Traversal Explanation

Original Traversal   [GraphStep(vertex,[]),
                      RepeatStep([VertexStep(OUT,vertex),
                      RepeatEndStep],until(),emit(false))]
...
Final Traversal      [TinkerGraphStep(vertex,[]),
                      VertexStep(OUT,vertex),
                      NoOpBarrierStep(),     // Note: Barrier Execution Strategy
                      VertexStep(OUT,vertex),
                      NoOpBarrierStep(),     // Note: Barrier Execution Strategy
                      VertexStep(OUT,vertex),
                      NoOpBarrierStep()]     // Note: Barrier Execution Strategy

The explain() step prints out the traversal explanation for your traversal. A traversal
explanation details how the traversal (prior to explain()) will be compiled given the
registered traversal strategies.

Shortest Path Queries | 251



Looking at Example 8-15, we see something very interesting: NoOpBarrierStep. The
presence of NoOpBarrierStep in the traversal explanation informs us that the traver‐
sal engine injects barrier steps with the repeat() step.

We use the information from Example 8-15 to know that the repeat().until() pat‐
tern uses barriers. This means it executes eagerly using breadth-first search.

With one small change to Example 8-14, we can apply this knowledge in
Example 8-16, which finds the single shortest path from 1094 to 1337.

Example 8-16.

1 dev.V().has("Address", "public_key", "1094").      // start at 1094
2       repeat(out("rated")).                        // walk out rated edges
3       until(has("Address", "public_key", "1337")). // until 1337
4       limit(1).            // BFS: the first traverser the shortest path
5       path().              // get the traverser's path information
6         by("public_key").as("traverser_path").    // get each vertex's public_key
7       count(local).as("total_vertices").          // count each path's length
8       select("traverser_path", "total_vertices")  // select the path information

The important line to understand in Example 8-16 is line 4. The limit(1) step passes
only one traverser into the remaining pipeline. Because the repeat().until() steps
are eagerly evaluated, we can guarantee that the first traverser to satisfy the stopping
condition is also the shortest path!

The path object for this traverser is:

{
  "traverser_path": { "labels": [[],[],[]],
                      "objects": ["1094", "1268", "1337"]},
  "total_vertices": "3"
}

This confirms what we already knew from the examples we did a while back: the
shortest path from 1094 to 1337 is through 1268. We spent so much time setting up
this example and walking through paths of fixed length so that when we got here, we
could confirm that the path we found was indeed the shortest.

Zooming back out a bit, let’s think about how we would want to apply this informa‐
tion to answer this section’s main question. We have discovered you have one address
in common: 1268. We also know that there are 11 ways we can find friends of friends
that you have in common with 1337, which is the same as saying there are 11 paths of
length 3 between you and 1337.

If you were really trying to make a decision about transacting with 1337, would you
have enough information? Would you trust this address?

252 | Chapter 8: Finding Paths in Development



Maybe you want to understand the types of ratings that were given on these paths.
Let’s look at three final queries to start to quantify trust from our edges onto our
paths.

Augmenting Our Paths with the Trust Scores
The next piece of information you likely want to consider is the trust ratings in the
data along all of these paths. To look at those, we will want to reformat the data struc‐
ture for our queries. Example 8-17 expands our shortest path query from
Example 8-16 in two ways. First, it applies our knowledge of BFS and Gremlin query
processing to find the top 15 shortest paths from 1094 to 1337. Then, it reformats the
results using the project() step. Let’s take a look at the query and its results.

Example 8-17.

1 dev.V().has("Address", "public_key", "1094").
2       repeat(out("rated")).
3       until(has("Address", "public_key", "1337")).
4       limit(15).  // BFS: return the first 15 shortest paths by length
5       project("path_information", "total_vertices").
6         by(path().by("public_key")).
7         by(path().count(local))

Example 8-18.

{
  "path_information": { "labels": [[],[],[]],
                        "objects": ["1094","1268","1337"]},
  "total_vertices": "3"
},{
  "path_information": { "labels": [[],[],[],[]],
                        "objects": ["1094","280","35","1337"]},
  "total_vertices": "4"
},{
  "path_information": { "labels": [[],[],[],[]],
                        "objects": ["1094","1268","35","1337"]},
  "total_vertices": "4"
},...

The main work of Example 8-17 is on lines 4 through 7. On line 4, we are taking only
the first 15 traversers that reach the stopping condition from line 3. These first 15 tra‐
versers are guaranteed to be the 15 shortest paths because of how Gremlin uses bar‐
rier steps to process graph data like breadth-first search.

Then, starting on line 5 of Example 8-17, you see how we are going to format our
results for the remaining queries in this chapter. We want to create a map with keys
and values. The keys in the map will be path_information and total_vertices. The

Shortest Path Queries | 253



by() modulator on line 6 fills in the path_information key with a formatted version
of the path() object from 1094 to 1337. The by() modulator on line 7 fills in the
total_vertices key with the public_key of each visited vertex on the path from
1094 to 1337.

Using sack() to aggregate trust ratings

Let’s add one more key to the map from Example 8-17. Let’s add up the trust values
on the rated edges along the way and add this key/value pair to our results set.
Adding up the trust values for each edge will represent the total trust of the path
from 1094 to 1337.

As you walk through graph data, we will need a way to aggregate information that we
process along the way. The sack() step in Gremlin gives us this ability.

You can think of the sack() step as giving your Gremlin traverser a backpack at the
start of its journey through the data. Along the way, you tell your traverser what to
add or remove from the backpack (sack). This is very useful for collecting values on
vertices or edges along the way and using them to make decisions or collect metrics.

For our paths, we want to add up the trust ratings from the edges. We will be giving
our traverser an empty sack to start and then augmenting its contents with the trust
ratings as it walks over edges. Figure 8-11 shows how this works conceptually.

Figure 8-11. Showing how a traverser moves from the start, 1094, through a path to the
end, 1337, and stores the trust ratings on edges in its sack along the way

In Figure 8-11, the traverser walks the shortest path from 1094 to 1337: a path of
length 2 via the 1268 vertex. We show how we can use the sack() object to collect
and aggregate the trust ratings from the edges during the traversal. The ending
sack() value for this path is 10.

254 | Chapter 8: Finding Paths in Development



There is a second path a traversal can explore in Figure 8-11. This longer path that
traverses through the 1053 vertex is shown in Figure 8-12.

The definitions for sack constructs in Gremlin are:

• A traverser can contain a local data structure called a sack.
• The sack() step is used to read and write sacks.
• Each sack of each traverser is initialized when using withSack().

Figure 8-12. Showing how a traverser moves from the start, 1094, through a different
path to the end, 1337, and stores the trust ratings on edges in its sack along the way

Revisiting our query, we can calculate the total trust for our 15 shortest paths. We
now know that we will use the sack() step to add up the trust ratings for each path.
We also want to add this data as a new key in our result payload. The key
total_trust will be our new key in the project() step. The value for total_trust
will be the sum of the edge weights along the path using the sack() step.

Let’s see how we do this in Gremlin in Example 8-19.

Example 8-19.

1 dev.withSack(0.0).       // initialize each traverser with a value of 0.0
2   V().
3   has("Address", "public_key", "1094").as("start").
4   repeat(outE("rated").  // walk out and stop on the "rated" edge
5          sack(sum).      // add to the traverser's sack
6            by("trust").  // the value from the property "trust"
7          inV()).         // leave the edge and walk to the incoming vertex
8   until(has("Address", "public_key", "1337")).  // repeat until 1337
9   limit(15).             // limit to the 15 shortest paths by length

Shortest Path Queries | 255



10  project("path_information", "vertices_plus_edges", "total_trust").  // a map
11     by(path().by("public_key").by("trust")).   // first value: path information
12     by(path().count(local)).                   // second value: path's length
13     by(sack())                                 // third value: path's trust score

Let’s step through Example 8-19. Line 1 shows how to initialize your traversal to use a
local data structure for each traverser in your query: withSack(0.0). The next section
to really dig into is lines 4 through 8. On line 4 and line 8, we see the expected
repeat()/until() pattern for walking through our graph data for pathfinding with
breadth-first search. Notice, however, that line 4 uses the outE() step. Using outE()
ensures that each traverser stops on the edge between two vertices. It is necessary to
stop on edges so we can collect the trust rating. Then on line 5, we tell the traverser to
add something into its sack via sack(sum). You use by() modulators to tell the sack
what you are adding into it. You find the by() modulator on line 8: by("trust"). The
pattern of sack(sum).by("trust") tells the traverser to collect the trust property
from its current object, which is an edge, and to add it to the value currently in its
sack.

Then we tell the traverser to move to the incoming vertex with inV() on line 7. The
stopping condition on line 8 asks a traverser to repeat this behavior until it reaches
1337. The first 15 traversers that meet this condition continue down into the
project() step on line 10. Line 10 formats our results into a hashmap. The first key
and value pair in the hashmap formats the path object to alternate from the vertex’s
public key and the edge’s trust value, respectively. The second key and value pair in
the hashmap counts the total number of objects in the path object. Because we visited
edges along the way at line 4, we will have both vertices and edges in our path object.
Therefore, we expect the total calculated on line 12 to be the sum of vertices and
edges along the way.

Last, line 13 in Example 8-19 tells each traverser to report its sack’s value as we read
its contents with sack(). The full table of results from Example 8-19 is shown in
Example 8-20.

Example 8-20.

{
  "path_information": {
       "labels": [[],[],[],[],[]],
       "objects": ["1094","9","1268","1","1337"]},
  "vertices_plus_edges": "5",
  "total_trust": "10.0"
},{
  "path_information": { "labels": [[],[],[],[],[],[],[]],
                      "objects": ["1094","4","1053","1","1268","1","1337"]},
  "vertices_plus_edges": "7",
  "total_trust": "6.0"

256 | Chapter 8: Finding Paths in Development



},{
  "path_information": { "labels": [[],[],[],[],[],[],[]],
                      "objects": ["1094","9","1268","1","35","9","1337"]},
  "vertices_plus_edges": "7",
  "total_trust": "19.0"
},...

It would be most interesting to look at the paths with the most trust. Let’s add some
sorting to the results from Example 8-19 to display our 15 shortest paths, sorted by
their total trust. After we have our 15 shortest paths and before we format them, we
just need to apply the sorting logic. You see this on lines 10 and 11 in Example 8-21.

Example 8-21.

1 dev.withSack(0.0).
2   V().
3   has("Address", "public_key", "1094").
4   repeat(outE("rated").
5          sack(sum).
6            by("trust").
7          inV()).
8   until(has("Address", "public_key", "1337")).
9   limit(15).
10  order().              // order all 15 paths
11    by(sack(), decr).   // according to each traverser's sack value, decreasing
12  project("path_information", "vertices_plus_edges", "total_trust").
13    by(path().by("public_key").by("trust")).
14    by(path().count(local)).
15    by(sack())

The sorting logic on lines 10 and 11 in Example 8-21 globally arranges, in decreasing
order, the 15 traversers in the pipeline according to the value within each traverser’s
sack. The first result is shown in Example 8-22.

Example 8-22.

{
  "path_information": { "labels": [[],[],[],[],[],[],[],[],[]],
                      "objects": ["1094","9","1268","10","1094","9","1268","1",
                         "1337"]},
  "vertices_plus_edges": "9",
  "total_trust": "29.0"
},...

Did you notice something unexpected in Example 8-22? The highest weighted path
has two cycles between 1094 and 1268. This type of path wouldn’t make sense in our
application because we are considering the ratings between two keys more than once.

Shortest Path Queries | 257



We introduced and used simplePath() in Chapter 6 to remove cycles; let’s add that
step here. Adding simplePath() adjusts our final query to find the 15 shortest paths
without cycles and then sorts the 15 paths by their aggregated trust score, in descend‐
ing order. Example 8-23 shows our final query, and Example 8-24 displays the results.

Example 8-23.

1 dev.withSack(0.0).
2   V().
3   has("Address", "public_key", "1094").
4   repeat(outE("rated").
5          sack(sum).
6            by("trust").
7          inV()
8          simplePath()).    // remove a traverser if there is a cycle in its path
9   until(has("Address", "public_key", "1337")).
10  limit(15).
11  order().
12    by(sack(), decr).
13  project("path_information", "vertices_plus_edges", "total_trust").
14    by(path().by("public_key").by("trust")).
15    by(path().count(local)).
16    by(sack())

Example 8-24 shows the top 15 shortest paths without cycles, sorted by their aggrega‐
ted trust score.

Example 8-24.

{
  "path_information": {"labels": [[],[],[],[],[],[],[],[],[]],
                       "objects": ["1094","10","64","10","104","3","35","9","1337"]},
  "vertices_plus_edges": "9",
  "total_trust": "32.0"
},{
  "path_information": {"labels": [[],[],[],[],[],[],[],[],[]],
                       "objects": ["1094","9","1268","2","1201","5","35","9","1337"]},
  "vertices_plus_edges": "9",
  "total_trust": "25.0"
},{
  "path_information": {"labels": [[],[],[],[],[],[],[],[],[]],
                       "objects": ["1094","3","280","8","35","9","1337"]},
  "vertices_plus_edges": "7",
  "total_trust": "20.0"
}...

The query in Example 8-23 brings together all of the path concepts to explore in
development. We use our knowledge of breadth-first search in Gremlin to find the 15
shortest paths and augment our results with each path’s weight. The top three highest

258 | Chapter 8: Finding Paths in Development



weighted paths are shown in Example 8-24. Our results show that the longer the path,
the higher its weight.

Are the results in Example 8-24 what you would want to use for determining whether
you trust address 1337?

You are likely shouting “No!” The results in Example 8-24 show that the paths with
the most trust value are also the longest paths. Longer walks through our data will
aggregate more trust ratings along the way and therefore are “more trusted.”

The structure of our data and pathfinding queries in development are not returning
results that make sense for an application.

You may see different results from Example 8-24 in your Studio
Notebook. This is because the top 15 paths include three paths of
length 4 (nine total objects: five vertices, four edges). There are
more than three paths of length 4; and the results will include the
first three that are discovered.

Our exploration in development has left us with two optimizations we need to
address for a production-quality query. First, we need a different way to understand
and use weights in making our decision about trust. The way that trust is repre‐
sented in the dataset now is not providing results that are meaningful to a user of this
data.

The second optimization we need is to find paths that are both short and with high
trust. In development, we discovered that our tools can find either shortest paths by
length or all paths. And it is too expensive to find all paths. We need a different
approach for shortest weighted paths for our production-quality queries.

We need to normalize the edge weights on this data so that we can properly find
shortest weighted paths. That is the theme and objective of the next chapter.

Do You Trust This Person?
We opened this chapter with an idea: the idea that humans naturally use distance
between concepts as a positive correlation to how much we trust the association
between those concepts.

To quantify our idea, we defined the shortest path problem, walked through the fun‐
damentals of searching through graph data, and applied those concepts with the
Gremlin query language. Then our development examples showed how using paths
to quantify trust in a network informs a decision about transacting on the Bitcoin
OTC network.

Shortest Path Queries | 259



However, we realized that we cannot simply add up trust scores as a measure of trust
in this network to quantify our most valuable paths. To discover the most trusted
paths in our data, we need to introduce two concepts for production use of pathfind‐
ing: normalization and query optimizations.

Continue with us to the next chapter to learn how teams commonly evolve their
thinking to address a more complex problem in production: shortest weighted paths
in graph data.

260 | Chapter 8: Finding Paths in Development



CHAPTER 9

Finding Paths in Production

More often than not, the first concept we think about with paths is how many stops it
takes to get from the start to the finish. This was the topic for Chapter 8.

The next concept when working with paths through graphs is to evolve the idea of
distance. We do this by adding some type of weight or cost to steps along a path. We
refer to this type of problem as a minimum cost path or a shortest weighted path.

Shortest weighted paths are very popular optimization problems in computer science
and mathematics. These types of problems tend to be multifaceted, complex optimi‐
zation problems because they are trying to combine more than one source of infor‐
mation into a cost metric for minimization.

We saw an example of a weighted path problem at the end of Chapter 8. We tried to
find the most trusted path through our data by aggregating path weights. Because
high trust in our sample data is represented by higher values, this type of pathfinding
problem led to the discovery that higher trust paths are also longer paths through our
data. This is not what we wanted.

Instead, we need to understand how to use edge weights to find shortest paths.
Through the lenses of mathematics and computer science, we want to create a boun‐
ded minimum optimization problem.

In this sense, high trust is inversely correlated with path length. We want to find paths
that are simultaneously short and have high trust. This is the difficult duality we are
going to address and optimize in this chapter.

261



Chapter Preview: Understanding Weights, Distance,
and Pruning
There are three main sections in this chapter.

In the first section, we are going to formally define the shortest weighted path prob‐
lem and walk through the algorithm. Our pathfinding algorithm uses breadth-first
search to optimize pathfinding to find shortest weighted paths.

The second section introduces the edge weight normalization process. We will walk
through the general process of shifting and flipping our weights’ scale from “higher is
better” to “lower is better.” We will show the new weights we calculated for our sam‐
ple dataset, create a new edge, and reload the normalized trust scores for our
example.

The last section uses the A* algorithm on our normalized data. We will break down
writing A* in the Gremlin query language and run it on our example data to find the
shortest weighted paths between your public key 1094 and your open invite with
1337.

Though your journey through this book has been long, we hope you have high trust
in our upcoming examples. See? You are already correlating longer paths with higher
trust.

Weighted Paths and Search Algorithms
We have already tried to use edge weights in our pathfinding problems. We did this at
the end of Chapter 8 when we introduced the sack() step to aggregate trust ratings
across paths in the Bitcoin OTC trust network.

However, our process was inefficient because the tools we had did not solve the prob‐
lem we thought we were trying to solve. This section addresses two reasons our first
attempt didn’t work by teaching two new tools.

First, we will define the problem for shortest weighted paths and look at a few correct
examples. Then, we will introduce a new algorithm for finding solutions to shortest
weighted path problems, the A* search algorithm. You will see these tools later when
we build the A* search algorithm in Gremlin to find shortest weighted paths in the
normalized Bitcoin OTC network.

Let’s get started with a new problem definition.

262 | Chapter 9: Finding Paths in Production



Shortest Weighted Path Problem Definition
Recall that in Chapter 8 we defined shortest paths. As a refresher, the shortest path in
a graph is the fewest number of edges it takes to walk from one vertex to another in
the graph.

A weighted path uses properties from your graph data to aggregate and score a path’s
weighted distance from start to end. The shortest weighted path is the path with the
lowest score:

Shortest weighted path
The shortest weighted path discovers the path between two vertices in a graph
such that the total sum of the edges’ weights is the minimum.

Let’s use a concrete example; Figure 9-1 adds some weights to our example graph
from Figure 8-4.

Figure 9-1. A weighted graph with bolded edges to show the shortest weighted path from
A to D

Figure 9-1 uses bolded edges to illustrate the shortest weighted path from vertex A to
vertex D.

The total weight of the shortest weighted path from A to D is 6. Contrast this weight
with the shortest path in the graph. The shortest path in the graph is A → D and has a
weight of 10. This path is not the shortest weighted path because A → B → C → D has
a lower weight of 6.

With a new problem comes new approaches. In the small example in Figure 9-1, we
can quickly see the shortest path.

Weighted Paths and Search Algorithms | 263



For larger graphs, we need to fold in multiple optimizations. The only optimization
we have so far from BFS and DFS tracks the visited set of vertices so that we do not
repeat exploring the same space.

But we can be smarter when we are working with weighted graphs. Let’s delve into
shortest weighted paths in graph data.

Shortest Weighted Path Search Optimizations
A quick Google search on “graph path algorithms” returns an extensive list, including
A* (pronounced “A star”), Floyd-Warshall, and Dijkstra’s, to name a few. We are
zooming in on the optimizations that these algorithms apply to teach you the funda‐
mentals that apply to any approach. The costs and benefits of different searching
algorithms come from understanding how they reduce the search space with different
creative optimizations.

Different algorithms solve the shortest weighted path problem for graphs by applying
a few optimizations along the way. A graph search algorithm maintains a tree of paths
from the starting vertex and applies heuristics to decide whether a new edge should
be added into the working tree. At a high level, some of those optimizations include:

Lowest cost optimization
The lowest cost optimization excludes an edge if the edge’s destination is reacha‐
ble via a lower cost path.

Supernode avoidance
Supernode avoidance excludes a vertex if its degree would increase the search
space complexity over a threshold.

Global heuristic
A global heuristic excludes an edge if the edge’s weight causes the path’s total
weight to exceed a threshold.

There are a myriad of heuristics you can apply to optimize your
graph algorithm. Choosing good heuristics requires understanding
your data, its distributions, and the graph structures you want to
avoid during pathfinding.

The second optimization defined here notes that you could optimize your search
space by eliminating supernodes. Let’s take a brief side tour to define supernodes and
explain why you would want to use a heuristic to remove them from your search
space.

264 | Chapter 9: Finding Paths in Production



Supernodes in graphs
The idea of a supernode is that it is a vertex with an extremely high number of edges.
That is where the idea of super comes from; a supernode is a highly connected vertex
in your graph data.

Supernode
A supernode is a vertex with a disproportionately high degree.

For a direct example, think about Twitter’s social network. You want to mentally draw
out a graph of Twitter accounts in which the edges are who follows whom. A super‐
node is a vertex with a very high number of followers compared to the rest of the net‐
work. Most celebrities on Twitter are good examples of supernodes.

Fun fact: in the early days of building Apache Cassandra, the team
developed counters to track the number of followers for a Twitter
account. This was known as the Ashton Kutcher problem, as he
was the first to reach 1,000,000 followers on Twitter. The volume of
followers makes Ashton Kutcher’s account a supernode in the Twit‐
ter network.

As it relates to pathfinding, if you traverse into a supernode, you potentially add mil‐
lions of edges to your priority queue. This will blow up the computational cost of
your traversal due to the many new edges to consider for pathfinding.

To this end, let’s walk through some theoretical limitations with supernodes.

Theoretical limits of supernodes
In Apache Cassandra, a partition can contain, at most, two billion cells. An edge table
in DataStax Graph requires the primary keys for each endpoint vertex, therefore
requiring a minimum of two cells per edge. But to get unique edges, you need some
type of universally unique identifier (UUID) on the edge. Thus, the minimum num‐
ber of cells in an edge’s partition is three: two billion divided by three max cells when
you reach the uppermost limit of storing a supernode on disk.

That means that in DataStax Graph, a single vertex with 666,666,666 edges is one
edge away from hitting the limit on disk for the number of cells in an Apache Cassan‐
dra table. That’s ominous.

Regardless, you will hit a snag with processing supernodes in a traversal well before
you create one on disk. To see this, think back to the processing limitations we dis‐
covered in Chapter 6. We ran into processing limitations due to our graph’s branching
factor for relatively low degree vertices. It is safe to say that you are likely to be
troubleshooting the processing performance of supernodes well before you reach
limitations on disk.

Weighted Paths and Search Algorithms | 265



Our approach with supernodes in our upcoming implementation will be to eliminate
them entirely. Let’s outline how we will apply this technique, and a few more opti‐
mizations, in the next section.

Pseudocode for the search algorithm we will implement
Let’s first understand the pseudocode approach for the algorithm we are going to
build. We will implement a BFS algorithm in Gremlin with optimizations specific to
our dataset in a future section.

We are going to apply three optimizations to pathfinding in our weighted Bitcoin
OTC network:

• Lowest cost optimization excludes the edge if we have already found a shorter
path to the next vertex.

• Supernode avoidance excludes an edge if the destination vertex has too many
outgoing edges.

• Global heuristic excludes the edge if the edge’s weight causes the path’s total
weight to exceed the maximum value we want to consider.

The pseudocode in Example 9-1 describes the algorithm that we will be implement‐
ing in this chapter.

Example 9-1.

ShortestWeightedPath(G, start, end, h)
   Use sack to initialize the path distance to 0.0
   Find your starting vertex v1
   Repeat
      Move to outgoing edges
      Increment the sack value by the edge weight
      Move from edges to incoming vertices
      Remove the path if it is a cycle
      Create a map; the keys are vertices, value is the minimum distance
O1    Remove a traverser if its path is longer than the min path to the current v
O2    Remove a traverser if it walked into a supernode with 100+ outgoing edges
O3    Remove a traverser if its distance is greater than a global heuristic
   Check if the path reached v2
   Sort the paths by their total distance value
   Allow the first x paths to continue
   Shape the result

Let’s walk through the process we described in Example 9-1 because we will be imple‐
menting it in Gremlin in this chapter. Our approach starts every traverser with a dis‐
tance of 0.0 on the starting vertex. Then a looping condition moves a traverser onto
an edge, updates the traverser’s total distance, and applies a series of filters to deter‐
mine whether the traverser should continue exploring the graph. We continue that

266 | Chapter 9: Finding Paths in Production



looping process until we find x number of paths that satisfy all of the optimizations
and filters.

The series of filters we are referring to are labeled with O_n_ in Example 9-1 and
apply each of the three optimizations we just outlined. The line labeled O1 in
Example 9-1 shows how we will apply the lowest cost optimization; a traverser will be
removed if we have already found a shorter path to its location. The line labeled O2
applies a global heuristic that removes a traverser if its path reaches too high of a
weight, because such paths (probably) do not mean anything to your application.
Last, the supernode avoidance optimization, labeled O3, filters out supernodes from
our pathfinding algorithm by setting a hard limit on a vertex’s degree.

We are almost ready to build up the Gremlin statements that implement Example 9-1.
To help get us there, let’s talk about how to address the edge weight problem from the
end of Chapter 8.

Normalization of Edge Weights for Shortest Path
Problems
The way the dataset quantifies trust was the biggest hurdle we found during Chap‐
ter 8. With the way the data is now, we do not have a way to use the edge weights to
find shortest weighted paths because the most trusted paths would be the longest
ones.

We need to transform the edge weights to use them to find shortest weighted paths.

The upcoming transformation does two things. First, it applies logarithms so that we
can meaningfully add weights to find maximum trust paths. Second, we have to flip
the scale so that a minimum weighted path correlates to maximum trust.

This section walks through how to do this transformation. Then we will update our
dataset and graph. Last, we will look at a few paths in the data and show how to
meaningfully interpret the new edge weights.

Normalizing the Edge Weights
There are three steps to the data transformation process:

1. Shift the scale to the interval [0,1].
2. Frame the new scale as a shortest path problem.
3. Decide how to handle modeling infinity.

Let’s walk through all three of these steps and why we need to do them. We will show
you how the scale transforms the weights at the very end.

Normalization of Edge Weights for Shortest Path Problems | 267



Step 1: Shift the scale to the interval [0,1]
The trust interval in the original dataset ranges from –10 to 10, where –10 represents
no trust and 10 represents absolute trust. Figure 9-2 shows the distribution of obser‐
vations in the dataset using Gremlin in DataStax Studio.

Figure 9-2. The total number of observations for each trust rating in the Bitcoin OTC
dataset

Our objective is to map the trust scores from the interval [-10,10] onto the scale [0,1].
Mapping onto [0,1] gives us a way to create a confidence type score such that multi‐
plying two scores gives us a mathematically sound way to model the aggregation of
trust. This technique is similar to how we mathematically reason about probabilities.

In other words, mixing negative and positive scores together doesn’t describe how we
can mathematically reason about user ratings; we need a more consistent scale.

Additionally, we see in Figure 9-2 that there are no ratings with a trust value of 0.
Therefore, we have decided that the rating of 1 will designate being “on the fence.”
And, we will remove “0” from the mapping. This mapping gives us the following
starting points for our shifted scale:

1. A rating of –10 maps to 0 to mean no trust.
2. 1 maps to 0.5 to mean “on the fence.”
3. 10 maps to 1 to mean maximum trust.

We will fill in the rest of the ratings linearly into those intervals. The linear transfor‐
mation creates increments of 0.05 between –10 and 1 and increments of 0.05556
from 2 to 10. We calculated these increments via:

268 | Chapter 9: Finding Paths in Production



range/total_numbers = 0.5/10 = 0.05,
                    = 0.5/9  = 0.05556

The full table of mappings is coming up in Figure 9-4.

We can’t yet use the values between 0 and 1 to calculate shortest paths on the edges
because higher scores still correlate to high trust. We will run into the same problem
as in Chapter 8: longer paths have higher trust. To get to where we need to be, we
have to discuss two more mathematical transformations.

Step 2: Frame the new scale as a shortest path problem
We are essentially trying to find the highest trust path between two addresses in our
data. To frame that as a shortest path problem, we have to do two things:

1. Use logarithms so that multiplication becomes addition.
2. Multiply the result by –1, so that the maximum becomes a minimum.

The first step here is an important transformation to understand so that you can
accurately model certain phenomena in data, such as trust, so let’s walk through it.

In many cases, using logarithms for edge weights isn’t necessary because you can sim‐
ply add up the weights, as in the logistics example.

However, in some cases, you need to multiply instead of add. This is true when you
are dealing with probabilities, confidence values, and so on.

Trust is essentially a confidence value. Mathematically, this means that “your trust of
someone else’s trust” multiplies those two concepts, rather than adding them together.

Let’s think about it. If you half trust person A, and person A half trusts person B, do
you conclude that you fully trust person B? No, you probably don’t. Instead, you con‐
clude that you somewhat distrust person B.

How you are reasoning about this is the difference between adding trust scores and
multiplying them. If you decided that you fully trusted person B, you would be
adding half of your trust and half of person A’s trust to reach your conclusion. Logi‐
cally, this doesn’t make sense, because we are dealing with your confidence in some‐
one else’s opinion. When you reason that you somewhat distrust person B, you are
(essentially) multiplying your half trust by person A’s half trust to arrive somewhere
around “0.25” total trust.

To represent this numerically, we have to apply a logarithmic transformation to use
the values between 0 and 1. Using logarithms allows us to add the trust scores
together instead of multiplying them. This transformation gives us the following val‐
ues for our scores:

1. –10 maps to 0; log(0) = negative infinity

Normalization of Edge Weights for Shortest Path Problems | 269



2. 1 maps to 0.5; log(0.5) = -0.301
3. 10 maps to 1; log(1) = 0

The second half of step 2 indicates that the final transformation is to multiply these
scores by –1. This last step is required so that the maximum becomes a minimum; we
need minimums for finding shortest weighted paths.

To illustrate this mapping, Figure 9-3 plots our transformation. On the y-axis, 0
means distrust and 1 means trust. The x-axis shows how higher trust scores correlate
to lower trust.

Figure 9-3. Observing how a path’s trust distance converts to trust or distrust on our
shifted scale

The point to consider is the point shown in Figure 9-3.

The point at which a trust score flips from trust to distrust is 0.30103. A score of less
than 0.30103 will represent trust, whereas value greater than 0.30103 represents dis‐
trust.

The transformation of high trust to low scores gives us the ability to add scores
together such that lower total scores mean higher total trust. Being able to find lowest
scores gives us an optimization to find the smallest total weight. From here, we can
apply these new weights to reason about shortest weighted paths in our application.

There is one last decision required: how to represent (–1)*log(0) = infinity in
our data.

Step 3: Decide how to handle modeling infinity

There are a few decisions your team has to weigh about how to represent (–
1)*log(0) = infinity in your data. You want to select a value large enough so that a

270 | Chapter 9: Finding Paths in Production



path with this value has little chance of being a shorter weighted path, but not so large
that its value is worse than no edge at all.

We selected the value 100 to represent the score of (–1)*log(0). Let’s think about
why this is a decent choice. Consider arbitrary endpoint vertices a and b with an edge
weight of 100. The weighted path between a and b is almost guaranteed to be longer
than any other path in the graph. You would have to find a path of 101 edges, with
each edge having a weight of 1, for the direct path between a and b to be a shorter
weighted path. In the context of our problem, a path of length 101 doesn’t really make
sense to our application. As a result, we feel the choice of 100 for our example is good
enough.

The values shown in Figure 9-4 detail the steps we just discussed in the past few sec‐
tions. We first shifted [–10, 10] to [0,1]. Then, we took the logarithm of each value
and multiplied the result by –1. The final scores set (–1)*log(0) to 100.

Figure 9-4. The full table of values to transform weights from –10 to 10 to values that
can be used for finding shortest weighted paths

Normalization of Edge Weights for Shortest Path Problems | 271



Next, we need to update our graph’s schema and load the transformed version of the
edges so that we can use these new weights.

Updating Our Graph
We want to augment our current rated edge to have the new normalized values. We
will do that by adding a property called norm_trust onto the rated edge as the clus‐
tering key. Figure 9-5 shows the new graph model and indicates that we are making
the new property the clustering key for the edges. Indicating that norm_trust is an
edge’s clustering key will sort the rated edges on disk in increasing order.

Figure 9-5. Using GSL notation, the production schema for our graph model

The schema code for Figure 9-5 is in Example 9-2. We hope you are learning how to
translate graph data models to schema code with the Graph Schema Language (GSL),
just like using an ERD to create tables.

Example 9-2.

schema.vertexLabel("Address").
       ifNotExists().
       partitionBy("public_key", Text).
       create();

schema.edgeLabel("rated").
       ifNotExists().
       from("Address").
       to("Address").
       clusterBy("norm_trust", Double, Asc).
       property("datetime", Text).
       create()

As we did in Chapter 8, we are going to load the data into our graph using the Data‐
Stax Bulk Loader, a command-line tool. The datasets that accompany this text already
have the transformation of the edge weights. If you would like to see the code, please
head to the Chapter 9 data directory within this book’s GitHub repository for the data
and loading scripts for these examples.

272 | Chapter 9: Finding Paths in Production

https://oreil.ly/GtEI5


Let’s do some basic exploratory queries to ensure that we understand our data and
that it loaded correctly.

Exploring the Normalized Edge Weights
Before we get into implementing shortest weighted paths, let’s look at our same quer‐
ies from Chapter 8. This time, however, we want to use the norm_trust property as
we explore paths between 1094 and 1337.

The two queries we will do in this section are:

1. Find all paths of length 2, sorted by total trust
2. Find the 15 shortest paths by path length, sorted by total trust

Let’s start with the first query.

Find all paths of length 2, sorted by total trust
In Example 9-3, we are revisiting the same path of length 2 from Chapter 8 but are
calculating the trust distance using the normalized weights.

Example 9-3.

1 g.withSack(0.0).
2   V().has("Address", "public_key", "1094").
3   repeat(outE("rated").
4          sack(sum).
5            by("norm_trust").
6          inV()).
7   times(2).
8   has("Address", "public_key", "1337").
9   order().
10    by(sack(), asc).
11  project("path_information", "total_elements", "trust_distance").
12    by(path().by("public_key").by("norm_trust")).
13    by(path().count(local)).
14    by(sack())

Normalization of Edge Weights for Shortest Path Problems | 273



The raw results of Example 9-3 are shown in Example 9-4:

Example 9-4.

{"path_information": {
    "labels":  [[],[],[],[],[]],
    "objects": ["1094", "0.0248", "1268", "0.30103", "1337"]
 },
 "total_elements": "5",
 "trust_distance": "0.32583"
}

As we found during Chapter 8, there is only one path of length 2 between our start
and end vertices. The path object from Example 9-4, combined with the weights we
found in Chapter 8, is illustrated in Figure 9-6.

Figure 9-6. Observing the normalized edge weights on the only path of length 2 in the
data between 1094 and 1337

The total trust distance for the path illustrated in Figure 9-6 is 0.32583. You can
reverse this score to understand how it would fit into the shifted [0, 1] scale. To do
that, you multiply the final score by –1 and then raise 10 to the power of the result:
10^(–1*(0.0248 + 0.3010)) = 0.4723.

This means that the weighted trust of this path on a scale of [0,1] is 0.4723. Thus, we
slightly distrust this path because 0 means distrust and 1 means trust. This path’s
weighted trust score is slightly less than 0.5 and is therefore slightly distrusted.

You may be wondering: but what about other paths? So, let’s look at our second query
from Chapter 8.

Find the 15 shortest paths by path length, sorted by total trust
For a quick refresher, remember that the queries we built up in Chapter 8 combined
our knowledge of barriers in Gremlin and the logic of breadth-first search. The quer‐
ies applied these concepts to guaranteed shortest paths by path length, not by weight.

We apply the shortest path logic in Example 9-5 to find the 15 shortest paths by
length, but then order those paths by their normalized trust distance.

274 | Chapter 9: Finding Paths in Production



Let’s see the query in Example 9-5.

Example 9-5.

1 g.withSack(0.0).            // init each traverser to have a value of 0.0
2       V().has("Address", "public_key", "1094").     // start at 1094
3       repeat(               // repeat
4         outE("rated").      // walk out to an edge and stop
5          sack(sum).         // aggregate into the traverser's sack
6            by("norm_trust").// the value on the edge's property: "norm_trust"
7          inV().             // move and walk into the next vertex
8         simplePath()).      // remove the traverser if it has a cycle
9       until(has("Address", "public_key", "1337")).   // until you reach 1337
10      limit(15).            // BFS: first 15 are the 15 shortest paths, by length
11      order().              // sort the 15 paths
12        by(sack(), asc).    // by their aggregated trust scores
13      project("path_information", "total_elements", "trust_distance"). // make a map
14        by(path().by("public_key").by("norm_trust")).// first value: path information
15        by(path().count(local)).                     // second value: length
16        by(sack())                                   // third value: trust

Example 9-6 displays the results of Example 9-5, and our top three most trusted paths
show very interesting results. In Chapter 8, we found the shortest path: 1094 → 1268
→ 1337. Example 9-6 shows that this path is the second most trusted path of the 15
shortest paths, which means we can conclude that there is a longer path that is also
more trusted.

Example 9-6.

{
  "path_information": {
    "labels": [[],[],[],[],[],[],[]],
    "objects": ["1094","0.2139","280","0.0512","35","0.0248","1337"]
  },
  "total_elements": "7",
  "trust_distance": "0.2899"
},...,
{
  "path_information": {
    "labels":  [[],[],[],[],[]],
    "objects": ["1094","0.0248","1268","0.30103","1337"]
  },
  "total_elements": "5",
  "trust_distance": "0.32583"
},
{
  "path_information": {
    "labels":  [[],[],[],[],[],[],[]],
    "objects": ["1094","0.0248","1268","0.30103","35","0.0248","1337"]
    },

Normalization of Edge Weights for Shortest Path Problems | 275



  "total_elements": "7",
  "trust_distance": "0.35063"
},...

Example 9-6 displays results that we couldn’t find in Chapter 8: a path that is longer
and more trusted. The most trusted of the 15 shortest paths is a path of length 3, 1094
→ 280 → 35 → 1337, with a total trust score of 0.2899.

The results in Example 9-6 are the shortest paths by length, sorted
by their trust distance. This is not the same as shortest weighted
paths, which we have not done yet.

It is exciting to have found a longer path with a better trust score. However, what does
the value 0.2899 mean? How much do we trust this path?

Interpreting path distance to total trust with the normalized edge weights
The weights in our graph represent a normalized trust distance. This guarantees that
the shortest weighted path is the most trusted path.

Ultimately, you want to say, “Do I trust this path or not?” To answer that, you have to
convert the path’s final weight back to the shifted scale from Figure 9-4. You have to
convert the path’s total trust distance to make a statement about whether you trust or
distrust this path.

Let’s deeply examine how a path’s trust distance maps back to our trust scale of [0,1].

The best possible shortest path has a weight of zero; this would happen when all edges
in the path have a normalized weight of 0. A path’s trust distance of 0 converts to that
path having the highest trust score of 1: 10^(–0)=1.

For all trust distances d, the conversion formula is shown in Figure 9-7 and
Figure 9-3.

Figure 9-7. For a normalized trust distance d, the formula for converting a path’s dis‐
tance to the trust scale of [0,1]

For all three results from Example 9-6, let’s convert their total weight. Each path and
their conversion is:

276 | Chapter 9: Finding Paths in Production



1. Top path with seven objects: 10^(–0.28990) = 0.5130
2. Shortest path with five objects: 10^(–0.32583) = 0.4722
3. Third path with seven objects: 10^(–0.35063) = 0.4460

The three converted scores above represent each path’s total trust on the scale [0,1],
where 0 means distrust and 1 means trust. This means that of our 15 shortest paths
by length, we found one path that we slightly trust. The top result from Example 9-6
has an aggregated normalized weight of 0.28990, which converts to a trust score of
0.5130 on our +[0,1] scale. Therefore, we slightly trust this path.

The past examples helped us understand how we were going to reason about the nor‐
malized trust scores in our paths.

However, is the first result from Example 9-6 the most trusted path in our data? To
find out, we need to apply some optimizations to our query to find the single shortest
weighted path.

Some Thoughts Before Moving On to Shortest Weighted Path Queries
The data we are using for this example aims to show you how to find the most trusted
path between two addresses. The most trusted paths in this data are more than just
the shortest paths.

We want to find the paths through our example with the highest trust values from
their edges.

To get there, we had to convert the edge weights so that they can be used to solve the
shortest weighted path problem. The conversion process did two things: (1) it used
logarithms so that we can meaningfully add weights along the path, and (2) it flipped
the scale so that a minimum weighted path correlates to maximum trust.

We are iterating this process because these are common tools that teams use so they
can use weighted edges in shortest path problems. Reshaping data to solve complex
problems illustrates the powerful creativity within the intersection of data science and
graph applications.

Using this knowledge, let’s move on to developing Gremlin queries that calculate
shortest weighted paths.

Shortest Weighted Path Queries
The algorithmic process we have been using up to this point is shown in Example 9-7.

Shortest Weighted Path Queries | 277



Example 9-7.

A  Use sack to initialize the path distance to 0.0
B  Find your starting vertex v1
C  Repeat
D      Move to outgoing edges
E      Increment the sack value by the edge weight
F      Move from edges to incoming vertices
G      Remove the path if it is a cycle
H  Check if the path reached v2
I  Allow the first 20 paths to continue
J  Sort the paths by their total distance value
K  Shape the result

Recall that barrier steps in Gremlin, like the repeat().until() pattern, process the
data like breadth-first search. This means that step I in Example 9-7 guarantees
shortest paths by length.

In Example 9-8, those algorithmic steps are shown next to the corresponding lines in
the query we just did.

Example 9-8. 

A  g.withSack(0.0).
B    V().has("Address", "public_key", "1094").
C    repeat(
D           outE("rated").
E           sack(sum).by("norm_trust").
F           inV().
G           simplePath()).
H    until(has("Address", "public_key", "1337")).
I    limit(20).
J    order().
       by(sack(), asc).
K    project("path_information", "total_elements", "trust_distance").
       by(path().by("public_key").by("norm_trust")).
       by(path().count(local)).
       by(sack())

We are going to use the pattern of pseudocode, as in Example 9-7, and mapping the
process to Gremlin steps, as in Example 9-8, to build up our shortest weighted path
query. We will add to the query in Example 9-8 to change and then optimize it to be a
shortest weighted path query.

Building a Shortest Weighted Path Query for Production
The process we want to build toward implements the optimizations we introduced in
“Shortest Weighted Path Search Optimizations” on page 264: lowest cost optimiza‐

278 | Chapter 9: Finding Paths in Production



tion, global heuristics, and supernode avoidance. There are four steps to doing this so
that we can create a production-quality query for our application:

1. Swap two steps and change our limit
2. Add an object to track the shortest weighted path to a visited vertex
3. Remove a traverser if its path is longer than one already discovered to that vertex
4. Remove traversers for custom reasons, such as to avoid supernodes

Let’s build up the Gremlin query by incrementally adding steps through each of these
four procedures.

1) Swap two steps and change our limit
We went through a reminder of where we are because the first step in building our
shortest path query is very similar to Example 9-8. We need only to swap the order of
steps and limit to one result to translate Example 9-8 to a single shortest weighted
path query.

The algorithm in Example 9-9 swaps step J and step I from Example 9-7. This swap
changes our process from shortest paths to shortest weighted paths. Then we change
the limit from 20 to 1 so that we are finding the single shortest weighted path.

We are going to start labeling these new optimizations with O_stepNumber and their
step number from this section. You will find asterisks (*) in the pseudocode and
query to indicate the new lines we are adding to our pathfinding traversal. We find
this easier for logically mapping the optimization in the pseudocode to the statements
in the Gremlin query.

Example 9-9.

A   Use sack to initialize the path distance to 0.0
B   Find your starting vertex v1
C   Repeat
D       Move to outgoing edges
E       Increment the sack value by the edge weight
F       Move from edges to incoming vertices
G       Remove the path if it is a cycle
H   Check if the path reached v2
O1* Sort the paths by their total distance value
O1* Allow the first path to continue, this is the shortest path by weight
K   Shape the result

If it is that easy, why can’t we just stop here?

We can, but, well…there’s a but.

Shortest Weighted Path Queries | 279



Swapping the steps in Gremlin introduces another barrier step, order(). The pres‐
ence of order() immediately after repeat().until() means that we have to find and
sort all paths, not just the shortest weighted paths. So we will need to add a bit more
to the query to optimize it.

The swapping of these steps, however, does guarantee that the paths that we shape at
step K are ordered according to their total distance. This is ultimately what we want;
we are just processing more data than we want because we are still finding all paths.

Let’s see where we will be starting our query building in Example 9-10 with the swap‐
ped logic from Example 9-9. The changes we built are labeled with O1*, to indicate
this is the first optimization we have built so far.

Example 9-10. 

A  g.withSack(0.0).
B     V().has("Address", "public_key", "1094").
C     repeat(
D,E,F      outE("rated").sack(sum).by("norm_trust").inV().
G          simplePath()
H     ).until(has("Address", "public_key", "1337")).
O1*   order().
        by(sack(), asc).
O1*   limit(1).
K     project("path_information", "total_elements", "trust_distance").
        by(path().by("public_key").by("norm_trust")).
        by(path().count(local)).
        by(sack())

Example 9-10 finds all weighted paths between 1094 and 1337. You do not want to
use this yet in a production application because finding all paths is too computation‐
ally expensive. There are multiple optimizations we can apply to ensure that we create
a query that is safer to run in a distributed graph in production.

2) Add an object to track the shortest weighted path to a visited vertex
The construction of an object to track shortest weighted paths will be used many
times in the coming optimizations.

The idea is to create a map. The keys of the map will be visited vertices, and the value
will track the shortest distance to that vertex. The additional processes to the algo‐
rithm are shown in Example 9-11. We map the procedures from Example 9-11 to the
Gremlin query in Example 9-12.

280 | Chapter 9: Finding Paths in Production



Example 9-11.

A   Use sack to initialize the path distance to 0.0
B   Find your starting vertex v1
C   Repeat
D      Move to outgoing edges
E      Increment the sack value by the edge weight
F      Move from edges to incoming vertices
G      Remove the path if it is a cycle
O2*    Create a map; the keys are vertices, value is the minimum distance
H   Check if the path reached v2
O1  Sort the paths by their total distance value
O1  Allow the first x paths to continue
K   Shape the result

The query that applies the algorithm from Example 9-11 is Example 9-12. The
changes we built are labeled with O2*, to indicate this is the second optimization we
have built so far.

Example 9-12. 

A  g.withSack(0.0).
B     V().has("Address", "public_key", "1094").
C     repeat(
D,E,F      outE("rated").sack(sum).by("norm_trust").inV().
G          simplePath().
O2*        group("minDist").    // create a map
O2*           by().             // the keys are vertices
O2*           by(sack().min())  // the values are the min distance
H     ).until(has("Address", "public_key", "1337")).
01    order().
01    by(sack(), asc).
01    limit(1).
K     project("path_information", "total_elements", "trust_distance").
K       by(path().by("public_key").by("norm_trust")).
K       by(path().count(local)).
K       by(sack())

Let’s talk about the map we constructed on the lines labeled O2* in Example 9-12.
This map contains keys and values where the keys are vertices. The trick here is in
how we set up the values: by(sack().min()). The values in this map will be the mini‐
mum distance to any visited vertex in the graph.

Essentially, this map creates a lookup table that every traverser can access and ask:
what is the current minimum distance to my current vertex?

Now that we have created this map, let’s use it.

Shortest Weighted Path Queries | 281



3) Remove a traverser if its path is longer than one already discovered to that vertex

The map minDist tracks a visited vertex and the minimum distance to that vertex.
Let’s use this map.

For any traverser in our stream, we want to do two things. First, we want to use the
map to look up the minimum distance we have seen so far to that vertex. Then we
want to compare that value to the current traverser’s traveled distance.

If the distances are the same, that means the current traverser is on the shortest path
to the current vertex. If the traverser’s distance is greater than the shortest distance,
then it is exploring a longer weighted path, and we want to remove it from the traver‐
sal pipeline. There will not be a case when the traverser’s distance is less because we
update the map before we do this comparison.

Let’s look at the pseudocode that describes this process. The new optimization is
labeled with O3* in Example 9-13.

Example 9-13.

A   Use sack to initialize the path distance to 0.0
B   Find your starting vertex v1
C   Repeat
D      Move to outgoing edges
E      Increment the sack value by the edge weight
F      Move from edges to incoming vertices
G      Remove the path if it is a cycle
O2     Create a map; the keys are vertices, value is the minimum distance
O3*    Remove a traverser if its path is longer than the min path
H   Check if the path reached v2
O1  Sort the paths by their total distance value
O1  Allow the first x paths to continue
K   Shape the result

To implement Example 9-13 in Gremlin, we will need to introduce two new patterns
of steps. First, we will create a custom filter with the filter() step.

filter()
The filter() step evaluates the traverser to either true or false, where false will
not pass the traverser to the next step.

Inside the filter step, we will use a new pattern. We need to create a pattern that evalu‐
ates two values, a and b. The common way to do this in Gremlin is to create a map
and then test the objects in the map with the where() step.

where()
The where() step filters the current object; in our examples, we will filter based
on the object itself.

282 | Chapter 9: Finding Paths in Production



project().where()
The project().where() pattern tests the objects in the map according to a pro‐
vided condition in the where() step.

Let’s see these steps in action in Example 9-14.

Example 9-14. 

A g.withSack(0.0).
B     V().has("Address", "public_key", "1094").
C     repeat(
D,E,F        outE("rated").sack(sum).by("norm_trust").inV().as("visited").
G            simplePath().
O2           group("minDist").
O2             by().
O2             by(sack().min()).
O3*          filter(project("a","b").                        // boolean test
O3*                   by(select("minDist").select(select("visited"))). // a
O3*                   by(sack()).                                      // b
O3*                 where("a",eq("b"))                       // does a == b?
H     ).until(has("Address", "public_key", "1337")).
O1     order().
01      by(sack(), asc).
01    limit(1).
K     project("path_object", "total_elements", "trust_distance").
K       by(path().by("public_key").by("norm_trust")).
K       by(path().count(local)).
K       by(sack())

Let’s describe what is happening with our new optimization lines, labeled O3*. We
create a boolean test for a traverser with the filter() step: if the condition is true,
the traverser will survive. The test uses the project().where() pattern to set up and
compare variables: a and b. The value for a uses our map minDist to get the mini‐
mum distance to the current vertex. Then we look up the traverser’s current sack
value; this is the value for b.

If the current minimum distance to the vertex is equal to the traverser’s sack, the test
resolves to True and the traverser survives. This means that the traverser is on the
shortest path, so we want it to continue exploring the graph.

If you have been following along in the notebook, Example 9-14 is the first time our
weighted path queries are able to return without a timeOut error. This is because this
optimization is the first step toward the reduction of paths that we process in the
query. The first two optimizations were setting us up to apply them at the lines
labeled O3* in Example 9-14.

There are a few more ways that we can prune paths from our working tree.

Shortest Weighted Path Queries | 283



4) Remove traversers for custom reasons, such as to avoid supernodes
A common optimization we add reduces the search space to address the computa‐
tional complexity of path queries. Specifically, we want to filter out a traverser from
the pipeline if it has arrived at a supernode. The definition of a supernode will vary
according to your dataset, like the celebrity problem within the Twitter graph that we
talked about in “Supernodes in graphs” on page 265.

Let’s take a look at this graph’s degree distribution, shown in Figure 9-8.

Figure 9-8. The degree distribution for the graph used in this example

The outgoing degree distribution of this graph shows that most vertices have, say, 20
or fewer outgoing edges. The far right value in Figure 9-8 shows that the outlier in
our dataset has 763 outgoing edges.

For illustrative purposes, let’s say that we want to exclude vertices with 100 or more
outgoing edges. The pseudocode in Example 9-15 shows where we will apply this fil‐
ter with the label O4*. Example 9-16 shows the Gremlin query.

Example 9-15. 

A   Use sack to initialize the path distance to 0.0
B   Find your starting vertex v1
C   Repeat

284 | Chapter 9: Finding Paths in Production



D      Move to outgoing edges
E      Increment the sack value by the edge weight
F      Move from edges to incoming vertices
G      Remove the path if it is a cycle
O2     Create a map; the keys are vertices, value is the minimum distance
O3     Remove a traverser if its path is longer than the min path to the current v
O4*    Remove a traverser if it walked into a supernode; 100 outgoing edges or more
O4*    Remove a traverser if its distance is greater than what we want to process
H   Check if the path reached v2
O1  Sort the paths by their total distance value
O1  Allow the first x paths to continue
K   Shape the result

The query that implements Example 9-15 is shown in Example 9-16.

Example 9-16. 

max_outgoing_edges = 100;
max_allowed_weight = 1.0;

A g.withSack(0.0).
B     V().has("Address", "public_key", "1094").
C     repeat(
D,E,F        outE("rated").sack(sum).by("norm_trust").inV().as("visited").
G            simplePath().
O2           group("minDist").
O2             by().
O2             by(sack().min()).
O3           and(project("a","b").
O3                by(select("minDist").select(select("visited"))).
O3                by(sack()).
O3               where("a",eq("b")),
O4*              filter(sideEffect(outE("rated").count().// optimization:
O4*                     is(gt(max_outgoing_edges)))),    // remove supernodes
O4*              filter(sack().                          // optimization:
O4*                     is(lt(max_allowed_weight))))     // global heuristic
H     ).until(has("Address", "public_key", "1337")).
O1     order().
01      by(sack(), asc).
01    limit(1).
K     project("path_object", "total_elements", "trust_distance").
K       by(path().by("public_key").by("norm_trust")).
K       by(path().count(local)).
K       by(sack())

Let’s walk through the new steps labeled O4* in Example 9-16. We added two boolean
tests. The first one is a filter() that checks for the current vertex’s outgoing degree
and compares it to our supernode threshold. If the degree is higher than 100, the tra‐
verser fails the test and is removed from the traversal pipeline. This is how you can
specifically remove supernodes from your pathfinding query.

Shortest Weighted Path Queries | 285



The supernode avoidance optimization required us to use sideEffect(); we will
explain why in the next section.

The second optimization in Example 9-16 adds another filter() and applies a
global heuristic. We set the maximum weight we want to consider to 1.0, and we test
for this by comparing the traverser’s sack() to our threshold. If the traverser’s dis‐
tance is greater than 1.0, it will fail the test and be removed from the pipeline.

The query in Example 9-16 wrapped all of our optimizations within a new step,
and(). We will explain and() and sideEffect() in the next two sections and then we
will look at the results from Example 9-16.

The and() step in Gremlin.    The and() step in Gremlin is a filter that can have an arbi‐
trary number of traversals. The and() step applies a boolean AND to the results from
each traversal to create a pass/fail condition for the traverser.

and()
The and(t1, t2, …) step in Gremlin yields true or false for each traverser in the
pipeline according to the values for each input traversal t1, t2, and so on.

In the context of Gremlin, each traversal within the and() step must produce at least
one output. In the context of boolean operations, the following values are interpreted
as false:

1. False

2. Numeric zero of all types
3. Empty strings
4. Empty containers (including tuples, lists, dictionaries, sets, and frozen sets)

All other values are interpreted as True.

There are three traversals that are wrapped within the and() step in Example 9-16.
Each traversal’s boolean condition is tested, and all three results are analyzed with
and(). Only if all three conditions yield true will the traverser pass. This means that
the traverser must be on a shortest path, not on a supernode, and have a total distance
less than 1.0.

The last main concept to understand is why we needed to use sideEffect() for our
supernode test.

sideEffect() in Gremlin.    One of the most valuable heuristics you can apply to a path‐
finding query removes traversers when they are on a supernode. You have to count
the edges of the current vertex to figure out whether or not it is a supernode. When
you are on a vertex, you have to move to all outgoing edges to count them.

286 | Chapter 9: Finding Paths in Production



Moving from the current vertex to all outgoing edges changes the location of the tra‐
verser. When we are in the middle of a pathfinding query, this would change the loca‐
tion of our traverser from a vertex to a set of edges. This change would break the
conditional flow of our repeat() step.

Therefore, we have to check whether the current vertex is a supernode and do so in a
way that doesn’t change the state of the current traverser (or doesn’t move the traver‐
ser). We can do these types of side computations by using sideEffect(), one of the
five general ways that a traverser can move throughout a graph.

sideEffect()
The sideEffect(<traversal>) step allows the traverser’s state to proceed
unchanged to the next step, but with some computational value from the pro‐
vided traversal.

We used sideEffect(outE("rated").count().is(gt(max_outgoing_edges))) in
Example 9-16. Let’s break this down.

First, the traversal that is wrapped within sideEffect() is
outE("rated").count().is(gt(max_outgoing_edges)). This asks the question: is
the number of outgoing edges on this vertex less than the maximum we are allowing?

To answer that question, the traverser has to move from the vertex to all outgoing
edges, count them, and compare the result to max_outgoing_edges. The problem is
that we have to move. We do not want this move to affect the state of the traversal, so
we wrap this traversal in sideEffect() so that whatever we do in this embedded tra‐
versal doesn’t change where the traverser is located in the graph as it moves to the
step after sideEffect(<traversal>).

This gives us everything we need to know about how the traversal works. Let’s look at
and interpret the results of Example 9-16.

Interpreting the results of our shortest weighted path.    The last set of results to under‐
stand for our chapter’s examples is shown in Example 9-17. Let’s look at the shortest
weighted path now.

Example 9-17.

{
  "path_information": {
      "labels": [<omitted in text>],
      "objects": ["1094",
                     "0.0","64",
                     "0.0","104",
                     "0.0","23",
                     "0.0792","1217",
                     "0.0248","1437",

Shortest Weighted Path Queries | 287



                     "0.0","35",
                     "0.0248","1337"]
 },
  "total_elements": "15",
  "trust_distance": "0.1288"
}

Our final shortest weighted path had a total trust distance of 0.1288 and has a length
of 7! (15 elements means eight vertices and seven edges; path length is the number of
edges in the path.)

The trust distance is 0.1288, where 10^(-0.1288) = 0.7434, so we conclude that we
trust this path.

Thinking back to the broader application, we also conclude that we trust accepting
bitcoins from 1337. What would you do?

Weighted Paths and Trust in Production
Whether or not you actively trade Bitcoin, you’ve already integrated the concept of
weighted paths and determining trust into your daily life. You may not go through
transforming the data into a logarithmically normalized graph, but we would bet that
you use the concepts from the past two chapters in some way.

The beauty of graph technology lies in translating natural human tendencies into
quantifiable models. Throughout Chapter 8 and so far in this chapter, we walked
through many different ways of translating natural thinking into metrics and models.
We showed you how to use the idea of distance between people and concepts to teach
you how we think about data to solve complex path problems in production.

The big moment here is that you naturally make decisions and inferences about pre‐
viously disconnected topics. And this naturally occurring process you already do
maps very well to graph technology to quantify your decision in a repeatable frame‐
work.

Graph technology gives us a framework for defining, modeling, quantifying, and
applying mental processes that we take for granted, like correlating path distance to
trust. This is what makes graph technology so beautiful and impactful. The things we
already naturally do without thinking can be formally and logically defined with tech‐
nology that represents them in the same way.

So how would you rate your trust in us given all the stops along your journey
throughout this book? Once you start thinking about your journey, would you assign
different strengths to different pieces of your journey?

Maybe you should consider using author and content ratings to create a graph of
trustable resources, which seems oddly reminiscent to how Netflix ignited the

288 | Chapter 9: Finding Paths in Production



journey of graph thinking with movie recommendations based on user ratings. And
that sounds like a great topic to visit next.

Our next chapter is going to be a Netflix-like example in which we show you how to
recommend movies based on user ratings.

Weighted Paths and Trust in Production | 289





1 James Bennett and Stan Lanning, “The Netflix Prize,” _Proceedings of KDD Cup and Workshop, 2007.

CHAPTER 10

Recommendations in Development

The Netflix Prize was an open machine learning competition started in 2006. Each
team that entered the competition aimed to build an algorithm capable of besting
Netflix’s own content rating prediction process. The competition awarded $1 million
to the winning team in 2009.

One specific derivative of the Netflix Prize sent waves throughout the graph theory
community, a result you are experiencing now as you read this book. The competi‐
tion ignited the use of graph thinking as a solution for traditionally matrix-based
algorithms.

The realization was that it is much easier to explain recommendation systems with a
graph than with a matrix representation. Think about it. You have a favorite set of
movies, and each of those movies is highly rated by other people. If you look at the
other movies liked by those people, you have a list of movies that you may also like.
You have a list of movie recommendations.

And you just walked through a graph to find them.

The Netflix Prize1 popularized the idea of using relationships between users and mov‐
ies to predict and personalize your digital experience. This small idea of thinking
about your data like a graph has become one of the main drivers of the rise of graph
thinking.

We will bring this idea to life throughout this chapter and Chapter 12. And in case
you are wondering, Chapter 11 shows you how we created the graph model you will
see in this chapter.

291



Chapter Preview: Collaborative Filtering for Movie
Recommendations
In this chapter, we will show and define collaborative filtering by walking through
how a site/app makes movie recommendations to its users.

In the first section, we are going to walk through three different examples of recom‐
mendation systems. These three examples illustrate how deeply ingrained the use of
graph thinking has become for customizing a user’s experience in an application. You
likely use these techniques every day, perhaps without even knowing it.

The second section will walk through an introduction to collaborative filtering. We
will focus on item-based collaborative filtering because it is the most popular way to
use graph structures for recommendations.

The third section will introduce two open source datasets for our movie recommen‐
dations example. We will build a complex schema and show you the data structures
and loading procedures. We will be using this data throughout the next two chapters.

Then we’ll take a short side tour and use the complex data model for the movie data‐
sets as a review of this book’s main techniques. We will explore the merged datasets
by revising the three most popular production queries with graph data: neighbor‐
hoods, trees, and paths.

The last section of this chapter steps through doing item-based collaborative filtering
in Gremlin. As you have seen in the trees and paths chapters, we will run into a prob‐
lem at the end of this chapter due to the scalability of doing collaborative filtering in
real time.

Recommendation System Examples
The popularity of recommendation systems with graphs derives from the simplicity
of explaining how they work. Let’s follow a deeper progression through graph struc‐
ture, one neighborhood at a time, to show recommendations in three different
industries.

We want to start our examples with how we see the problem now.

How We Give Recommendations in Healthcare
If you think back through some of your most recent interactions with doctors, you
probably have a short list of the doctors you trust the most.

Now, what would you say if your friend asked you to recommend a doctor?

292 | Chapter 10: Recommendations in Development



To give a personal recommendation, you consider a plethora of factors, such as the
outcome of your last visit, how you were treated, how expensive it was, and so on.
Therefore, you likely didn’t respond immediately to your friend’s question with your
favorite doctor; instead, you probably asked your friend for more information.

You need more context from your friend to make sure your recommendation is rele‐
vant to them. You use the additional details you gather about your friend’s question to
match them up to your experiences, and then you customize your recommendation.

How you ultimately respond and give a recommendation about healthcare probably
looks something like the drawing in Figure 10-1. It is your response to your friend
that shows how you think about recommendations like the first neighborhood of
your personal health graph.

Figure 10-1. An example of how we naturally think about the recommendations that we
give

It is the deeper details behind your recommendation that make it relevant.

For a much less personal topic than healthcare, let’s see how deeper information from
a graph structure can be used to create recommendations in your social media
accounts.

How We Experience Recommendations in Social Media
Think about the last time that you logged in to LinkedIn. Did you see a notification
for “people you may know”?

The “people you may know” section is an example of using graph structure to recom‐
mend new connections on social media. This section also illustrates how to use your
second neighborhood to create a recommendation. Figure 10-2 shows how to build
up a list of people you may know in a graph.

Recommendation System Examples | 293



Figure 10-2. An example of how we experience recommendations in social media

Let’s walk through how the concept from Figure 10-2 works on LinkedIn or on any
other social media platform.

Over time, you have built up a list of friends on your social media account;
Figure 10-2 illustrates this with the list of friends in orange. The friends of your
friends form the list of people that you may also know, as shown further to the right
in Figure 10-2.

It really is that simple. People you may know are in your second neighborhood of
friends on social media.

This usually prompts the question: who is the person you are most likely to already
know? And you probably already guessed the answer. The most connected friend of
your friends is the top recommended person that you may also know.

The examples so far show shallow walks through first and second neighborhoods of
graph data. Let’s see a walk that goes a bit deeper.

How We Use Deeply Connected Data for Recommendations in
Ecommerce
The section of recommended products has become an expectation for any online
retailer. People want to search for a product and then explore the company’s catalog
of similar products.

Product recommendations can be generated by walking through deeper neighbor‐
hoods of connected data. Figure 10-3 shows how a product you purchased can create
a recommendation of three other products.

294 | Chapter 10: Recommendations in Development



Figure 10-3. An example of how we walk deeply through graph-structured data for rec‐
ommendations in ecommerce

Let’s think about what Figure 10-3 is showing. It starts by showing one product that
you purchased. Your online retailer also knows other people bought that product, as
well as the other products they bought. The final list of three products on the far right
in Figure 10-3 becomes the three products you see in a “similar products” window
while you shop online.

Walking through Figure 10-3 also gives you your first glimpse into how collaborative
filtering works. Let’s delve into the algorithm we will be implementing in this chapter.

An Introduction to Collaborative Filtering
Using collaborative filtering with graph-structured data is a proven technique for per‐
sonalizing content recommendations. The industry defines collaborative filtering as
follows:

Collaborative filtering
Collaborative filtering is a type of recommendation system that predicts new
content (filtering) by matching the interests of the individual user with the pref‐
erences of many users (collaborating).

Let’s look at a quick introduction to the problem domain of recommendation systems
and collaborative filtering.

Understanding the Problem and Domain
Collaborative filtering is a very popular technique within the graph community. But it
is better known for the larger role it plays within the class of recommender systems.
Generally speaking, collaborative filtering is one of four types of automated
algorithms that fall within the class of recommender systems. The other three are

An Introduction to Collaborative Filtering | 295



content-based, social data mining, and hybrid models.footnote:[Loren Terveen and
Will Hill, “Beyond Recommender Systems: Helping People Help Each Other.” _HCI
in the New Millennium_, ed. Jack Carroll (Boston: Addison-Wesley, 2001), 487–509.

To give you an idea of how all these concepts are organized, Figure 10-4 illustrates
where collaborative filtering and its subtypes fall into the broader classification of rec‐
ommender systems.

Figure 10-4. A summary of problem classifications in the general space of recommender
systems

Content-based recommender systems are focused only on the preferences of the user.
New recommendations are made to the user from similar content according to the
user’s previous choices.

The second class of recommenders, called social data mining, describes systems that
do not need any input from a user. They rely solely on popular historical trends from
the community to make recommendations to a new user.

Collaborative filtering is different from content-based or social data mining in that it
combines individual and community preferences. The class of collaborative filtering
approaches focuses on combining an individual’s interest with the historical preferen‐
ces of a community of similar users. Last, hybrid models are a group of recommender
systems that mix and match techniques from the other three classes.

296 | Chapter 10: Recommendations in Development



2 Gregory D. Linden, Jennifer A. Jacobi, and Eric A. Benson, Collaborative recommendations using item-to-
item similarity mappings, U.S. Patent No. 6,266,649, filed July 24, 2001.

3 3 Badrul Munir Sarwar, George Karypis, Joseph Konstan, and John Riedl, “Item-Based Collaborative Filtering
Recommendation Algorithms,” WWW ’01: Proceedings of the 10th International Conference on World Wide
Web, Hong Kong Convention and Exhibition Center, May 1–5, 2001 (New York: ACM, 2001), 285–95. https://
doi.org/10.1145/371920.372071.

The most popular class of collaborative-filtering techniques, item-
based collaborative filtering, predates the Netflix Prize we men‐
tioned at the beginning of this chapter. Item-based collaborative
filtering is one of the most robust techniques of recommendation
systems of all time; it was originally invented and used by Amazon
in 1998.2 The first publication of the technique occurred in 2001.3

Collaborative Filtering with Graph Data
The ability to tailor the recommendation of certain content according to the prefer‐
ences of people like you describes two classes of recommendation systems: user-based
collaborative filtering and item-based collaborative filtering.

User-based collaborative filtering
User-based collaborative filtering finds similar users who share the same rating
patterns as the active user to recommend new content.

Item-based collaborative filtering
Item-based collaborative filtering finds similar items according to how users
rated those items to recommend new content.

The data we will be introducing later in the chapter contains users who have rated
movies. Figure 10-5 shows the different types of collaborative filtering in a model of
users who rated movies.

Figure 10-5 shows how to use a graph of movie ratings to recommend new content to
you. The left side of Figure 10-5 shows how to walk through the graph to perform
user-based collaborative filtering and recommend new content to you. The right side
of Figure 10-5 shows how to walk through the graph to perform item-based collabo‐
rative filtering and recommend new content to you.

The basic difference between user-based and item-based comes down to what each
technique computes as similar. User-based collaborative filtering computes similar
users, whereas item-based collaborative filtering computes similar items. Both techni‐
ques use their respective similarity scores to create a recommendation. The tasks for
user-based collaborative filtering are to first compute similar users and then predict
ratings of new content. The tasks for item-based collaborative filtering are to first
compute similarity between items and then predict ratings of new content.

An Introduction to Collaborative Filtering | 297

https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071


Figure 10-5. The two types of collaborative filtering we will be using in the dataset of
users and movie ratings

We will be using item-based collaborative filtering in all of our upcoming examples in
Chapters 10 and 12. The patterns you learn from exploring item-based collaborative
filtering in this chapter and the production implementation process outlined in
Chapter 12 show you the path forward for expanding your use of collaborative filter‐
ing to include other techniques, such as user-based.

Recommendations via Item-Based Collaborative Filtering with
Graph Data
When using a graph, the general process for using item-based collaborative filtering
is as follows:

1. Input: Get a user’s most recently rated, viewed, or purchased items
2. Method: Find similar items according to historical rating, viewing, or purchasing

patterns
3. Recommend: Deliver different content according to a scoring model

The process above can be generalized for any system, but our upcoming examples
will be about movies.

Using our movie data, which we’ll introduce about four pages from now, the input
will be an individual user (you) and a movie you rated. The model will use item-
based collaborative filtering to find similar movies according to the rating patterns

298 | Chapter 10: Recommendations in Development



observed in the data. The recommended content will use a scoring model to rank the
recommendations. Figure 10-6 shows each of these steps.

Figure 10-6. An illustration of the input, model, and recommendation steps for our item-
based collaborative-filtering graph model

The tricks to these approaches lie in how you rank the recommended content.

Three Different Models for Ranking Recommendations
We will be illustrating three different ways to score and rank the recommendations in
our examples. They will be basic path counting, a Net Promoter Score, and a normal‐
ized Net Promoter Score.

Let’s walk through each of these three approaches before we dive into the data.

Path counting
One of the simplest ways to use a graph structure for an item-based recommendation
system is to count. Specifically, you want to count the 5-star ratings from the users
who also rated the input movie. Figure 10-7 shows what we mean.

Figure 10-7 shows how we would use path counting to rank the movies in the recom‐
mendation set; we bolded the two paths that reached Movie C to show you one of the
three calculations. Let’s walk through how we reached each of the scores shown on
the far right.

An Introduction to Collaborative Filtering | 299



Figure 10-7. An illustration of how to use path counting to rank the recommendation set
when using item-based collaborative filtering

The results of Figure 10-7 show Movie A is the top choice with a score of three. We
reach a score of three because there are three 5-star ratings of Movie A in total, from
Users A, B`, and C. The second-ranked movie is Movie C, which received two 5-star
ratings, one each from Users A and C. The third-ranked movie is Movie B with a
score of one, which represents the 5-star rating from User A.

The final ordering of the recommendation set is: Movie A, Movie C, Movie B.

Counting the paths of 5-star ratings is a great place to start with item-based collabo‐
rative filtering in graphs. Hopefully, this first example is helping you to see how item-
based collaborative filtering works within a graph structure.

Let’s move on to a slightly more advanced scoring model.

Net Promoter Score–inspired metric
The Net Promoter Score (NPS) is a very popular metric that uses a scale to quantify
how likely somebody is to recommend an item to a friend. For this next example, we
wanted to create a metric inspired by NPS to balance the 5-star ratings from our first
model with the dislikes. We are going to take the same approach with this next score.
We will create a score for a movie by balancing how much it is liked with how much it
is disliked.

Let’s first look at how we will calculate our NPS-inspired metric from our data.
Figure 10-8 shows the equation for calculating a movie’s NPS.

Figure 10-8. The equation for the Net Promoter Score (NPS) for a movie

300 | Chapter 10: Recommendations in Development



We will count all of the positive ratings for a movie and then subtract all of the nega‐
tive ones. For our data, we consider a rating above four to indicate a liked movie and
a rating below or equal to four to indicate a neutral or disliked movie.

We didn’t show any edges in our first model that were not 5-star ratings. To calculate
an NPS, we will need to include those edges through our traversal.

We don’t want to get overly complicated because we just want to give you an idea of
how the NPS works, so we are going to keep it simple by showing you two types of
edges in our next example. In Figure 10-9, the thick bolded edges can be thought of as
ratings greater than 4 (likes), and the dashed thin edges can be thought of as ratings
below 4 (dislikes). The NPS for each movie is shown on the far right.

Figure 10-9. An illustration of how to use our NPS-inspired metric to rank the recom‐
mendation set when using item-based collaborative filtering

The final ordering of the recommendation set from Figure 10-9 is different than
before: Movie A is the highest-rated movie, but Movie B and Movie C are tied. This
example shows you how the NPS gives us a different idea of how liked (or disliked) a
movie would be within different friendship communities.

The NPS and path-counting models converge on massively popular movies that are
always highly ranked. This can be a problem in that the same movies will always be
recommended; your user may lose interest if they see the same content every time
they log in to your application. We recommend a normalized version of the NPS-
inspired metric if you want to introduce some diversity into your recommendations.

Why would we want to normalize?

A normalized score will help you select “offbeat” movies for your users and add vari‐
ety to your application. Ultimately, you may want to use both scores in your applica‐
tion to recommend two popular movies and one offbeat movie.

Let’s take a look at how to introduce normalization as a way to address these issues.

An Introduction to Collaborative Filtering | 301



Normalized Net Promoter Scores
To account for overly popular movies, we can normalize a movie’s NPS by the total
number of ratings it has received. Figure 10-10 shows how we can do this using a
graph property: the degree of a movie.

Figure 10-10. The equation for the normalized Net Promoter Score (NPS norm) for a
movie

Figure 10-10 shows the third model we will be using in our examples. To arrive at the
final score of a movie, we will take its NPS and then divide it by the total number of
ratings it has received. For example, a really popular movie may get 50 likes out of
100 ratings, which would give it a score of 0.5. An offbeat movie may get 20 likes out
of 25 ratings, giving it a score of 0.8. We want to give our input users a chance to see
offbeat recommendations.

Figure 10-11 shows how we will be using the normalized NPS in our upcoming
examples.

Figure 10-11. An illustration of how to use a normalized NPS-inspired score to rank the
recommendation set when using item-based collaborative filtering

Figure 10-11 divides each movie’s NPS according to its total number of ratings.

302 | Chapter 10: Recommendations in Development



4 F. Maxwell Harper and Joseph A. Konstan, “The MovieLens Datasets: History and Context,” ACM Transac‐
tions on Interactive Intelligent Systems (TiiS) 5, no. 4 (2016): 19, https://doi.org/10.1145/2827872.

5 Stephane Rappeneau, “350 000+ Movies from themoviedb.org,” Kaggle, July 19, 2016, https://www.kaggle.com/
stephanerappeneau/350-000-movies-from-themoviedborg.

Let’s step through how we calculated each movie’s score in Figure 10-11. Movie A had
an NPS of 3 and was rated three times; the final score for Movie A is 3/3 = 1.0.
Movie B had an NPS of 1 and was rated once; the final score for Movie B is 1/1 =
1.0. Movie C had an NPS of 1 and was rated three times; the final score for Movie C
is 1/3 = 0.3334.

Generally, we are showing how an offbeat movie can be just as highly recommended
as a very popular movie, allowing for some diversity in our movie recommendations.

Now that you have an idea of where we are going, let’s present the data model we will
be using for this example.

Movie Data: Schema, Loading, and Query Review
There are two very popular open source datasets about movies that we are going to 
use: MovieLens4 and Kaggle.5 We selected the MovieLens dataset so that we could use
a very diverse and well-documented dataset of user ratings of movies. The Kaggle
dataset augments the MovieLens data with details and actors for each movie.

We have provided all the details as to how we matched, merged, and modeled these
data sources in Chapter 11. For this chapter, we want to jump to using the data in
development mode so that we can build our recommendation queries.

Data Model for Movie Recommendations
The data integration process between the MovieLens and Kaggle sources that we out‐
line in Chapter 11 created the development schema we will be using in our examples.
Using the Graph Schema Language (GSL), the development schema is shown in
Figure 10-12.

The data model in Figure 10-12 has a lot of detail. If you prefer to
understand how we arrived at our data model before we use it, we
recommend jumping over to Chapter 11, where we outline in
depth how we merged the two data sources and created this model.
The process was too long and involved to go through now. And the
topic of entity resolution deserves its own separate discussion.

Movie Data: Schema, Loading, and Query Review | 303

https://doi.org/10.1145/2827872
https://www.kaggle.com/stephanerappeneau/350-000-movies-from-themoviedborg
https://www.kaggle.com/stephanerappeneau/350-000-movies-from-themoviedborg


Figure 10-12. The development schema for our merged database about movies

Figure 10-12 shows that our data has five vertex labels: Movie, User, Genre, Actor,
and Tag. The partition key for each vertex label is denoted with a (PK) next to the
property name. There are three edge labels that will each have exactly one edge
between the vertices it connects: acted_in, belongs_to, and topic_tagged. The GSL
notation of a single line indicates that an actor acts in a specific movie only once, a
movie belongs to a specific genre only once, and a movie is tagged for a specific topic
only once. There are three edge labels that have many edges between the vertices they
connect: rated, tagged, and collaborated_with. The GSL notation of a double line
and property with a clustering key (CK) indicates that a user can rate a specific movie
many times, a user can tag a specific movie many times, and an actor can collaborate
with another actor many times.

We hope you are used to looking at images of graph schema and using the GSL to
translate into schema statements. We designed this process to follow how ERDs pro‐
vide a programmatic way to translate a conceptual model into schema code.

304 | Chapter 10: Recommendations in Development



Schema Code for Movie Recommendations
From Figure 10-12, we see that there are five vertex labels. The schema code for those 
vertex labels is shown in Example 10-1.

Example 10-1.

schema.vertexLabel("Movie").
       ifNotExists().
       partitionBy("movie_id", Bigint).
       property("tmdb_id", Text).
       property("imdb_id", Text).
       property("movie_title", Text).
       property("release_date", Text).
       property("production_company", Text).
       property("overview", Text).
       property("popularity", Double).
       property("budget", Bigint).
       property("revenue", Bigint).
       create();

schema.vertexLabel("User").
       ifNotExists().
       partitionBy("user_id", Int).
       property("user_name", Text). // Augmented, Random Data by the authors
       create();

schema.vertexLabel("Tag").
       ifNotExists().
       partitionBy("tag_id", Int).
       property("tag_name", Text).
       create();

schema.vertexLabel("Genre").
       ifNotExists().
       partitionBy("genre_name", Text).
       create();

schema.vertexLabel("Actor").
       ifNotExists().
       partitionBy("actor_name", Text).
       create();

Fun fact about the data types you see in Example 10-1: the total revenue for the movie
Avatar was so high that we had to change the data type for budget and revenue from
Int to Bigint. Way to go, James Cameron.

Movie Data: Schema, Loading, and Query Review | 305



During the ETL (extract-transform-load) process in Chapter 11
that we wrote to merge the MovieLens and Kaggle data sources, we
used Python’s Faker library to randomly generate names for our
users. This data is not in any way associated to the users of the
MovieLens project; the names are completely random.

From Figure 10-12, we see that there are six edge labels. The schema code for those
edge labels is shown in Example 10-2.

Example 10-2.

schema.edgeLabel("topic_tagged").
       ifNotExists().
       from("Movie").
       to("Tag").
       property("relevance", Double).
       create()

schema.edgeLabel("belongs_to").
       ifNotExists().
       from("Movie").
       to("Genre").
       create()

schema.edgeLabel("rated").
       ifNotExists().
       from("User").
       to("Movie").
       clusterBy("timestamp", Text). // Makes the ISO 8601 standard easier to use
       property("rating", Double).
       create()

schema.edgeLabel("tagged").
       ifNotExists().
       from("User").
       to("Movie").
       clusterBy("timestamp", Text). // Makes the ISO 8601 standard easier to use
       property("tag_name", Text).
       create()

schema.edgeLabel("acted_in").
       ifNotExists().
       from("Actor").
       to("Movie").
       property("year", Int).
       create()

schema.edgeLabel("collaborated_with").
       ifNotExists().
       from("Actor").

306 | Chapter 10: Recommendations in Development



       to("Actor").
       clusterBy("year", Int).
       create()

We did the data ETL of matching and merging the MovieLens and Kaggle datasets for
you. Along the way, we also formatted the new dataset so that it was ready to be
loaded into DataStax Graph. One change we have made a few times throughout this
book is to format time in the ISO 8601 standard to make it easier to reason about
examples in a book.

Next, let’s look at some of the data and at how to load the datafiles into DataStax
Graph.

Loading the Movie Data
We are continuing to use the bulk loading functionality that comes with DataStax
Graph so that the datasets can be loaded into the underlying tables in Cassandra as
quickly as possible.

Part of that process requires formatting the datafiles to match the schema in DataStax
Graph. We already did that work for you. The work involved writing files that
matched the property names for the vertex and edge schema that we just created in
the last section.

Let’s walk through loading the vertex data and then show the same for our edges.

Loading the vertices
The first thing we want to show you is how we formatted some of the vertex data. We
are going to look at three of the five files. Figure 10-13 shows the first three lines
(including the header) of the movie data that we merged and created for this example.
We trimmed the overview description from this book. The file and loaded data does
contain the full overview of the movie.

Figure 10-13. The header line and first two movies in our data

The header of a vertex file must match the property names found in the DataStax
Graph schema. The first line of Figure 10-13 confirms this to be the case, as we see
that the header values match the property key names we defined in Example 10-1.

Movie Data: Schema, Loading, and Query Review | 307



Additionally, we wanted to make it easier to query and reason about time in this data,
so we transformed the timestamps from epoch to the ISO 8601 standard and stored
them as a string. You can see this in the fifth column from the left in Figure 10-13.
This is not recommended for production as it introduces an extra storage cost, but it
makes it easier to reason about the data when playing around with it.

Let’s look at two more datafiles that we loaded for this example; Table 10-1 shows
some of the actors in the dataset.

Table 10-1. The first five actors from the Actor.csv file

actor_name gender_label
Turo Pajala unknown

Susanna Haavisto unknown

Matti Pellonpää male

Eetu Hilkamo unknown

Kati Outinen female

Last, Table 10-2 shows some of the users we loaded into the database. We augmented
the users with fake names; they are not in any way related to the MovieLens users.

Table 10-2. The first four users from the User.csv file

user_id user_name
1 Laura Pace

2 James Thornton

3 Timothy Fernandez

4 Stacy Roth

We created one csv file per vertex label for these examples, for a total of five files. We
did this extra work so that it would be very easy to load the data directly into Data‐
Stax Graph. Example 10-3 shows the five commands needed to load the data.

Example 10-3. 

dsbulk load -g movies_dev -v Movie
            -url "Movie.csv" -header true
dsbulk load -g movies_dev -v User
            -url "User.csv" -header true
dsbulk load -g movies_dev -v Tag
            -url "Tag.csv" -header true
dsbulk load -g movies_dev -v Genre
            -url "Genre.csv" -header true
dsbulk load -g movies_dev -v Actor
            -url "Actor.csv" -header true

308 | Chapter 10: Recommendations in Development



For each of the five vertex labels, Table 10-3 shows the total number of vertices from
each file that are processed by the bulk loading tool.

Table 10-3. The total number of vertices from each file that will be inserted in our example’s
graph

260860 actor_vertices.csv

1170 genre_vertices.csv

329470 movie_vertices.csv

1129 tag_vertices.csv

138494 user_vertices.csv

Now that we have loaded all of our vertices into our development graph, we can con‐
nect them together with the edge datasets.

Loading the edges
The last concept we want to show you is how we formatted some of the edge data. We
are going to look at three of the six files. Table 10-4 shows the first three lines (header
included) of the rating data that we created for this example.

Table 10-4. The first two ratings by users from the rated_100k_sample.csv file

User_user_id Movie_movie_id rating timestamp
1 2 3.5 2005-04-02 18:53:47

1 29 3.5 2005-04-02 18:31:16

As you have already seen a few times in the book, the header line is the most impor‐
tant concept for formatting your files to match an edge label’s schema. Table 10-4
shows how the data about user ratings matches to the schema in DataStax Graph. The
header line has to have the property names used by the edge table in DataStax Graph;
that is why the first column is labeled User_user_id and the second column is named
Movie_movie_id. You can obtain this information in three different ways: (1) through
the Studio schema inspection tool, (2) via cqlsh, or (3) by following the naming con‐
ventions of the edge tables into Cassandra tables.

Next, Table 10-5 shows the first three lines (header included) of the actor edges that
we created for this example.

Table 10-5. The first two connections from actors to movies from the acted_in.csv file

Actor_actor_name year Movie_movie_id
Turo Pajala 1988 4470

Susanna Haavisto 1988 4470

Movie Data: Schema, Loading, and Query Review | 309



Table 10-5 shows two edges from actors to movies in the database. We see that the
actors Turo Pajala and Susanna Haavisto acted in the movie with a movie_id of
4470 in 1988.

Last, let’s look at the collaborator edges we created for this example, in Table 10-6.

Table 10-6. The first two actor collaborations from the collaborator.csv file

in_actor_name year out_actor_name
Turo Pajala 1988 Susanna Haavisto

Turo Pajala 1988 Matti Pellonpää

Table 10-6 shows two edges about actors who appeared in the same movie. We see
that Turo Pajala and Susanna Haavisto acted in the movie in 1988 and therefore
are listed as collaborators. We expected this based on what we saw in our actor data.

If you would like, you can spend time now looking at all of the edge files that accom‐
pany this text. Since we have done this a few times now, we are going to move for‐
ward to loading the edges into the database.

To load all of the edges, we can use the bulk loading command-line tool to load them
into tables in Apache Cassandra. Example 10-4 shows the six commands needed to
load this data.

Example 10-4. 

dsbulk load -g movies_dev -e belongs_to -from Movie -to Genre
            -url belongs_to.csv -header true
dsbulk load -g movies_dev -e topic_tagged -from Movie -to Tag
            -url topic_tag_100k_sample.csv -header true
dsbulk load -g movies_dev -e rated -from User -to Movie
            -url rated_100k_sample.csv -header true
dsbulk load -g movies_dev -e tagged -from User -to Movie
            -url tagged.csv -header true
dsbulk load -g movies_dev -e acted_in -from Actor -to Movie
            -url acted_in.csv -header true
dsbulk load -g movies_dev -e collaborated_with -from Actor -to Actor
            -url collaborator.csv -header true

For each of the six edge labels, Table 10-7 shows the total number of lines in each file
that are processed by the bulk loading tool.

Table 10-7. The total number of edges from each file to be loaded into our example graph
836408 acted.csv

2706175 collaborator.csv

523689 contains_genre.csv

310 | Chapter 10: Recommendations in Development



11709769 movie_topic_tag.csv

100000 rated.csv

465321 tagged.csv

From here, we are ready to query this data in DataStax Graph. We want to start with
some basic exploration of the data. For review, we are going to do three exploration
queries that repeat the first three query patterns we taught in this book: walking
through neighborhoods, trees, and paths in the movie data.

There are so many more interesting queries we could do with this data. We hope you
explore what is possible in development mode in your notebook by applying the tech‐
niques from Chapter 4, Chapter 6, and Chapter 8 to answer other interesting
questions.

Neighborhood Queries in the Movie Data
After loading a new dataset into your graph, the first queries you will want to try
explore first neighborhoods around a single vertex. Let’s recall the basics of walking
around the first neighborhood of your data to show a specific user’s movie ratings.

The first query we are going to explore in this data is: for user 134558, show me all
movies rated by this user, with each movie’s rating. Example 10-5 shows this query in
Gremlin.

Example 10-5.

dev.V().has("User","user_id", 134558).   // WHERE: start at the user
        outE("rated").                   // JOIN: walk out to all rated edges
        project("movie", "rating", "timestamp"). // CREATE a json payload
          by(inV().values("movie_title")).       // JOIN and SELECT the movie title
          by(values("rating")).                  // SELECT the edge's rating
          by(values("timestamp"))                // SELECT the edge's timestamp

The first three results of Example 10-5 are shown in Example 10-6.

Example 10-6.

{
  "movie": "Toy Story (1995)",
  "rating": "3.5",
  "timestamp": "2013-06-08 08:22:47"
},
{
  "movie": "GoldenEye (1995)",
  "rating": "3.5",
  "timestamp": "2013-06-08 08:25:13"
},

Movie Data: Schema, Loading, and Query Review | 311



{
  "movie": "Twelve Monkeys (aka 12 Monkeys) (1995)",
  "rating": "2.0",
  "timestamp": "2013-06-08 08:23:45"
},...

The result in Example 10-6 is a list of maps. Each map has the three keys, movie,
rating, and timestamp, which set up in our query from Example 10-5. We selected
the values for each respective key, where you also see that the ISO 8601 standard is
used for representing timestamps.

Figure 10-14 shows another way to think of the first three results from Example 10-6.

Figure 10-14. Visualizing the first three results of Example 10-5

More often than not, there is a little bit of manipulation you would like to do to your
query results. We have practiced shaping query results many times throughout this
book. Let’s take one more look at how we could query the first neighborhood around
user 134558 to list our user’s movies by the ones they liked, disliked, or are neutral
about.

Grouping a user’s movie ratings by liked, disliked, or neutral

In this next example, we want to query the first neighborhood of user 134558. But
this time we want to group the movies rated by 134558 according to whether the user
liked, disliked, or was neutral about them. The rating scale in our data ranges from

312 | Chapter 10: Recommendations in Development



0.5 to 5.0. We will say that movies with a rating of 4.5 or higher are liked. Movies
with a rating between 3.0 and 4.5, but not including 4.5, will be considered neutral.
Movies with a rating between 0 and 3.0, but not including 3.0, will be considered dis‐
liked. Yes, this is a different rating system than the models we walked through before;
we are using this example to teach concepts in shaping neighborhood results. Eventu‐
ally, we will get back to recommendations.

Let’s look at how to do this in Gremlin in Example 10-7.

If you prefer, the step choose() can replace coalesce() in
Example 10-7.

Example 10-7.

1 dev.V().has("User","user_id", 134558). // WHERE: start at the user
2         outE("rated").                 // JOIN: walk to the "rated" edge
3         group().                       // CREATE: make a group
4           by(values("rating").         // SELECT KEYS: according to the ratings
5              coalesce(__.is(gte(4.5)).constant("liked"),   // KEY 1: "liked"
6                       __.is(gte(3.0)).constant("neutral"), // KEY 2: "neutral"
7                        constant("disliked"))).             // KEY 3: "disliked"
8           by(inV().values("movie_title").fold()) // SELECT VALUES: the values

Let’s walk through each step of Example 10-7 before we look at the results in
Example 10-8. Lines 1 and 2 in Example 10-7 start at user 134558 and walk out to
each of the user’s ratings. Line 3 in Example 10-7 creates a group. A group in Gremlin
always has two components: keys and values. The first by() step wraps lines 4
through 7 and sets up the keys. The second by() step is on line 8 and determines the
values for the group. The keys will be “liked,” “neutral,” or “dislike.” We use the coa
lesce step in Gremlin like an if/elif/else statement to determine into which key
the user’s rating will be grouped. Line 5 filters all ratings with a value of 4.5 or higher
into the “liked” group. After that filter, the remaining edges flow to the next filter on
line 6, which grabs all ratings of 3.0 or higher for the “neutral” group. All other edges
will have a rating under 3.0 and will go into the “disliked” key.

Line 8 of Example 10-7 is the last step for shaping the query results. For each object in
this map, we want the value to be the movie title. Therefore, we have to walk from the
edge into the movie vertex and grab the movie title.

Example 10-8 displays the first three movies for each key.

Movie Data: Schema, Loading, and Query Review | 313



Example 10-8.

{
    "neutral": [
                        "GoldenEye (1995)",
                        "Babe (1995)",
                        "Apollo 13 (1995)",
                        ...
                        ],
    "liked": [
                        "Braveheart (1995)",
                        "Shawshank Redemption The (1994)",
                        "Forrest Gump (1994)",
                        ...
                        ],
    "disliked": [
                        "Twelve Monkeys (aka 12 Monkeys) (1995)",
                        "Stargate (1994)",
                        "Ace Ventura: Pet Detective (1994)",
                        ...
                        ]
}

The first two example queries in this chapter give you an idea of how to walk through
the neighborhoods of data in the movie database. We hope they were a good review
of the different queries we have been teaching throughout this book.

The next main example is to walk through a tree within this dataset.

Tree Queries in the Movie Data
As we talked about when we did the tree queries through our sensor data, your data’s
branching factor can get out of hand really quickly. That remains true for the data
that we loaded for this example.

We went through the difficulty of integrating the Kaggle dataset into our database so
that we could have some type of tree to query in our data. We like to think of the
following query as looking at an actor’s “family tree” of collaborators.

The tree we want to find in our data starts with Kevin Bacon and finds a lineage of
actors he worked with. We kept it simple and limited the query in two ways. First, we
wanted to consider only his collaborations from 2009 onward. And because everyone
is somehow connected to Kevin Bacon, we wanted to look only three levels deep into
the tree.

Let’s look at the query in Example 10-9.

314 | Chapter 10: Recommendations in Development



Example 10-9.

1 dev.V().has("Actor", "actor_name", "Kevin Bacon").as("Mr. Bacon").
2         repeat(outE("collaborated_with").has("year", gte(2009)).as("year").
3                inV().as("collaborated_with").
4                simplePath()).
5         times(3).
6         path().
7           by("actor_name").
8           by("year")

The query in Example 10-9 starts at Kevin Bacon and walks out to all of his collabora‐
tors starting in 2009. This repeats three times, where we eliminate repeating paths
through the data with simplePath() on line 4. After walking three layers deep, we
shape the results on lines 6 through 8 by returning the actor’s name from the vertices
and the year from the edges in the path object.

Example 10-10 shows the first two results from Example 10-9.

Example 10-10.

{
    "labels": [["Mr. Bacon"],["year"],["collaborated_with"],
               ["year"],["collaborated_with"],
               ["year"],["collaborated_with"]],
    "objects": ["Kevin Bacon","2009","David Koechner",
                "2009","Bob Gunton",
                "2009","Gretchen Mol"]
},
    "labels": [["Mr. Bacon"],["year"],["collaborated_with"],
               ["year"],["collaborated_with"],
               ["year"],["collaborated_with"]],
    "objects": ["Kevin Bacon","2009","Renée Zellweger",
                "2010","Forest Whitaker",
                "2009","Jessica Biel"]
},...

Figure 10-15 visualizes the tree of results from Example 10-10.

Movie Data: Schema, Loading, and Query Review | 315



Figure 10-15. Visualizing the actor tree of the first five results from Example 10-10

The last query we want to explore in this data recalls the pathfinding queries we built
over the Bitcoin data. Let’s look at how to find paths in this dataset.

Path Queries in the Movie Data
Every actor is connected to Kevin Bacon. Let’s use this colloquialism to find paths
between two actors in our dataset.

Example 10-11 uses the collaborated_with edges to find the first three shortest
paths between Kevin Bacon and Morgan Freeman.

Example 10-11.

1 dev.V().has("Actor", "actor_name", "Kevin Bacon").as("Mr. Bacon").
2         repeat(outE("collaborated_with").as("year").
3                inV().as("collaborated_with")).
4         until(has("Actor", "actor_name", "Morgan Freeman").as("Mr. Freeman")).
5         limit(3).
6         path().
7           by("actor_name").
8           by("year")

Recall that the pattern of repeat().until() uses breadth-first search without a bar‐
rier. Therefore, when we have limit(3) on line 5 in Example 10-11, we are really
finding the three shortest paths in this dataset that satisfy the stopping condition. As
we have walked through many times throughout this book, lines 6, 7, and 8 shape the
results of the path object.

Example 10-12 shows the JSON payload for Example 10-11.

316 | Chapter 10: Recommendations in Development



Example 10-12.

{
    "labels": [["Mr. Bacon"],
               ["year"],["collaborated_with"],
               ["year"],["collaborated_with"]],
    "objects": ["Kevin Bacon",
                "1979","Julie Harris",
                "1990","Morgan Freeman"]
},{
    "labels": [["Mr. Bacon"],
               ["year"],["collaborated_with"],
               ["year"],["collaborated_with"]],
    "objects": ["Kevin Bacon",
                "1982","Mickey Rourke",
                "1989","Morgan Freeman"]
},{
    "labels": [["Mr. Bacon"],
               ["year"],["collaborated_with"],
               ["year"],["collaborated_with"]],
    "objects": ["Kevin Bacon",
                "1983","Ellen Barkin",
                "1984","Morgan Freeman"]
}

For fun, we also wanted to take a look at the results in their graph structure.
Figure 10-16 shows the three paths from Example 10-12.

Figure 10-16. Visualizing the first three shortest collaborator paths from the results of
Example 10-11

We hope you found the four queries in this section to be a helpful review of the query
concepts we have been teaching throughout this book. We leave it up to you to turn
these into production queries; we won’t be doing that in the production recommen‐
dation chapter.

Movie Data: Schema, Loading, and Query Review | 317



Now let’s return to the topic of this chapter: recommendation systems. The next sec‐
tion will build up different Gremlin queries to show you how to do collaborative
filtering.

Item-Based Collaborative Filtering in Gremlin
We have built up our use case, defined collaborative filtering, seen some examples,
and explored our data. The last part of this chapter focuses on performing item-based
collaborative filtering to recommend new movies to a user in our data. We are going
to show you three different ways to do that in a development environment.

Let’s get started with the query and results for the first approach to item-based collab‐
orative filtering with graph data.

Model 1: Counting Paths in the Recommendation Set
The first way that we will be recommending movies to a user will follow the basic
path-counting approach. The general process of walking through your graph data to
do this is outlined in Example 10-13.

Example 10-13.

For a specific user
    Walk to the last movie they rated
    Walk to all users who highly rated that movie
    Walk to all movies highly rated by these users
    Group and count all movies in the recommendation set
    Sort the movies by frequency, in descending order
    The top movies form the recommendation set

The pseudocode in Example 10-13 outlines how we are going to walk through our
graph data for our first collaborative-filtering example. This first approach essentially
counts how often a movie shows up in the recommendation set. The movies with the
highest scores would be considered the most likely recommendations based on the
user’s most recent rating.

Example 10-14 shows the Gremlin query from the approach outlined in
Example 10-13.

Example 10-14.

1 dev.V().has("User","user_id", 694).   // look up a user
2    outE("rated").                     // traverse to all rated movies
3      order().by("timestamp", desc).   // order all edges by time
4      limit(1).inV().                  // traverse to the most recent rated movie
5      aggregate("originalMovie").      // put this movie in a collection
6    inE("rated").has("rating", gt(4.5)).outV(). // users who rated this movie 5

318 | Chapter 10: Recommendations in Development



7    outE("rated").has("rating", gt(4.5)).inV(). // the full recommendation set
8    where(without("originalMovie")).   // remove the original movie
9    group().                           // create a map of the recommendations
10     by("movie_title").               // an entry's key is the movie title,
11     by(count()).                     // the value will be the total # of ratings
12   unfold().                          // unfold all map entries into the pipeline
13   order().                           // order the results
14     by(values, desc)                 // by their count, descending

Let’s step through Example 10-14. Lines 1 and 2 look up a specific user vertex in the
graph and traverse out to all of the user’s ratings. Lines 3 and 4 sort the ratings by
time and traverse through only the most recent rating to the movie vertex. We store
this movie in a collection on line 5 so that we can later remove the movie from the
recommendation options. On line 6, we walk from the movie to all users who have
rated that movie with a 5. We traverse from these users to all movies that they have
also rated with a 5. At this point, we remove the original rated movie on line 8.

We start formatting our result set on line 9, where we create a map. Line 10 shows
that the keys of the map will be movie_title. Line 11 shows that the values will be the
total number of traversers that have reached that movie. Because this is one map, we
unfold all entries in the map into the traversal pipeline on line 12. Lines 13 and 14
order the individual maps according to their values.

Figure 10-17 shows the top five recommended movies from Example 10-14.

Figure 10-17. The top five results from Example 10-14

In Figure 10-17, we see that The Shawshank Redemption has a score of 24, Forrest
Gump has a score of 22, and Apollo 13 has a score of 21.

This first model is based only on tracing 5-star ratings through our sample data. Let’s
see how to make the ranking algorithm a bit more sophisticated.

Model 2: NPS-Inspired
The second way we want to recommend movies uses a version of the Net Promoter
Score (NPS). We will consider a rating of 4 or higher to represent a liked movie and a

Item-Based Collaborative Filtering in Gremlin | 319



rating less than 4 to represent a disliked movie. We will add this into the same process
that we outlined before when we process the user’s ratings. Let’s look at the pseudo‐
code in Example 10-15 to understand how we will be walking through the graph’s
data.

Example 10-15. 

For a specific user
    Walk to the last movie they rated
    Walk to all users who highly rated that movie
    Walk to all outgoing rating edges
        For each edge
            If the rating is 4 or higher,
                Store 1 in the traverser's sack
            If the rating is less than 4,
                Store -1 in the traverser's sack
    Walk into all movies
    Group all movies in the recommendation set
    For each movie in the group,
        Calculate the movie's NPS by adding all the traversers' sacks
    Sort the movies by NPS, in descending order
    The top movies form the recommendation set

The approach outlined in Example 10-15 is very similar to our first model. The only
addition occurs when we traverse out from the user set to all of the user’s ratings
because we are including all ratings. If the rating is 4 or greater, we will add one to the
overall NPS. If the rating is less than 4, we will subtract one from the overall NPS.

We will use the sack() step in Gremlin to do this as efficiently as possible. We will
allow each traverser to walk through the data and keep track of the edge’s rating along
the way in its sack. Then we will group all of the traversers together as we did before.
But instead of counting the total number of traversers that reached a movie, we will
add together the values stored in their sack to create an NPS. After that, we will fol‐
low the same ordering process that we saw in the last query.

Example 10-16 shows the Gremlin query from the approach outlined in
Example 10-15.

Example 10-16.

1 dev.withSack(0.0).                          // use sack to calculate NPS
2    V().has("User","user_id", 694).
3    outE("rated").
4      order().by("timestamp", desc).
5      limit(1).inV().
6      aggregate("originalMovie").
7    inE("rated").has("rating", gt(4.5)).outV().
8    outE("rated").

320 | Chapter 10: Recommendations in Development



9       choose(values("rating").is(gte(4.0)), // testing the rating value
10             sack(sum).by(constant(1.0)),   // add 1 if user liked the movie
11             sack(minus).by(constant(1.0))).// subtract 1 if disliked
12      inV().
13   where(without("originalMovie")).
14   group().
15     by("movie_title").
16     by(sack().sum()).                      // NPS: sum all sack values
17   unfold().
18   order().
19     by(values, desc)

Let’s step through Example 10-16. The first new piece is the use of withSack(0.0) on
line 1, like we saw in the last chapter on calculating weighted paths. Lines 2 through 8
follow the same setup as the first query we walked through in this section.

Line 9 of Example 10-16 shows how we start to set up for calculating the NPS based
on a user’s rating. We are showing you how to use choose(condition, true,

false) semantics with Gremlin. The condition is on line 9 and checks if the edge’s
rating is greater than or equal to 4. If this is true, line 10 shows how we add 1.0 into
the traverser’s sack. If the condition on line 9 is false, we subtract 1.0 from the tra‐
verser’s sack. On line 12, the traversers move to all of the movies for the ratings, and
line 13 removes the original movie.

Lines 14 through 19 follow the same grouping and sorting process as before, but with
one change. Line 16 shows that the value for a movie in the map is the sum of all of
the traverser’s sacks that arrived at that movie. We will be adding together a bunch of
1s and/or –1s. The top five recommended movies from Example 10-16 are shown in
Figure 10-18.

Figure 10-18. The top five results from Example 10-16

In Figure 10-18, we see a different set of recommendations from what we saw in
Figure 10-17: The Fugitive has a score of 30, Star Wars: Episode IV—A New Hope has a
score of 28, and Forrest Gump also has a score of 28.

Item-Based Collaborative Filtering in Gremlin | 321



This second model can still produce a repetitive set of results in which popular mov‐
ies continue to show up as the main recommendations. Let’s take this one step further
and see how we can normalize the result set so we can try to find a diverse set of
recommendations.

Model 3: Normalized NPS
The final way we will use item-based collaborative filtering on our data illustrates one
way to use normalization in the scoring model. We will still use a movie’s NPS as we
did in the last section but will ultimately divide the NPS by the total number of rat‐
ings we have observed for that movie. Example 10-17 walks through the pseudocode
for how we will do this as we walk through our graph data.

Example 10-17.

For a specific user
    Walk to the last movie they rated
    Walk to all users who highly rated that movie
    Walk to all outgoing rating edges
        For each edge
            If the rating is 4 or higher, store 1 in the traverser's sack
            If the rating is less than 4, store –1 in the traverser's sack
    Walk into all movies
    Group all movies in the recommendation set
    For each movie in the group,
        Calculate its NPS
        Count all of its incoming ratings
        Divide NPS by incoming ratings

Example 10-17 follows the same process as when we had to calculate our NPS. How‐
ever, when we create our map of recommendations, we will divide the NPS by the
movie’s total number of incoming ratings. Let’s see how we will do this in Gremlin in
Example 10-18.

Example 10-18.

1 dev.withSack(0.0).
2    V().has("User","user_id", 694).
3    outE("rated").
4      order().by("timestamp", desc).
5      limit(1).inV().
6      aggregate("originalMovie").
7    inE("rated").has("rating", gt(4.5)).outV().
8    outE("rated").
9       choose(values("rating").is(gte(4.0)),
10             sack(sum).by(constant(1.0)),
11             sack(minus).by(constant(1.0))).
12      inV().

322 | Chapter 10: Recommendations in Development



13   where(without("originalMovie")).
14   group().
15     by("movie_title").
16     by(project("numerator", "denominator"). // NPS/degree(movie)
17          by(sack().sum()).                  // this is NPS
18          by(inE("rated").count()).          // this is the degree of the movie
19        math("numerator/denominator"))       // this is how we divide them

Lines 1 through 15 in Example 10-18 are the same as the first 15 lines of
Example 10-16, in which we calculated the NPS. The new code spans lines 16 through
19 and shows how to divide the NPS by the in-degree of the movie.

On line 16 of Example 10-18, we are filling in the values for the movies that will pop‐
ulate our map of results. The value that will go into the map will be the NPS for the
movie divided by its total number of ratings. We create a map with only two elements
by using the project() step. Then the math step on line 19 will divide these two val‐
ues and put the result into the group. Line 17 forms the first element of the map and
is the movie’s NPS. Line 18 forms the second element and is the total number of
incoming ratings. The first five results are shown in Figure 10-19.

Figure 10-19. The top five results of Example 10-18

The results of Figure 10-19 show the first five examples of the normalized NPS. All
five examples have a positive score and would be considered “liked” according to this
model. There are movies with negative scores that you can explore in the Studio
Notebook for this chapter.

Some of you may be wondering why we aren’t showing the sorted version of
Figure 10-19 and the top five recommendations. We are showing the first five instead
of the top five because this final query is pushing the limits of what we can reasonably
compute within a traversal, even on this small sample set. It is that additional
inE("rated").count(), which is another full partition scan per vertex, that is mak‐
ing this query extremely expensive.

Item-Based Collaborative Filtering in Gremlin | 323

https://oreil.ly/egfkr
https://oreil.ly/egfkr


Choosing Your Own Adventure: Movies and Graph Problems Edition
In order to be able to deliver item-based collaborative filtering in a production envi‐
ronment with real user expectations, we have gone significantly past what would be
reasonable to do in real time.

So at this point, you get to choose where to go next. You have two options.

The first option is to go back and understand the data we merged for this example.
Chapter 11 takes a brief side tour into how we matched the MovieLens and Kaggle
data together for the model and queries you saw in this chapter. We would bet that
any graph user has to walk through some form of data cleaning and merging, no mat‐
ter how simple it may be. If you are interested in simple entity resolution, continue on
to the next chapter.

If you want to skip the nuances of basic entity resolution, we won’t blame you. In that
case, jump ahead to Chapter 12 to continue with the production version of item-
based collaborative filtering. In Chapter 12, we will explain why the traversals we have
worked through here in development mode cannot be run in a production environ‐
ment. We will walk through the last production tip for this book and show you how
to deliver recommendations from item-based collaborative filtering with graph data.

324 | Chapter 10: Recommendations in Development



CHAPTER 11

Simple Entity Resolution in Graphs

Thinking back to our first example in this book, how do you know who your cus‐
tomer is in your C360 model?

Do you have a strong identifier in your dataset, like a social security number or mem‐
ber ID? How much do you trust those identifiers, and their source, to represent
unique people with 100% accuracy?

Different industries have different tolerance levels for inaccuracy.

In healthcare, false positives can lead to misdiagnoses and potentially deadly distribu‐
tions of medicine. On the other hand, if you are working with data about movies,
incorrect movie resolution will lead to a less-than-seamless user experience for your
application, but at least we are not talking about someone’s life being on the line.

The problem of inferring who is whom and what is what from keys and values in
your data source has been a challenge since we began writing down information
about people. This problem is called entity resolution and has a long, storied history
of technical solutions.

For any team working on entity resolution, it is important to get things right within
whatever margin of error is acceptable in your business domain.

Chapter Preview: Merging Multiple Datasets into One
Graph
In this chapter, we will unveil how we merged two movie datasets, the challenges we
faced along the way, and the decisions we made.

First, we will define entity resolution and how it relates to two problems we have been
teaching in this book: C360 and movie recommendations.

325



The second section walks through the two datasets in detail. We will create a detailed
understanding of the data to iteratively build up a conceptual graph model. The final
graph model we build out in this section is the same conceptual graph model we
introduced for development in Chapter 10.

The third section steps through our merging process. We want you to have the right
expectation going into our methodology section: the type of matching and merging
required with the two data sources does not need graph structure for entity resolu‐
tion. We hope the details in this section help you see why.

We’ll then dig into the errors we discovered during the merging process and intro‐
duce the difference between false positives and true negatives in the data.

Finally, we’ll zoom back out from the specific details of merging our movie data. We
will take a quick look at some common problems that misapply the use of graph
structure for resolving entities in data. Then we will show a few examples in which
graph structure augments an entity resolution pipeline.

Ultimately, our goal in this chapter is twofold.

First, we want to show you what it is really like to merge data. Warning: the process
isn’t glamorous. Merging datasets is tedious work that is often overlooked even
though it is a common first step to creating a graph model.

The second goal of this chapter is to educate you on the overall problem domain.
Because merging data is one of the most common first steps to creating a graph data‐
base, we want the information to help you understand all of the tools you need for
solving this complex problem. Hint: most if not all of the entity resolution techniques
you will most likely be using do not require graph structure to figure out who is
whom.

Defining a Different Complex Problem: Entity Resolution
The overarching theme of the matching and merging process between two data sour‐
ces is a vast problem domain called entity resolution. Informally, the complex problem
of entity resolution aims to resolve the question of who is whom or what is what
across different data sources.

Is “Jon Smith” the same person as “John Smith”? Or in the case of our movie data, is a
movie from MovieLens called Das Versprechen the same as one from Kaggle named
The Promise?

However, in most traditional cases, a unique user identifier that links identities is
likely not available for many reasons: use of external source data, unavailability of
data due to user privacy constraints, or inconsistent data.

326 | Chapter 11: Simple Entity Resolution in Graphs



In most cases, logical identity has to be calculated from the keys and values of the
present properties about each piece of data.

Historically, entity resolution (also referred to as entity matching or record linkage)
relied on a set of probabilistic rules, usually defined by a domain expert, to take into
account data distributions and biases of data for a particular domain. The set of prob‐
abilistic rules combine to form a functional model to calculate whether entity a is
equal to entity b.

Typically, entity resolution starts with finding strong identifiers that can be linked
across systems of record. After that, you begin to look for different properties about
the data to determine whether or not the systems really are referring to the same logi‐
cal identity.

The process for resolving identities within different data sources is outlined in
Example 11-1; we will refer back to this outline a few times throughout the rest of the
chapter.

Example 11-1. 

A. Identify your data sources
B. Analyze the keys and values available from each source
C. Map out which keys strongly identify a single logical concept
D. Map out which keys weakly identify a single logical concept
E. Iterate until your matched and merged data is "good enough":
    1. Form a matching process
    2. Identify incorrect matches
    3. Resolve errors in the matching process
    4. Repeat Step #1

You analyze your sources and the keys you have within them and iteratively build up
rules on how to match them together.

Sounds simple enough.

But the entire process hinges on the idea of “good enough” that we state at step E.
This is where the process begins to feel more like an art than a science.

From a mathematical perspective, Figure 11-1 defines how you quantify “good
enough.”

Figure 11-1. The mathematical definition of entity resolution models

Figure 11-1 reads as: for all a and b in your dataset D, define a function f. The func‐
tion f compares two pieces of data, f(a,b), and gives you some score. If the score is
above a certain threshold t, then we say that a is the same as b.

Defining a Different Complex Problem: Entity Resolution | 327



Example 11-1, Figure 11-1, and “Does Jon Smith = John Smith?” are all saying the
same thing.

Seeing the Complex Problem
To illustrate this complex problem, Figure 11-2 shows the concept of matching and
merging data across disparate sources of data.

Figure 11-2. A visual description of the conceptual problem definition for entity
resolution

Figure 11-2 displays a visualization of the entity resolution problem as a graph model.
The graph on the left in Figure 11-2 illustrates the current state for most data archi‐
tectures; mobile, web, and onsite databases contain disconnected views of the same
customer. The most popular use of graph technology, a Customer 360 model, starts
from the unified, connected graph, like what is shown on the right in Figure 11-2.

And the first example in this book started with a graph model exactly like the right
side of Figure 11-2.

The ease with which you can describe all components of this problem with a graph
model illustrates exactly why many teams misapply graph technology for the entire
entity resolution process, most of which doesn’t rely on a graph for its technical
solution.

So let’s put entity resolution into practice.

328 | Chapter 11: Simple Entity Resolution in Graphs



1 F. Maxwell Harper and Joseph A. Konstan, “The MovieLens Datasets: History and Context,” ACM Transac‐
tions on Interactive Intelligent Systems (TiiS) 5, no. 4 (2016): 19, https://doi.org/10.1145/2827872.; Rappeneau,
Stephane. “350 000+ movies from themoviedb.org,” Kaggle, 19 July 2016, https://www.kaggle.com/stephanerap
peneau/350-000-movies-from-themoviedborg.

Analyzing the Two Movie Datasets
We want to show you how we analyzed two popular open source movie datasets—
MovieLens and Kaggle.1 Our process parallels steps A through D in Example 11-1.

We selected the MovieLens dataset so that we could use a very diverse and well-
documented dataset of user ratings of movies. The Kaggle dataset augments the Mov‐
ielens data with details and actors for each movie.

Deciding to bring together two datasets ended up being one of the
best decisions we made for this book because it required us to
really dig into the process of what it is like to get started with graph
technology. To illustrate that, this section walks you through
exactly how we reasoned about our conceptual graph data model as
we merged these two datasets.

Starting with the MovieLens source, we will take a look at the datafiles available and
how they will fit together. Then we will walk through the Kaggle data. The most
important part of this process is identifying which keys and values from the Kaggle
dataset refer to the same logical concepts from the MovieLens dataset. Specifically, we
will be looking for which strong identifiers we can use to match the datasets together.

The upcoming section is long and detailed to give you a real glimpse into the process.

MovieLens Dataset
There are six files that we used for our schema and example from the MovieLens
dataset:

1. links.csv

2. movies.csv

3. ratings.csv

4. tags.csv

5. genome-tags.csv

6. genome-scores.csv

Analyzing the Two Movie Datasets | 329

https://doi.org/10.1145/2827872
https://www.kaggle.com/stephanerappeneau/350-000-movies-from-themoviedborg
https://www.kaggle.com/stephanerappeneau/350-000-movies-from-themoviedborg


We are going to step through each of the six files while we iteratively construct our
developmental graph model from Chapter 10. There are only five upcoming subsec‐
tions, however, because we are going to talk about genome-tags.csv and genome-
scores.csv in the same section.

1) Links

We started with the links.csv file from MovieLens because it is the source of strong
identfiers to external data sources. The links.csv file contains 27,278 lines of linking
identifiers that can be used to link external sources of movie data. Each line of this file
after the header row represents one movie and has the following format:

movieId,imdbId,tmdbId

Each strong identifier is defined as follows:

1. movieId is an identifier for movies used by the MovieLens project.
2. imdbId is an identifier for movies used by IMDB.
3. tmdbId is an identifier for movies used by TMDB.

For example, the movie Toy Story has a movieId of 1 (https://movielens.org/movies/1),
an imdbId of tt0114709 (http://www.imdb.com/title/tt0114709), and a tmdbId of 862
(https://www.themoviedb.org/movie/862).

We started the data modeling process with this file and built the schema shown in
Figure 11-3.

Figure 11-3. The first step in our data modeling process with the MovieLens dataset:
mapping the values from the links file into a vertex label

The schema in Figure 11-3 has one vertex label: Movie. This vertex has a partition key
of the movie_id and two additional properties: tmdb_id and imdb_id. We changed
the casing from camelCase to snake_case to conform to naming standards when
working with Apache Cassandra.

330 | Chapter 11: Simple Entity Resolution in Graphs

https://movielens.org
http://www.imdb.com
https://www.themoviedb.org
https://movielens.org/movies/1
http://www.imdb.com/title/tt0114709
https://www.themoviedb.org/movie/862


Following the process we outlined in Example 11-1, we learned the following infor‐
mation about this file:

1. There are 27,278 movies in total.
2. 27,278 movies have an imdbId (100% coverage).
3. 26,992 movies have a tmdbId (98.95% coverage). Note: these movies also have an

imdbId.
4. 252 movies are missing a tmdbID.

Those of you who are checking the math here may have observed that 27,278 does
not equal 26,992 + 252. The comparison is off by 34 because there are 17 errors in
this dataset in mapping a movie’s tmdbId to its imdbId. We will delve into this issue in
a later section.

This information tells us that the MovieLens data has 100% coverage of strong identi‐
fiers from the IMDB data source. Therefore, the first identifier to check when match‐
ing into this data will be the imdb_id.

Let’s look at the dataset that starts to populate the data model with more information
about each movie.

2) Movies

The MovieLens dataset has a movies.csv file that contains a title and genres for each
movie. The MovieLens resources indicate that we connect this data to the links.csv
information via the movieId.

There is an entry in the movies file for each of the 27,278 movies in the dataset. Each
line has the structure:

movieId,title,genre_1|genre_2|...|genre_n

According to the MovieLens documentation, the movie titles were entered manually
or imported from the MovieLens project. The genres are a pipe-delimited list and are
selected from topics such as Action, Adventure, Comedy, Crime, Drama, and
Western.

We discovered that there are 18 unique genres in this set.

We continued the data modeling process with this file and added the schema. The
next iteration of our schema is shown in Figure 11-4.

Analyzing the Two Movie Datasets | 331



Figure 11-4. The second step in our data modeling process with the MovieLens dataset:
mapping the values from the movies file into an edge, a new vertex label, and new
properties

The movies.csv file gave us three additions to our data model. The mapping of the
movies.csv file to three additions to the data model is shown in Figure 11-4.

First, we augmented the Movie vertex to have a movie_ title property. Second, we
created a Genre vertex and partitioned that vertex by the genre_name. Third, we cre‐
ated an edge from the Movie vertex to the Genre vertex with the label belongs_to.

We needed the MovieLens dataset for its user ratings. Let’s take a look at that file next.

3) Ratings

There are 20,000,263 ratings from users to a movie in the ratings.csv file. Each line
of this file represents one rating by one user. The format of the file is:

userId,movieId,rating,timestamp

This file gives us our first glimpse of users from the MovieLens database. There are
138,493 unique userIds across the 20-million-plus ratings. Ratings are made on a

332 | Chapter 11: Simple Entity Resolution in Graphs



5-star scale, with half-star increments [0.5 stars, 5.0 stars]. Timestamps are in epoch:
seconds since midnight Coordinated Universal Time (UTC) of January 1, 1970.

The ratings.csv file introduces a new vertex and edge label into our data model.
Figure 11-5 augments the schema with this new information.

Figure 11-5. The third step in our data modeling process with the MovieLens dataset:
mapping the values from the ratings file into vertex and edge labels

As seen in Figure 11-5, our data model now has a User vertex label and a rated edge
label. We partitioned the User vertices by the user_id. We added the rating and
timestamp properties onto the rated edge.

4) Tags
In addition to ratings, the users also provided their own tags about the data. Each tag
is a single word or short phrase and was created by the user. There are 465,564 tags
created by users about movies.

Each line in the tags.csv file has the structure:

userId,movieId,tag,timestamp

We use the information from the tags file to continue to build our data model. The
next iteration is shown in Figure 11-6.

Analyzing the Two Movie Datasets | 333



2 Jesse Vig, Shilad Sen, and John Riedl, “The Tag Genome: Encoding Community Knowledge to Support Novel
Interaction,” ACM Transactions on Interactive Intelligent Systems (TiiS) 2, no. 3 (2012): 13, http://doi.acm.org/
10.1145/2362394.2362395.

Figure 11-6. The fourth step in our data modeling process with the MovieLens dataset:
mapping the values from the tags file into vertex and edge labels

As illustrated in Figure 11-6, we can link a tag from a user to a movie using the
userId and movieId. We modeled the tag_name and timestamp on the tagged edge.

There is one last concept from the MovieLens data to add to our data model: the tag
genome.

5) Tag genome
There are two files that you can find within the collection of MovieLens datasets:
genome-tags.csv and genome-scores.csv. These two files analyze the tags we mod‐
eled in Figure 11-6 and represent how strongly a movie can be described by proper‐
ties from the user tags.

The tag genome was computed using a machine learning algorithm on user-
contributed content, including tags, ratings, and textual reviews.2

334 | Chapter 11: Simple Entity Resolution in Graphs

http://doi.acm.org/10.1145/2362394.2362395
http://doi.acm.org/10.1145/2362394.2362395


The file genome-scores.csv contains 11,709,768 movie-tag relevance scores in the
following format:

movieId,tagId,relevance

The second file, genome-tags.csv, provides the tag descriptions for 1,128 tags in the
genome file, in the following format:

tagId,tag

The tags give us a new vertex label and edge label for this data set, and are the last
iteration in modeling with the MovieLens data. The tagId will map to the partition
key for the Tag vertex, tag_id, and the tag will map to tag_name. Let’s take a look in
Figure 11-7.

Figure 11-7. The last step in our data modeling process with the MovieLens dataset:
mapping the values from the genome files into our schema

The conceptual data model in Figure 11-7 represents the full mapping of the Movie‐
Lens data into a graph model. The strong identifiers within this model are the most
important pieces to understand and follow. Among all of the strong identifiers, the
most important to follow is movie_id, because it is used in every file to connect each
concept to a movie.

You may choose to map the data differently, and that is OK. It all comes down to how
you end up querying the information and the questions you want to ask from these
sets in a production environment.

The model we have in Figure 11-7 is a good starting place for development.

Analyzing the Two Movie Datasets | 335



Let’s build on this model with the data available from Kaggle.

Kaggle Dataset
There are two main sources of information from a dataset on Kaggle that we are
going to use to augment our data model: movie data and actor data. Let’s follow the
same process as we did with the MovieLens data to continue to build our data model.

Movie details
The Kaggle dataset is an excellent source for two reasons. First, it contains the most
complete listing of movie information, with data available for 329,044 unique movies.

The plethora of details available for each movie is the second reason the Kaggle data
is an excellent source. The file that contains all of the details about a movie is All
MoviesDetailsCleaned.csv. There are 22 different headers in this file that describe
additional publicly available information about a movie, such as its budget, original
language, overview, popularity, production companies, runtime, tagline, release date,
and many other facts.

The most important keys in this data are id and imdb_id. Here is what we learned
about the strong identifiers from the Kaggle data:

1. The id from the Kaggle dataset maps to the tmdb_id from TMDB.
2. The imdb_id maps to the movie IDs from IMDB.
3. All 329,044 movies from the Kaggle dataset have identifiers from TMDB.
4. 78,480 movies from the Kaggle dataset are missing an ID from IMDB.
5. The only other information we have from Kaggle to compare with the MovieLens

data is a movie’s title.

The coverage of strong identifiers in the Kaggle dataset helps us begin to understand
how we are going to match and merge this data with MovieLens. The Kaggle data
source has 100% coverage on strong identifiers from TMDB, whereas the MovieLens
data source has almost 100% coverage on strong identifiers from IMDB.

A mismatch in strong identifier coverage between the data sources is both bad and
good. It is bad because the matching process is not going to be straightforward. The
silver lining, however, is that this example is going to make for a great educational
tool on matching data.

From the AllMoviesDetailsCleaned.csv file, we pulled seven pieces of information
to augment our data model. Figure 11-8 illustrates the next stage in the development
of our data model.

336 | Chapter 11: Simple Entity Resolution in Graphs



Figure 11-8. The first of two steps in augmenting the MovieLens data with the Kaggle
dataset: adding properties to the movie vertices

Figure 11-8 shows six new properties we added to the movie vertex: release date, pro‐
duction company, overview, popularity, budget, and revenue. The seventh detail we
pulled from the Kaggle data was the genre property. This augmented more Genre ver‐
tices and edges from movies to genres.

We needed this dataset so that we could merge in the information about actors for
each movie. Let’s look at how we can access that information.

Actors and casting details

The file AllMoviesCastingRaw.csv provided information about actors, directors,
producers, and editors for each movie. We selected only the actors to include in our
examples.

The AllMoviesCastingRaw.csv file lists five actors for each of the 329,044 movies.
This information is listed on one line, with the following structure for the first 11
columns:

id,actor1_name,actor1_gender, ..., actor5_name, actor5_gender....

Analyzing the Two Movie Datasets | 337



Each actor was connected to their movie by matching the ID to the tmdb_id of the
Movie vertex.

Additionally, we created collaborator edges for actors who were in the same movie.
We used the release_date from the AllMoviesDetailsCleaned.csv file to add a
year to each of these new edge labels about actors.

Figure 11-9 shows the data model we arrived at for our example.

Figure 11-9. The second of two steps in augmenting the MovieLens data with the Kaggle
dataset: adding actors into the model

Figure 11-9 shows the merged data model with the MovieLens and
Kaggle datasets. We didn’t include everything available from the
Kaggle dataset. If there is something you would like to use, please
visit us at https://oreil.ly/graph-book. We will accept pull requests
for the data and processes that accompany this text.

338 | Chapter 11: Simple Entity Resolution in Graphs

https://oreil.ly/graph-book


Development Schema
The data integration process between the MovieLens and Kaggle sources created the
development schema we will be using in our examples. Using the Graph Schema Lan‐
guage (GSL), the development schema is shown in Figure 11-10.

Figure 11-10. The development schema for our merged database about movies

Chapter 10 showed you how to use the GSL to translate Figure 11-10 into schema
statements. We designed this process for you to follow the same idea popularized by
ERDs.

Analyzing the Two Movie Datasets | 339



Matching and Merging the Movie Data
The idea to merge the MovieLens and Kaggle datasets for this example became a
much more difficult and involved task than we anticipated.

And in our experience, problems in matching and merging data sources are always
more involved than you anticipate.

The process of resolving two data sources starts with mapping the strong identifiers
present in both systems for linking the data. We just went through that in the last sec‐
tion. We learned that the strong identifiers available across both datasets are the
movie identifiers from TMDB and IMDB.

However, each dataset has a different distribution of these IDs. After studying the two
sources, we learned the following:

1. Each entry in the MovieLens dataset has an IMDB identifier.
2. 1% of the movies in the MovieLens dataset are missing a TMDB identifier.
3. Each entry in the Kaggle dataset has a TMDB identifier.
4. 24% of the movies in the Kaggle dataset are missing IMDB identifiers.

From this information, we know that we are going to have to build a process that uses
both IDs from the datasets because we can’t always rely on either.

When you need to merge data sources, always start with finding
and understanding the distribution of strong identifiers in each
system!

Let’s discuss how we procedurally matched and merged the data between the sources
when everything matched up correctly. After this next section, we will walk through
the errors we discovered in both datasets and how we resolved them.

Our Matching Process
At the start, our merging process was simple. We started by processing the MovieLens
data. Then we had to figure out what it meant to be a match from the Kaggle dataset
and how to merge the information.

We defined a match from the Kaggle data source into the MovieLens data source as
being when there was exactly one entry in the MovieLens dataset that matched on
one or both of the TMDB and IMDB identifiers.

340 | Chapter 11: Simple Entity Resolution in Graphs



The steps we followed for a successful match and merge are what we have in
Example 11-2.

Example 11-2.

1 For each movie_k in the Kaggle dataset:
2     movie_m = MATCH MovieLens data by the tmdb_id of movie_k:
3     if there is a movie_m:
4         if imdb_id of movie_k == imdb_id of movie_m:
5             movie_m2 = MATCH MovieLens data by the imdb_id of movie_k:
6             if tmdb_id == tmdb_id_m2:
7                 UPSERT the kaggle data
8     else:
9         movie_m = MATCH MovieLens data by the imdb_id of movie_k:
10            if movie_m is not null:
11                if imdb_id identifiers match:
12                    UPSERT the data
13            else:
14                We know movie_k is not in the MovieLens data
15                INSERT movie_k from Kaggle

The process in Example 11-2 matched 26,853 movies that were in both databases.
Before the matching process, there were 252 movies in the MovieLens database with
no IMDB identifier; 15 of those movies were found and resolved with the Kaggle
dataset according to their TMDB identifier.

You may be wondering why the logic on lines 5 and 6 of
Example 11-2 is necessary. It turns out there were some errors in
the source data. We will get into those errors in “Resolving False
Positives” on page 343.

For a deeper example, Figure 11-11 illustrates how the movie Toy Story would be suc‐
cessfully matched between the two datasets using the process outlined in
Example 11-2.

Matching and Merging the Movie Data | 341



Figure 11-11. Showing how the Kaggle data source would be matched with the Movie‐
Lens data source for the movie Toy Story

The most important feature of Figure 11-11 is to observe the values for the strong
identifiers between the two sources. We already modeled a movie titled “Toy Story
(1995)” from the MovieLens data with a tmdb_id of 862 and an imdb_id of 0114709.
When we processed the Kaggle movie, the algorithm worked as shown in
Example 11-3.

Example 11-3.

1 For the "Toy Story" movie in the Kaggle dataset:
2     movie_m = search MovieLens data by the 862:
3     if there is a movie_m:
4         if 0114709 == 0114709:
5             movie_m2 = search MovieLens data by the 0114709 of movie_k:
6             if 862 == 862:
7                 UPSERT the kaggle data

We used UPSERT when we inserted the data because the underlying datastore is
Apache Cassandra. In this and most situations, UPSERTs are the fastest way to handle
writes.

Figure 11-12 shows the merged version of the Toy Story movie that ended up in our
dataset.

342 | Chapter 11: Simple Entity Resolution in Graphs



Figure 11-12. The final view of the Toy Story movie after the merged data

Along the way, we documented the tripping points and decisions we had to make. We
are going to walk through those in the next section.

Resolving False Positives
When you first read through the matching process in Example 11-2, you may have
thought that some of the additional checks were redundant. For example, when
determining whether the Kaggle data matches a MovieLens movie, we first found a
movie by its TMDB identifier and then looked for it again by its IMDB identifier.
Only when all of these scenarios found the same movie and identifiers did we con‐
sider it a match.

However, the process we started with discovered something really interesting about
the MovieLens data: it contained false positives within its own data.

False Positives Found in the MovieLens Dataset
The matching process outlined in Example 11-2 first revealed errors within the links
from the MovieLens database. Specifically, there were 17 occurrences in the

Resolving False Positives | 343



MovieLens data of the same TMDB identifier pointing to different IMDB identifiers. 
This is referred to as a false positive.

False positive
A false positive error occurs when the entity resolution process links two refer‐
ences that are not the same.

We discovered the false positives within the MovieLens data when we were trying to
merge a Kaggle record based on its TMDB identifier. When a Kaggle entry matched a
MovieLens movie by their respective tmdb_ids, the sequential lookup by the Kaggle
entry’s IMDB identifier returned two results from the MovieLens data.

Let’s look at some of the false positives that exist within the MovieLens data (see
Table 11-1):

Table 11-1. Showing six false positives due to the incorrect mapping of tmdbId to imdbId in the
MovieLens data

movie_id imdb_id tmdb_id movie_title
1533 0117398 105045 The Promise (1996)

690 0111613 105045 Das Versprechen (1994)

7587 0062229 5511 Samouraï, Le (Godson, The) (1967)

27136 0165303 5511 The Godson (1998)

8795 0275083 23305 The Warrior (2001)

27528 0295682 23305 The Warrior (2001)

To know whether these are the same or different movies requires crawling the origi‐
nal sources. We didn’t do that work for these examples. Therefore, for these 17 instan‐
ces of clashing mappings within the MovieLens data, we removed both of each pair of
records, or a total of 34 instances, from the MovieLens source.

From deeper research on IMDB and TMDB, we found that the Kaggle dataset had the
correct entries. Therefore, we used the Kaggle data as the ground truth in these
instances.

After resolving the issue within the MovieLens source, we collected information
about the errors found when mapping the two data sources together.

Additional Errors Discovered in the Entity Resolution Process
Some statistics about the errors and incorrect matches we found between the datasets
are:

344 | Chapter 11: Simple Entity Resolution in Graphs



1. Zero movies had matching TMDB identifiers but mismatched IMDB identifiers.
2. Merging the datasets produced 143 errors in which the sources had matching

IMDB identifiers but mismatched TMDB identifiers.

At the start, we did not know whether these 143 errors were false positives or false
negatives. We needed to examine them to figure out what type of error they
represented.

The additional data about the 143 mismatched movies that is available for compari‐
son is as follows:

1. The movie’s title in each database
2. The public page about the movie on IMDB
3. The public page about the movie on TMDB

When resolving errors, you want to start with the data you have. In this case, we can
compare movie titles. The breakdown of how those titles compared is shared in
Table 11-2.

Table 11-2. Diving into the reasons that movie titles mismatched between the MovieLens and
Kaggle datasets

Reasons the titles were different Total Occurrences Percentage
“A” 5 3.50%

Actually different 9 6.29%

Same, but different languages 1 0.70%

“The” 36 25.17%

(year) 92 64.34%

The MovieLens data source indicates that MovieLens augmented the titles of movies
to contain the release year when that information was available. Therefore, we would
expect to see that many of the clashes in titles are due to how this data was prepared.
Table 11-2 confirms this, with 64% of the mismatched movies between the two sour‐
ces having titles where the MovieLens title has the (year) but the Kaggle title does
not.

The remaining reasons the titles were different between the MovieLens and Kaggle
datasets are fairly interesting:

1. 3.5% of the time, one title had the word “A” in it, whereas the other title did not.
2. 25.1% of the time, one title had the word “The” in it, whereas the other did not.

Resolving False Positives | 345



3. There was one occurrence in which the titles were the same but in different lan‐
guages: The Promise (English) versus La Promesse (French).

4. There were nine occurrences of the two titles actually being different.

The analysis of differing titles did not go far enough to say whether or not the movies
were the same.

For 10% of these mismatched movies, which is 15 movies, we looked at their movie
details in TMDB and IMDB to see which source had the correct information. From
this deeper analysis, we found that the Kaggle data source had the correct TMDB and
IMDB identifiers in all of the cases we investigated. The details of our in-depth study
of mismatched movies are:

1. In 12 out of the 15 cases, the MovieLens data contained a TMDB identifier that
pointed to a web page that had been removed.

2. 15 of the 143 incorrectly matched movies had the correct information in the Kag‐
gle data source based on crawling the original sources at TMDB and IMDB.

3. For all of the incorrect mappings that we deeply investigated, the MovieLens data
source never had the correct information.

As a result, for all of the 143 occurrences in which the strong identifiers did not
match up, we relied on the information from the Kaggle data source. That is, our final
resolved errors contained 143 more false positives where the MovieLens data incor‐
rectly linked a TMDB identifier to an IMDB identifier.

Final Analysis of the Merging Process
After we finished the resolution process, there was a total of 329,469 movies in our
merged database. Some additional statistics about the merged dataset are:

1. There are 26,853 movies that are in both the MovieLens and Kaggle data sources.
2. There are 78,480 movies in our merged database with no IMDB identifier.
3. There are 237 movies in our merged database with no TMDB identifier.

We hope you found the details on how we merged these datasets to be illustrative and
representative of the not-so-glamorous process of merging datasets. It is a common
first step that every team has to go through before it can get started with using its data
in a graph.

Which does raise the question: how could a graph help resolve our movie data?

346 | Chapter 11: Simple Entity Resolution in Graphs



The Role of Graph Structure in Merging Movie Data
While we are talking about resolving the false positives in the movie data, there is one
area in which we could use edges in our data to resolve some of the false positives.
Let’s take a look at a specific case.

If we had the actors from the MovieLens source, we could (hypothetically) use graph
structure to help resolve some of our false positives. For instance, consider the two
movies listed in Table 11-3 that are false positives from the MovieLens data.

Table 11-3. Example movies that require additional data to determine whether they are the
same movie

movie_id imdb_id tmdb_id movie_title
8795 0275083 23305 The Warrior (2001)

27528 0295682 23305 The Warrior (2001)

Table 11-3 shows all of the information that we have about these two movies. And
from the data we have, we cannot confidently conclude whether these are or are not
the same movie. The TMDB identifiers are the same, but the IMDB identifiers are
different. However, the titles are identical.

The data we have just isn’t enough to make a conclusive decision. So let’s see what we
can figure out about these two movies so we can come to a conclusion.

After doing some deeper digging, we could use the IMDB data to get the actors for
each of these movies. Given the actor information about each movie, Figure 11-13
displays what each of their graphs would look like:

Figure 11-13. A view of the two movies titled The Warrior (2001) after deeper research
on the actors for each of these movies

Resolving False Positives | 347



By resolving actors and creating relationships from movies to their actors, we can see
that these movies are actually distinct and different movies. They have no actors in
common between their cast lists (though we are showing just the first three actors in
each cast list in Figure 11-13).

Figure 11-13 gives you an idea of when using edges from a graph can help you dis‐
cover whether or not the data you have is distinct.

The lesson of the simple entity resolution example in this chapter is that the majority
of your tasks in entity resolution do not require a graph structure. Well-defined pro‐
cesses start with following exact matches of strong identifiers. In cases when strong
identifiers are not enough, you can rely on character edit distances for the next most
important keys and values about your data.

Then, after you have covered the basics, and if relationships make sense in your data,
you may want to bring relationships into your entity resolution process.

Figure 11-13 illustrates a compelling reason to use graph structure for entity resolu‐
tion in our example (after we resolved strong identifiers and names with edit distan‐
ces!) because you can immediately see that the movies are different. And you can
infer why they are different. Although we certainly can’t do this kind of analysis for all
problems, a graph can be a far more useful tool to add into your entity resolution
process than digging deeper into tabular information to sort out the answer.

The ability to use a graph to resolve and merge data is a multifaceted problem. Elabo‐
rating on the full details of where, when, and how to use a graph for generalized
entity resolution would fill a whole book.

From here, let’s get back to how we can deliver these recommendations at scale within
a production application.

348 | Chapter 11: Simple Entity Resolution in Graphs



CHAPTER 12

Recommendations in Production

Pretty much every application you use these days has a “recommended for you”
section.

Just think about your favorite applications for digital media, apparel, or retail provid‐
ers. We rely on the recommendation pane in our media apps to find new movies to
watch or books to read. Brands like Nike tailor your in-app experience with personal
and customized wardrobes. Even your local grocery store’s app delivers recom‐
mended coupons to you for your next visit.

Recommendations and personalization have infiltrated almost every nook and
cranny of our digital experience.

But how do you build a process that delivers recommendations within an application
at the speed that we have all learned to expect?

As we walked through in Chapter 10, it is very possible to connect data sources with a
graph and create personalized recommendations for a user. However, the sheer
amount of data that is required to process a graph-based recommendation at scale
significantly limits how you would use collaborative filtering within a production
application.

We don’t think a user of Nike’s apparel app is going to wait the multiple seconds
required to process an end-to-end NPS-inspired collaborative-filtering graph query.
And neither should you.

Instead, we encourage you to think like a production engineer. We want to set up
procedures that prioritize the end user’s in-app experience and then figure out how to
connect a longer running query, like a graph-based collaborative filter, with a process
that can guarantee your end user receives recommended content within web response
time.

349



The focus of this chapter is just that: teaching you how to break down a complex
graph problem into a piece that can be queried in real time versus a piece that
requires a batch process.

Chapter Preview: Understanding Shortcut Edges,
Precomputation, and Advanced Pruning Techniques
There are four main sections to this final chapter.

We will start by explaining shortcut edges. We will show you why our development
process doesn’t scale and how shortcut edges solve our problem. We also will talk
about different ways to use shortcut edges with your data with different pruning
techniques.

In the next section we’ll explain how we precomputed shortcut edges for our movie
data. We will be diving into data parallelism and the different operational challenges
you will face when integrating longer running calculations to be used in a transac‐
tional query.

Our third section will introduce the final production schema we used for our movie
data. We will walk through the schema code and how to load the edges we computed,
as you have done many times already.

In the last section we will show you how to use the shortcut edges to deliver recom‐
mendations to your end users. We will dig deeply into the partitioning strategies
within Apache Cassandra so that you can reason about the latencies for different
types of recommendation queries with our data.

Shortcut Edges for Recommendations in Real Time
We left off our discussion of recommendations in Chapter 10 with a graph query that
performed collaborative filtering on our graph data. We created and computed an
NPS-inspired metric to figure out which movie we should recommend according to
the movies rated by one of our users. Figure 12-1 illustrates the general concept
behind the approach we built.

Figure 12-1 shows how we walked through our development graph data from the left
to the right to find recommendations. If you were following along in the notebook,
you likely noticed that the overall processing time for these queries is not going to cut
it if you want to use this approach in a production application. The user will end up
waiting way too long to get their recommendations because the query takes too long
to process.

350 | Chapter 12: Recommendations in Production



Figure 12-1. An example of where we left off to highlight the sheer volume of data
required to process our development queries from Chapter 10

Let’s dig into why and then how we will resolve the issues.

Where Our Development Process Doesn’t Scale
The reasons our development graph queries won’t scale are simple to state: branching
factor and supernodes. If you think like us, you’ll agree that the appropriate response
to having to deal with both of these problems at the same time is a very sarcastic
“great.”

However, if you recall, we have run into issues with your graph’s branching factor and
supernodes before.

We first ran into branching factor in Chapter 6 within our sensor network when we
tried to walk from a tower down to all sensors. The branching factor of the edges in
our data created exponential growth in our processing overhead.

The same branching problem exists within the general class of recommendation
problems. As you walk from a user to movies to users to movies, your queries fork an
exponential number of traversers in order to process all of the edges within the data.

We also have to deal with supernodes in our collaborative-filtering queries. Superno‐
des are very closely related to branching factor: supernodes represent the extreme
end of your graph’s branching factor, as they are the highest degree vertices.

We first experienced supernodes in Chapter 9 as we created filters and optimizations
for pathfinding. We specifically eliminated high degree vertices from our pathfinding

Shortcut Edges for Recommendations in Real Time | 351



queries because they (usually) do not provide meaningful results in pathfinding
applications.

We are going to have to deal with supernodes differently in our recommendation
data.

In recommendation problems, we have two types of supernodes: the superuser and
the superpopular content. A superuser is a member of your platform who has viewed
or rated almost every piece of content. Any time that user is discovered during your
collaborative-filtering query, a large number of movies are inserted into your result
set. There is also very popular content that is viewed or rated by most users on your
platform.

Unlike how we dealt with these supernodes in pathfinding, in a recommendation sys‐
tem you want to account for this type of popularity in your algorithms because it can
indicate trending or highly probable recommendations.

So how do we get around both of these problems? We build connections around
them.

How We Fix Scaling Issues: Shortcut Edges
We have one last production trick to teach you: the shortcut edge. Shortcut edges are
one of the most popular tricks used by teams around the world to mitigate the com‐
bined risk of your graph’s branching factor and supernodes in production queries.

Shortcut edge
A shortcut edge contains precomputed results of a multihop query from vertex a
to vertex n to be stored as an edge directly from a to n.

Let’s look at how we will be using shortcut edges in our example in this chapter.
Figure 12-2 shows how we will use an edge called recommend to directly connect mov‐
ies to their recommendations according to the NPS-inspired metric of our user rat‐
ings in the middle.

The recommend edge is essentially building a bridge over the riskiest part of our
collaborative-filtering query to ensure that the end user in our application does not
have to wait.

352 | Chapter 12: Recommendations in Production



Figure 12-2. An example of using a precomputed recommend edge as a shortcut from a
movie directly to its recommendation

You may be thinking or debating with your team about why we are not building the
recommendation edge directly from our user to the content. Technically, that is a via‐
ble option. However, we are taking a different approach because we want to be able to
provide an immediate recommendation for a user’s most recent rating.

To get a conceptual understanding of how shortcut edges will be used, let’s delve into
how we want to use them.

Seeing What We Designed to Deliver in Production
Thinking through what you need to be able to query in production helps you to
define boundaries on the complex problem of precalculating shortcut edges. We cre‐
ated Figure 12-3 to illustrate what we aim to make possible in our final example.

Figure 12-3. A visual of what we are trying to precompute so that we understand what
our batch job needs to calculate

Shortcut Edges for Recommendations in Real Time | 353



Figure 12-3 shows a conceptual model of using shortcut edges in the final query for
the production version of movie recommendations. Specifically, we want to follow a
user’s most recent recommendation to generate the highest ranked set of movie rec‐
ommendations. To do this, we need to precompute a shortcut edge called recommend
that connects a user’s most recent movie rating to the new content we would recom‐
mend to the user.

Pruning: Different Ways to Precompute Shortcut Edges
The last topic we would like to address in this section is the different ways to prune
and calculate shortcut edges with your data.

The main tricks when using shortcut edges come down to what and how often you
precompute the aggregations they hop over. Let’s talk about the techniques that we
recommend you consider for your application. We will point out the decisions we
made for our data along the way.

When you are first exploring how to use shortcut edges, your team will want to have
a discussion on the limitations you will build into the computational process. Typi‐
cally, there are three ways to limit the total amount of data that is considered for a
shortcut edge: by total score, by total number of results, and by domain knowledge
expectations.

Let’s briefly discuss what we mean by each of these options.

Pruning by score thresholds
The first way you can filter out shortcut edges is with a predefined score threshold. In
this approach, you would only include a shortcut edge for a recommendation if the
score you calculate is above some threshold.

You already worked through the idea of using a hard threshold in a result set in this
book. We walked through the use of a specific threshold when we defined the inflec‐
tion point for trust in Chapter 9. We derived the specific point at which a weight
above a threshold meant trust for our paths. This point is a mathematically derived
limit above which a path is a trusted path for the application and below which it is
distrusted.

For your recommendations and our movie data, you are not going to have such a
defined fixed point.

If you want to go down this route, you will need to analyze recommendation scores
for your data to understand whether a certain range of values is preferred by your
user base. Regrettably, for our movie data, we do not have a specific threshold to give
you when it comes to our NPS-inspired metric. But it is still important for you and
your team to consider this option for your data.

354 | Chapter 12: Recommendations in Production



In the absence of a mathematical threshold (or in combination with one), you can
also limit the number of shortcut edges you include in your results.

Pruning with hard limits on total recommendations
The second way you can limit your use of shortcut edges is by defining the total num‐
ber of edges you are going to include in production. Making the decision to store
only 100 shortcut edges is an example of a hard limit. Your team can choose to
include the 100 highest scoring recommendations, or you can include a selection
from a range of scores.

A hard limit on the total number of edges is probably more popular than a specific
score threshold for two reasons. First, it is easier to reason about the effects of the
hard limit on your production application. With a hard limit, you can calculate the
total amount of disk space required to store and maintain this data in production.
Second, you can reasonably use them in your production query by selecting the most
popular recommendation for your user. Or you can select the most highly recom‐
mended content that your user hasn’t previously watched.

We are going to use the hard-limit technique for the shortcut edges we calculate for
our movie data.

Once you have developed and deployed your process for shortcut edges, there is one
more concept to consider to make your recommendations more relevant to your
users.

Pruning by applying domain knowledge filters
A filter on a movie’s genre to tailor recommendations to your user’s preferences is an
example of how to use domain knowledge to prune your recommendations.

Essentially, if your user likes dramas, you will want to also include that type of filter as
you recommend new movies.

There are a myriad of topics you could explore for how domain knowledge tailors the
recommendations for our movie data. The most popular ways you already experience
this when you use Netflix are the recommendations by genre, specific actors, or cur‐
rent trends.

Ultimately, filtering your recommendations according to domain knowledge is some‐
thing to plan for in your application. The application of domain knowledge filters will
eventually become a component of your application as it evolves.

We will get you started with the basics first, so that you can focus on what it takes to
get into production.

Shortcut Edges for Recommendations in Real Time | 355



Considerations for Updating Your Recommendations
When planning for delivering recommendations in production, you also need to con‐
sider how often you are going to update your shortcut edges. And your team needs to
figure out how to design your pipelines to finish the computations in good time.

Consider your own experience with recommendation windows,
like the “Recommended for you” section on Netflix. How often do
you log in to your account and see a refreshed list of movie recom‐
mendations? Can you tell when the section was updated due to
your recent viewing history? These questions and considerations
are what we mean when we mention figuring out how often to
update your recommendations to provide a better user experience.

Computing a shortcut edge across all of your users’ ratings is very expensive. You are
going to have to reduce the scope of how often your team does these calculations.
There are three tips that we are going to recommend you discuss with your team
when you are designing how you build shortcut edge procedures in your application:

1. Updating the shortcut edges only for the content that has changed
2. Building data pipelines that account for successful recommendations
3. Creating robust computational processes

We are going to briefly describe what we mean for each of those tips.

First, not all content on your platform is going to be viewed or rated every day or
even every week. Therefore, you do not need to recompute shortcut edges for your
entire graph. Your team will want to find a way to build shortcut edges only for the
most updated data to keep up with what is trending.

Second, you will want to consider what recommendations your user base actually
clicks on and use this information to help identify what category of recommendations
you need to recalculate. Today, you experience this within the “what’s trending” sec‐
tion of your applications. These signals in your application are some of the most
important features to capture because they represent a successful event for learning
what your users like right now. With your team, plan how you are going to capture
successful recommendations and use that information to account for current trends.

The last topic to consider focuses on building robust computational processes. When
we say “robust,” we are talking about breaking down your problem into smaller,
deterministic calculations that are easily repeatable. Using smaller and more local cal‐
culations, instead of larger global calculations, allows your team to have a more agile
and fault-tolerant data pipeline.

Next, let’s walk through how we computed the shortcut edges for our example.

356 | Chapter 12: Recommendations in Production



Calculating Shortcut Edges for Our Movie Data
Shortcut edges help you get around your graph’s branching factor and supernodes at
query time.

What you can’t get around is the amount of time that it takes to precompute shortcut
edges.

For our movie data, we set up a separate environment to precompute the shortcut
edges for you. This section walks you through what we did and why we made those
decisions. Admittedly, there are many different ways to set up offline or batch pro‐
cesses to add features to your production data.

We are showing you one such approach knowing that it might not be ideal for all sit‐
uations. We are going to point out different approaches and the trade-offs involved at
the end of this section.

Breaking Down the Complex Problem of Precalculating Shortcut
Edges
We found that the schema and query we built up in Chapter 10 was good enough for
calculating our shortcut edges.

Each query just needed more time to process all of the data.

Therefore, we broke down the process for computing shortcut edges into the follow‐
ing three steps:

1. Figure out the schema needed to use the NPS-inspired metric in a production
graph.

2. Use the final query from Chapter 10 to create a list of shortcut edges for one
movie.

3. Divide up the work to calculate shortcut edges with basic parallelism.

Let’s start by taking a look at the schema we used in this environment.

Schema required for calculating shortcut edges on our movie data
Regardless of the metric, our collaborative-filtering query simply needs movies, users,
and the rated edge. There are two requirements for the rated edge. First, we need it
to be sorted by the rating so that we can group the edges according to their rating.
Second, we need to be able to traverse the edge in both directions.

These requirements give us the schema in Figure 12-4.

Calculating Shortcut Edges for Our Movie Data | 357



Figure 12-4. The production schema required in the external environment for calculating
shortcut edges

The data model in Figure 12-4 describes the entire graph we constructed and loaded
into the separate environment. We loaded only the movie and user vertices. We cre‐
ated one edge, rated, with a clustering key of the rating. Then we added a material‐
ized view so that we could use the edge in the reverse direction in our collaborative-
filtering query.

The vertex and edge labels for Figure 12-4 are as follows:

schema.vertexLabel("Movie").
       ifNotExists().
       partitionBy("movie_id", Bigint).
       property("tmdb_id", Text).
       property("imdb_id", Text).
       property("movie_title", Text).
       property("release_date", Text).
       property("production_company", Text).
       property("overview", Text).
       property("popularity", Double).
       property("budget", Bigint).
       property("revenue", Bigint).
       create();

schema.vertexLabel("User").
       ifNotExists().
       partitionBy("user_id", Int).
       property("user_name", Text). // Augmented, Random Data
       create();

schema.edgeLabel("rated").
      ifNotExists().
      from("User").
      to("Movie").
      clusterBy("rating", Double).
      property("timestamp", Text).
      create()

358 | Chapter 12: Recommendations in Production



Figure 12-4 shows one bidirectional edge, or an edge that needs a materialized view.
The code is as follows:

schema.edgeLabel("rated").
       from("User").
       to("Movie").
       materializedView("User__rated__Movie_by_Movie_movie_id_rating").
       ifNotExists().
       inverse().
       clusterBy("rating", Asc).
       create()

Next, let’s use this data model to calculate our shortcut edges.

Collaborative-filtering query to calculate shortcut edges
Given our schema, the next step is to outline how we are going to use our work build‐
ing queries on the graph data from Chapter 10.

We lifted the query we developed for the NPS-inspired query and made three modifi‐
cations to it:

1. We wanted to start on a movie instead of a person.
2. We wanted to limit to the 1,000 highest scoring results.
3. We needed to create a list in which each entry has the original movie, recom‐

mended movie, and NPS-inspired metric.

We used the Gremlin query that we developed in Chapter 10 with these three small
adjustments. We will show you where the three modifications are after the code. Fur‐
ther, Example 12-1 shows the query we used to calculate 1,000 shortcut edges for a
given movie. We selected 1,000 both to satisfy our upcoming queries and to provide
you with an interesting set of edges to explore if you choose.

Example 12-1.

1 g.withSack(0.0).                                  // starting score: 0.0
2   V().has("Movie","movie_id", movie_id).          // locate one movie
3     aggregate("originalMovie").                   // save as "originalMovie"
4   inE("rated").has("rating", P.gte(4.5)).outV().  // all users who rated it 4.5+
5   outE("rated").                                  // movies rated by those users
6   choose(values("rating").is(P.gte(4.5)),         // is the rating >= 4.5?
7          sack(sum).by(constant(1.0)),             // if true, add 1 to the sack
8          sack(minus).by(constant(1.0))).          // else, subtract 1
9   inV().                                          // move to movies
10  where(without("originalMovie")).                // remove the original
11  group().                                        // create a group
12    by().              // keys: movie vertices; will merge duplicate traversers
13    by(sack().sum()).  // values: will sum the sacks from duplicate traversers

Calculating Shortcut Edges for Our Movie Data | 359



14  unfold().            // populate every entry from the map into the pipeline
15  order().             // order the whole pipeline
16    by(values, desc).  // by the values for the individual map entries
17  limit(1000).         // take the first 1000 results, which will be the top 1000
18  project("original", "recommendation", "score"). // structure your results
19    by(select("originalMovie")).                  // "original": original movie
20    by(select(keys)).                             // "recommendation": rec movie
21    by(select(values)).                           // "score": sum of NPS metrics
22  toList()                                        // wrap the results in a list

Let’s point out the three places in Example 12-1 that are changes from the query we
developed in Chapter 10. First, line 2 in Example 12-1 shows how we started at a spe‐
cific movie. Then we followed the same process for performing collaborative filtering
and calculating an NPS-inspired metrics from line 3 to line 16.

The last two changes in Example 12-1 are about formatting the results for later use.
Line 17 shows our second change: we reduced the total number of results to include
only the 1,000 highest scoring recommendations. This limitation is vital because this
type of approach will eventually compute an edge for all 327,000+ other movies in the
database as you collect enough ratings. Then lines 18 through 22 in Example 12-1
show how we formatted our results to make it easy to save our work into our produc‐
tion environment. We created a list that had 1,000 entries with this structure: original
movie, recommended movie, and then the NPS.

To give you an idea of what the results looked like, Figure 12-5 shows the top six rec‐
ommendations for one of our movies.

Figure 12-5. The top six shortcut edges calculated for movie 588 during our batch process

The original movie in Figure 12-5 is movie 588, Aladdin. The top five recommenda‐
tions that we computed and saved as shortcut edges included The Lion King, The
Shawshank Redemption, Beauty and the Beast, Forrest Gump, and Toy Story.

Now that you see the schema and query that we used, let’s talk about how we divided
up the work to get it done.

360 | Chapter 12: Recommendations in Production



1 Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Introduction to Parallel Computing. 2nd ed.
(Boston: Addison-Wesley Professional, 2003). https://www.oreilly.com/library/view/introduction-to-parallel/
0201648652/.

Using simple parallelism to divide up the work
We opted to decompose the larger process of precalculating shortcut edges for our
entire graph into smaller, independent problems. We can break down movie recom‐
mendations into many smaller queries because each movie’s set of recommendations
is independent from any other movie’s set.

Example 12-2 outlines how we divided up computing shortcut edges for our data into
many smaller, independent queries.

Example 12-2.

1 SETUP: Load the users, movies, and ratings graph into a separate environment
2 DECOMPOSE: Divide the movie into _ids into N smaller, independent lists
3 ASSIGNMENT: Assign one list per processor
4 ORCHESTRATION: Synchronously compute shortcut edges for each movie
5 EXTRACTION: Save the results to be loaded into the production graph

The approach described in Example 12-2 employs a straightforward and basic way to
divide up the work required to calculate shortcut edges for our movies. We started by
setting up a separate environment and loading just the users, movies, and ratings into
that environment. Then we divided a list of movie_ids into N separate and independ‐
ent groups. We assigned each list to a separate process so that we could use basic par‐
allelism to compute the shortcut edges for an individual movie, synchronously. Last,
we saved the results into a list that we could then load into our production model.

Breaking up the calculation of shortcut edges into many smaller
queries follows a process known as data parallelism. You can use
data parallelism when the same computation needs to be per‐
formed on different subsets of the same data. Essentially, you use
the same model for each thread in your computing environment,
but the data given to each of them is divided and shared. We rec‐
ommend Vipin Kumar’s book on the topic if you want to learn
more.1

The approach we outlined in Example 12-2 prioritizes the minimization of computa‐
tion time over memory. We can break down movie recommendations into many
smaller queries because each movie’s set of recommendations is independent. Some
complex problems, like PageRank, cannot be decomposed in this same manner.

Calculating Shortcut Edges for Our Movie Data | 361

https://www.oreilly.com/library/view/introduction-to-parallel/0201648652/
https://www.oreilly.com/library/view/introduction-to-parallel/0201648652/


Before we can show you how to use this in your production graph, we need to have a
brief side discussion about another very common way to solve this same problem.

Addressing the Elephant in the Room: Batch Computation
We had to make some trade-offs when deciding how we were going to approach the
computation of shortcut edges for this book. As you just learned, we decided to use
basic parallelism to divide up the work and computed shortcut edges for each indi‐
vidual movie independently.

However, the Gremlin query language also has a batch execution model that is pri‐
marily used for larger batch computations across large portions of the graph.

So why didn’t we use batch computation to precompute the shortcut edges?

For this book, the reason is primarily one of scope. Using batch computation introdu‐
ces enough depth and complexity to fill another book. So we are just providing a
teaser here for batch graph queries and will leave you with the exciting realization
that there is more to learn about applying graph thinking than we were able to cover
in this book.

If you are deciding between parallelized transactional queries and batch computation
for your shortcut edge computation, here are some of the trade-offs that you should
consider.

Examples of when batch computation may be better for your environment
Gremlin queries that execute batch computations can exploit shared computations.
This can result in quicker overall execution because of not having to traverse the
same parts of the graph twice. For instance, in our example we have a lot of movies
that were rated by the same reviewer. With transactional queries, we traverse through
those reviewer vertices multiple times. With batch computation, we can bulk those
computations together.

Batch computation usually requires more resources (in particular memory), which
can interfere with a concurrent transactional workload. For instance, in our example
a concurrent batch query may put enough stress on the database to delay concur‐
rently running recommendation retrieval queries. This pressure could lead to longer
latencies and a worse user experience. For that reason, batch computations are often
started either when there is little load on the database or in a separate data center and
Cassandra cluster, but that may not be an option for you.

With DataStax Graph, batch computations can be done in an analytical data center
(of the same cluster). Then, once precomputed results are written back into the
graph, they are also automatically replicated to the operational data center. This is
how workload separation works with Apache Cassandra and DataStax Graph.

362 | Chapter 12: Recommendations in Production



Examples of when transactional queries may be better for your environment
With batch computation, you are always recomputing all shortcut edges, which gives
that approach the computational advantage. But in many cases, you may want to
update some shortcut edges more frequently than others and need the flexibility that
the transactional approach provides.

Transactional queries allow for more selective updates of precomputed edges.

For instance, in our example the shortcut edges for recent movies are becoming stale
more quickly as new ratings start pouring in. In that scenario, we would want to
recompute those edges more frequently than we would for old movies, where there is
little to no change. For a second scenario, maybe your precalculation job fails and you
have to start over. Using smaller transactional queries would be easier to track and
restart than having to recompute the whole graph.

The transactional approach of data parallelism works better if there are fewer starting
points. In our example, we have thousands of movies to start from, which is a rather
small number. If that number were in the millions, then the transactional approach
would take a long time (and be pretty error-prone), which would favor the batch
approach.

There are other trade-offs that depend on your particular situation, environment, and
infrastructure, but those are the main ones to consider in making this decision.

We chose the data parallelism approach with transactional queries to show you how
we reasoned about calculating shortcut edges for this example. It isn’t necessarily the
best approach for all situations. You will need to consider your environment and your
application’s expectations when determining how to set up precomputing shortcut
edges for your next project.

Now that you have an idea of how we computed the shortcut edges, let’s show the
recommendation data model that we used in production, load the data, and walk
through our queries one last time.

Production Schema and Data Loading for Movie
Recommendations
Recall a few pages back when we showed you our conceptual design for how we
wanted to deliver our recommendations. Figure 12-3 showed how we wanted to
query a user’s most recent rating and then use the top recommendations to provide
new content to our user. The details we walked through in that image give us the out‐
line for how we want to deliver recommendations in our environment.

Let’s walk through the schema we will use and the final data loading processes for this
last example.

Production Schema and Data Loading for Movie Recommendations | 363



Production Schema for Movie Recommendations
One of the most important details of our conceptual visualization in Figure 12-3 was
shown underneath the edges. We saw that we wanted to use a user’s most recent rat‐
ing to deliver the three highest scoring recommendations. These constraints describe
how we can cluster our edges most optimally for performance.

Figure 12-6 is the final schema model that we will use for our recommendations. We
will use the same two vertex labels as we had for our shortcut edges: users and mov‐
ies.

Figure 12-6. The conceptual model of the schema we will use for the production version
of our recommendation system

The differences in the two models in this chapter are the edge labels. The user’s rat‐
ings will be clustered by time so that we have easy access to the most recent rating.
Then we will use the shortcut edges we precomputed in “Calculating Shortcut Edges
for Our Movie Data” on page 357 to directly recommend movies from a given movie.
The shortcut edges will be stored as the recommend edge, sorted by their rating.

Example 12-3 shows the vertex labels, and Example 12-4 shows the edge labels.

Example 12-3.

schema.vertexLabel("Movie").
       ifNotExists().
       partitionBy("movie_id", Bigint).
       property("tmdb_id", Text).
       property("imdb_id", Text).
       property("movie_title", Text).
       property("release_date", Text).
       property("production_company", Text).
       property("overview", Text).
       property("popularity", Double).
       property("budget", Bigint).
       property("revenue", Bigint).
       create();

364 | Chapter 12: Recommendations in Production



schema.vertexLabel("User").
       ifNotExists().
       partitionBy("user_id", Int).
       property("user_name", Text). // Augmented, Random Data
       create();

Example 12-4.

schema.edgeLabel("rated").
      ifNotExists().
      from("User").
      to("Movie").
      clusterBy("timestamp", Text, Desc).  // Note: changed clustering key
      property("rating", Text).
      create()

schema.edgeLabel("recommend").
      ifNotExists().
      from("Movie").
      to("Movie").
      clusterBy("nps_score", Double, Desc).
      create()

The last part of our setup is to walk through how to load the data.

Production Data Loading for Movie Recommendations
The user and movie vertices will be loaded the same way as we walked through in
Chapter 10. We are going to skip that part of the loading process because it is exactly
the same, with the same files.

The only new data to load is the shortcut edges for the recommend edge label. We cre‐
ated a csv file of all of the precomputed edges so that we can load them easily into our
graph for our final production recommendation queries.

We created a file to load with all of the precomputed shortcut edges in this chapter.
The file structure is shown in Table 12-1.

Table 12-1. Six shortcut edges found in the accompanying csv file for this example

out_movie_id in_movie_id nps_score
588 364 4911.0

588 318 4697.0

588 595 4624.0

588 356 4310.0

588 1 4186.0

588 593 3734.0

Production Schema and Data Loading for Movie Recommendations | 365



As you have seen many times in this book, the hardest part of structuring your edge
files is making sure your data, header, and graph schema all line up. The header line
of Table 12-1 shows that the first movie_id on each line corresponds to the
out_movie_id. The out_movie_id is the movie for which we computed a recommen‐
dation. The second movie_id on each line corresponds to the in_movie_id. This sec‐
ond identifier connects the edge to the recommended movie. The last piece of data on
each line is the nps_score for the recommendation that we already computed for you
using the NPS-inspired collaborative-filtering approach.

If you want to confirm that the header, data, and schema all align, you can inspect the
schema of the recommend edge label’s table definition.

The final step is to load the shortcut edges into your graph. Example 12-5 shows the
command that loads the data using the bulk loading tool.

Example 12-5. 

dsbulk load -g movies_prod
            -e recommend
            -from Movie
            -to Movie
            -url "short_cut_edges.csv"
            -header true

Let’s walk through the final version of our recommendation queries to see how we
will use these shortcut edges to deliver recommendations in a few steps.

Recommendation Queries with Shortcut Edges
We designed our schema and precomputed our shortcut edges so that we could
deliver our recommendations to our end user as quickly as possible. Going through
all of the work ahead of time ensures that your application delivers the fastest and
best user experience.

In this last section, we want to do three things. First, we want to check that our loaded
shortcut edges match what we computed during our offline process. The second sec‐
tion shows you how to use these shortcut edges in three different styles of recommen‐
dation queries. The last section shows you how to reason about query performance
by mapping the number of edge partitions accessed during two of our three produc‐
tion queries.

Let’s first confirm that our shortcut edges match the computation we showed you in
“Calculating Shortcut Edges for Our Movie Data” on page 357.

366 | Chapter 12: Recommendations in Production



Confirming Our Edges Loaded Correctly
We took a snapshot of the shortcut edges we computed for the movie Aladdin in
“Calculating Shortcut Edges for Our Movie Data” on page 357. We know that
Aladdin’s movie_id is 588, so in Example 12-6, let’s query for Aladdin’s top five rec‐
ommendations to make sure they match our expectations.

Example 12-6.

1 g.V().has("Movie", "movie_id", 588).as("original_movie").
2      outE("recommend").
3      limit(5).
4      project("Original","Recommendation", "Score").
5        by(select("original_movie").values("movie_title")).
6        by(inV().values("movie_title")).
7        by(values("nps_score"))

Example 12-6 applies the Gremlin patterns we have used throughout this book. Line
1 starts with a partition key lookup to Aladdin’s movie vertex. Then we walk to the
recommend edges on line 2.

Line 3 of Example 12-6 brings together two very important concepts: clustering keys
in Apache Cassandra and limits in Gremlin. Recall that the recommend edges are clus‐
tered by their rating. Therefore, the use of limit(5) on the edge table finds the top
five recommendations according to their rating score, because it selects the first five
rows of the partition in the underlying tables. This is exactly why Gremlin with dis‐
tributed adjacency lists in Apache Cassandra is so fast.

The remaining work in lines 4 through 7 of Example 12-6 nicely formats the results.
We create a user-friendly structure that lists Aladdin, the title of the recommended
movie, and its score. Figure 12-7 shows you what you will see in the accompanying
Studio Notebook.

Figure 12-7. Confirming that we properly loaded our shortcut edges from our first query
in Example 12-6

Recommendation Queries with Shortcut Edges | 367

https://oreil.ly/G1Lrz
https://oreil.ly/G1Lrz


Figure 12-7 matches the expected top five recommendations for the Aladdin movie
that we previewed in “Calculating Shortcut Edges for Our Movie Data” on page 357.

Let’s now use these edges to show you how to deliver recommendations to a specific
user.

Production Recommendations for Our User
There are three queries we want to show you in this section. They are:

1. Query 1: The top three recommendations for the most recent rating by our user
2. Query 2: The top recommendation for the three most recent ratings by our user
3. Query 3: Combining 1 and 2 to deliver the top three recommendations for each

of the three most recent ratings by our user

The first two queries take different approaches to providing three recommendations
to the end user. The last approach was designed to show you how to get nine specific
recommendations by using barrier steps in Gremlin.

Query 1: The top three recommendations for the most recent rating by our user
We designed the schema, processes, and shortcut edges with one purpose in mind: to
be able to immediately deliver new content according to a user’s most recent rating.
We can do that by accessing our user’s most recently rated movie and then accessing
our top three precomputed recommendations. Example 12-7 shows how to do this in
Gremlin.

Example 12-7.

1 g.V().has("User","user_id", 694).      // our user
2       outE("rated").limit(1).inV().    // first "rated" edge is most recent
3       outE("recommend").limit(3).      // first three are top 3 recommendations
4       project("Recommendation", "Score").  // create a map with two keys
5         by(inV().values("movie_title")).   // move to the movies; get title
6         by(values("nps_score"))            // stay on edges; get score

The Gremlin steps in Example 12-7 are all ones that we have used before. The beauty
of this example is shown on lines 2 and 3 with the use of limit(x) on the edges.

On line 2, recall that the rated edges are clustered by time. Therefore,
outE("rated").limit(1) accesses the first edge in the partition, which is also the
most recent rating.

This same access pattern is used on line 3 with outE("recommend").limit(3)
because the recommend edges are sorted on disk by rating. Lines 4 through 6 use the

368 | Chapter 12: Recommendations in Production



project step to create user-friendly formats of the data. The results of this query are
shown in Figure 12-8.

Figure 12-8. Seeing the three new content recommendations according to our most recent
rating in Example 12-7

Figure 12-8 shows that the three newest movies to recommend to our user, according
to their most recent movie rating, are Rear Window, Casablanca, and Dr. Strangelove.
Interesting choices, user 694.

Seeing that the scores for these movies are relatively low, you may want to broaden
the set of movies to recommend by considering more ratings. Let’s take a look at how
to diversify your ratings with Query 2.

Query 2: The top recommendation for the three most recent ratings by our user
The goal of this next example is still to provide three recommendations to our user,
but to find them a bit differently. We want to query our user’s three most recent rat‐
ings and provide the top recommendation for each of them. Example 12-8 shows
how we will do this in Gremlin.

Example 12-8.

1 g.V().has("User","user_id", 694).   // our user
2       outE("rated").limit(3).inV(). // three most recently rated movies
3       project("rated_movie", "recommended_movie", "nps_score"). // map w/ 3 keys
4         by("movie_title").          // value for the key "rated_movie"
5         by(outE("recommend").       // value for the key "recommended_movie"
6            limit(1).                // first recommendation is top rated
7            inV().values("movie_title")). // traverse to the movie and get title
8         by(outE("recommend").       // value for the key "nps_score"
9            limit(1).                // first recommendation is top rated
10           values("nps_score"))     // stay on the edge; get the score

The beauty of Example 12-8 is that it shows you how to create more diversity in your
recommendation set. On line 2, we use the fact that the rated edges are clustered by
time, but this time we collect the three most recent ratings with limit(3). Then, for
each of the three most recent ratings, we want to find the top recommended movie.

Recommendation Queries with Shortcut Edges | 369



This is what we do on lines 5 and 6. We limit each traverser to its top recommenda‐
tion and then access the movie title. The rest of Example 12-8 formats different pieces
of the query so that we collect a meaningful view of the result data. Figure 12-9 shows
our results.

Figure 12-9. Seeing a different way to find three new content recommendations accord‐
ing to our user’s most recent ratings

Figure 12-9 shows one of the recommendations from our first query, Rear Window.
We now see that this movie is the top recommendation for a movie titled Safety
Last! The other two movies that user 694 has recently rated are also shown in
Figure 12-9 along with their top recommendation.

By broadening to a larger set of recent ratings for our user, we were able to find a
fairly popular movie: Back to the Future. This movie has the highest NPS-inspired
metric and therefore is also the most popular movie in our set of recommendations.

Query 3: The top three recommendations for each of the three most recent ratings by our user
One last natural question to ask about this data would be to collect, say, the top three
recommendations for each of our user’s three most recent ratings. For each rating, we
will want to move to the set of recommended movies and ask each traverser to find
three. We do this in Gremlin with the local() scope around the traversers. Then we
want to bring all recommendations back together and merge them into one list. Let’s
make that our last example for this dataset in Example 12-9.

Example 12-9.

1 g.V().has("User","user_id", 694).       // our user
2      outE("rated").limit(3).inV().      // 3 most recent rated movies
3      local(outE("recommend").limit(3)). // top 3 recommendations for each movie
4      group().                           // create a map
5        by(inV().values("movie_title")). // keys for the map; merge duplicates
6        by(values("nps_score").sum()).   // values; sum values for duplicates
7      order(local).                      // sort the map
8        by(values, desc)                 // by its values, descending

370 | Chapter 12: Recommendations in Production



Example 12-9 starts off the same as Example 12-8 but introduces the use of local
scope on line 3. Using local scope ensures that each traverser grabs three recommen‐
dations to populate into the map we construct on line 4. Line 5 shows us that the keys
of this map will be the movie titles. Line 6 aggregates all of their ratings into one
value. Figure 12-10 shows the results.

Figure 12-10. The top three recommendations for each of the three most recent ratings by
our user

Figure 12-10 shows the movies to recommend to our user along with each movie’s
final score. It is interesting to note that we do not have nine total recommendations.
Figure 12-10 has eight results because Raiders of the Lost Ark showed up as a recom‐
mendation for the movie Overboard and the movie Bill and Ted’s Excellent Adventure;
the final score for Raiders of the Lost Ark aggregated the score from each recommen‐
dation.

We encourage you to play around with these queries in the accompanying notebook.
Most notably, take a look at what happens when you query this data with and without
fold(). How would you expect the structure of the results to change when you
remove the barrier? Did you get it right?

What are we ignoring that you need to consider?
There are three additional topics you will want to consider for your application.

Recommendation Queries with Shortcut Edges | 371

https://oreil.ly/G1Lrz


First, the most obvious filter you will want to include in your application would limit
recommendations according to a user’s preference. Such a filter could remove movies
they have already watched or have rated poorly.

The second topic to consider is the size of the result set. We arbitrarily chose three
recommendations, but we precomputed 1,000 recommendations per movie. We used
the smaller number in our examples to illustrate the concepts in a meaningful way.
You can explore sampling the 1,000 edges to compare different ways to use them.

The most popular way to expand beyond the top three recommendations is also our
last tip for your recommendation query. After your user views a small number of rec‐
ommendations, you will want your application to keep scrolling and pull more data.
You will want to set up your application to be able to stream more results to your end
user, which is why you will likely need to go deeper into your set of shortcut edges.

Hopefully, throughout all of the exercises across this book, you have learned how to
apply limits and filters to accommodate any of these options to the type of recom‐
mendations you deliver to your users.

Understanding Response Time in Production by Counting Edge
Partitions
The synthesis of limit(x) in Gremlin, combined with your graph schema’s dis‐
tributed architecture, is one of the most important concepts in this book. This last
section emphasizes that point to really bring it home.

The queries we introduced in the preceding section each provided a different set of
recommendations to your end user. We saw that the results of Query 2 and Query 3
were more diverse than the results of Query 1.

Thus you may have concluded that queries like Query 2 or Query 3 are better for
your application because they provide more selection for your user. And they may be.

But you have one last concept to synthesize in order to understand the performance
trade-offs of Query 1, Query 2, and Query 3.

The performance implications for each of our queries come down to how many edge
partitions are accessed to deliver the recommendations. And one of our queries has a
significant advantage when it comes to performance.

Let’s synthesize the traversals we have shown here with the concepts we detailed in
Chapter 5 by laying out the number of edge partitions required in each traversal. We
start by showing the number of edge partitions required for our first query.

372 | Chapter 12: Recommendations in Production



Partitions traversed for Query 1: The top three recommendations for the most recent rating by
a user.   
Figure 12-11 shows that we need to access two separate edge partitions to deliver our
three recommendations.

Figure 12-11. Understanding the number of edge partitions accessed by Example 12-7;
the query uses two different edge partitions

The first edge partition is from user 694 to the movie vertex for Safety Last! The
second edge partition is from the single movie vertex to its three top-rated movies.
The tables drawn alongside the graph data in Figure 12-11 highlight exactly when dif‐
ferent edge partitions are accessed during our traversal.

Partitions traversed for Query 2: The top recommendation for the three most recent ratings by
a user.   
Let’s contrast the number of partitions required for Query 1 by looking at the number
of edge partitions required for Query 2 in Figure 12-12.

Figure 12-12 shows that we need to access four separate edge partitions to deliver our
three recommendations. The first partition is the same as we used before: the user’s
ratings edges. However, this time we selected three separate movie vertices. To access
the top recommendation for each movie, we have to look at three different partitions.
Therefore, Query 2 requires four different edge partitions to find three different rec‐
ommendations.

Recommendation Queries with Shortcut Edges | 373



Figure 12-12. Understanding the number of edge partitions accessed by Example 12-8;
the query uses four different edge partitions

Partitions traversed for Query 3: The top three recommendations for each of the three most
recent ratings by our user.   
The last query to consider is Query 3, and like Figure 12-12, Figure 12-13 shows that
we need to access four separate edge partitions in order to deliver our recommenda‐
tions.

The first partition is the same as we used before: the user’s ratings edges. However,
this time, we selected three separate movie vertices. To access the top three different
recommendations for each of our movies, we have to look at three different parti‐
tions. Therefore, Query 3 requires four different edge partitions to find three differ‐
ent recommendations.

You also see in Figure 12-13 that the second and third movies both recommend Back
to the Future. Look back to our results listed in Figure 12-10. We can see here that
the score for Back to the Future aggregated both nps_scores: 691.0 + 52.0 =
737.0.

374 | Chapter 12: Recommendations in Production



Figure 12-13. Understanding the number of edge partitions accessed by Example 12-9;
the query uses four different edge partitions

Final Thoughts on Reasoning About Distributed Graph Query
Performance
The key for understanding performance of a query in a distributed environment lies
in synthesizing two concepts. As we just walked through, there is a direct correlation
to a query’s speed according to the number of partitions it requires across a dis‐
tributed environment.

With practice, it will become easier to follow the number of partitions accessed in
your query. Continue thinking about and visualizing your queries like what we illus‐
trated in Figure 12-13 to build up your understanding.

The second main contributing factor to your query’s performance is your data’s con‐
nectivity. We used shortcut edges in this chapter to simultaneously mitigate your
data’s branching factor and potential supernodes.

Recommendation Queries with Shortcut Edges | 375



We have constructed all the information in the past few sections so that you can rea‐
son about your query’s performance. Altogether, your graph query’s performance is
an intricate balance between distributed partition management and planning for your
data’s branching factor. At the end of the day, these are all the foundational concepts
you need to practice in order to be able to reason about the performance of dis‐
tributed graph queries. We hope you found them instructive.

376 | Chapter 12: Recommendations in Production



CHAPTER 13

Epilogue

We are incredibly honored that you went with us on this journey to graph thinking
and its application to complex problems. You learned a new way of thinking for solv‐
ing complex problems, a new body of theory to formalize that thinking, and a num‐
ber of new techniques and technologies for applying that thinking in building
practical solutions.

As Leonardo da Vinci said, “A developer would be overcome by sleep and hunger
before being able to describe with words what a code sample can express in an
instant.”

Like with all crafts, mastery of graph thinking can be gained through continued prac‐
tice. We set up our notebooks and example problems to show you how to get started
with your new craft. Feel free to keep playing with those notebooks and adjusting
them to suit your particular problems.

We would like to encourage you to apply the frameworks from this book to the prob‐
lems that you encounter. The first chapters of this book showed you how to reason
about which problems benefit from graph thinking. The criteria we walked through
aren’t hard and fast rules but simply rough guidelines for discerning when a problem
has the characteristics that make it suitable for graph thinking. Over time, you will
build an intuition that will support this decision making.

As you are starting out, it will likely feel more natural and comfortable to think about
your data problems through the relational lens of tabular data. Push through the dis‐
comfort of adopting a different perspective and give graph thinking a try, especially
when the relationships and connective structure of the data are important to the
problem at hand.

There is nothing wrong with the relational perspective to representing data, and we
are not trying to argue that graph thinking is better. It’s different, and for a certain

377



class of problems, it’s easier and more effective for finding a solution. Mastering both
perspectives is critical to solving complex problems since they often need to be bro‐
ken down into subproblems that require a combination of both perspectives.

As you are starting to apply graph thinking to your problems, we encourage you to
follow the “development first, production second” approach we took throughout the
latter chapters of this book. In other words, start with exploring your data as a graph
and quickly iterate toward applying and refining suitable graph techniques before you
delve deep into fine-tuning those techniques for production use. Chapter 4 through
Chapter 12 walked you through how we approach this mentality for applying graph
thinking to the most common connected data problems: exploring neighborhoods,
branching in trees, finding paths, collaborative filtering, and entity resolution.

Think of those techniques as Lego bricks that you can combine and assemble in vari‐
ous ways to build the solution that works for your particular application.

Where to Go from Here?
Is this all there is to know about graph thinking?

Far from it—this is just the end of the beginning.

Graph thinking is an incredibly rich topic, with relationships to many other areas in
computer science, physics, mathematics, biology, and beyond. Once you become
comfortable with viewing a problem through the lens of vertices connected by edges,
you’ll be surprised by the depth of understanding that this change in perspective
unlocks in various areas of human inquiry.

We recommend four avenues you can take to continue your journey with graph
thinking: graph algorithms, distributed graphs, graph theory, and network theory.
This list is by no means comprehensive, but just a rough outline of the many learning
roads you can take from here.

We are going to end with a brief section on each of these four topics and our recom‐
mendations on what to read next.

Graph Algorithms
There is another class of graph problems to mention: graph algorithms. Unlike the
specific production traversals taught in this book, graph algorithms typically require
analyzing the entire graph’s structure, like computing a specific analytic about the
connectedness of your data.

Collaborative filtering, which we first saw in Chapter 10, is one example of a graph
algorithm. Other popular graph algorithms are all-pairs shortest path, PageRank,

378 | Chapter 13: Epilogue



graph coloring, connected components identification, betweenness centrality, graph
partitioning, and modularity.

There are two main concepts to mention about graph algorithms.

The first point is that a graph algorithm typically requires global computation across
most of the graph, if not the entire graph. We teased the introduction of batch com‐
putation as an alternative way to use the Gremlin query languge for global computa‐
tions on graph-structured data.

The second point is to acknowledge that some graph algorithms can be broken down
into many localized computations, whereas others cannot. We saw one graph algo‐
rithm, namely collaborative filtering, that can be solved either with a global dis‐
tributed computation or with many localized computations.

Most of the more popular global graph algorithms, like PageRank and Connected
Components, cannot be decomposed into smaller computations and require dis‐
tributed batch computation when applied to very large graphs. For this class of graph
algorithms, it may be necessary to run the graph computation in a batch computing
(or bulk synchronous) mode that distributes the computation across multiple
machines in a cluster.

We recommend two books if you are interested in learning more about global graph
algorithms. First, we recommend studying Distributed Graph Algorithms for Com‐
puter Networks by K. Erciyes (Springer) f you want to dive deeply into how and when
graph algorithms can be broken down into smaller localized problems. Second, the
hands-on practitioner may appreciate the code examples for the most popular algo‐
rithms in Graph Algorithms: Practical Examples in Apache Spark and Neo4j by Mark
Needham and Amy E. Hodler (O’Reilly).

Distributed Graphs
This book places an emphasis on distributed graphs. Graphs need to be distributed
when they are too large to reasonably fit on a single machine, because of workload
requirements (i.e., achieving a certain throughput at low latency), or to account for
geo-distribution requirements of the data. Distributed graphs are particularly chal‐
lenging because you are combining the complexity of distributed data with the com‐
plexity of graph thinking.

While DataStax Graph in Cassandra handles a lot of this complexity on behalf of the
user, such as data replication and fault tolerance, understanding how distributed sys‐
tems work in detail is critical to understanding the behavior of the systems under
extreme conditions.

Some elements that we have not addressed in any detail in this book have to do with
data consistency. DataStax Graph uses an eventual consistency model that favors sys‐

Where to Go from Here? | 379

https://www.oreilly.com/library/view/graph-algorithms/9781492047674/


tem uptime over strong consistency guarantees. Other graph databases make the
opposite choice and provide stronger consistency guarantees with a higher likelihood
of database unavailability.

What is right for your application depends on your business requirements. In any
case, it is important to understand what consistency and availability guarantees are
being provided by the system and how to reason about them.

Distributed databases are fascinating systems, and their discussion fills entire books.
We encourage our readers to learn more about them. To learn more about Cassandra,
the distributed database underlying DataStax Graph, we recommend Cassandra: The
Definitive Guide by Jeff Carpenter and Eben Hewitt (O’Reilly). For a more general
discussion of distributed databases, we recommend the Principles of Distributed Data‐
base Systems textbook by M. Tamer Özsu and Patrick Valduriez (Springer Science
+Business Media).

Graph Theory
There is a whole branch of mathematics called graph theory, which is dedicated to the
study of graph structures; many of the terms introduced in this book stem from graph
theory. From a practitioner’s standpoint, it is most useful to familiarize yourself with
the terminology and develop a basic understanding of the distinctions that graph
theory draws.

If you’d like to get a deeper understanding of the terminology and basic concepts
underlying graph thinking, we encourage you to study graph theory. Graph theory
will teach you about certain classes of graphs, such as planar graphs, and what charac‐
teristics these graphs have. You’ll learn more about the famous “graph coloring”
problem.

A good starting point for your self-directed tour of graph theory is Introduction to
Graph Theory by Richard J. Trudeau (Dover). Also, you can find a lot of introductory
material on graph theory online, including an entire YouTube channel by Sarada
Herke dedicated to graph theory and discrete mathematics.

When searching for content online about graph theory, you will quickly run into the
term network theory.

Network Theory
Network is a term used synonymously with graph, and network theory is the applica‐
tion of graph theory to the real world. Network theory studies natural graphs, or
graph structures that occur in the real world around us and within different
disciplines.

380 | Chapter 13: Epilogue

https://www.youtube.com/user/DrSaradaHerke
https://www.youtube.com/user/DrSaradaHerke


1 SIAM REview 45, no. 2 (2003): 167-256.

For example, sociologists apply network theory to study social networks and reason
about natural connected structures. Biologists look at graphs that occur in the biolog‐
ical world, such as food networks (or “who eats whom?”), and within human beings,
such as molecular pathways or protein-protein interaction networks.

One fascinating finding from network theory is that a lot of naturally occurring net‐
works are “scale-free,” and the degree distribution of the vertices on those networks
has a power law distribution. Simply put, there are a few vertices in the graph that
have a whole lot of edges, and then very many vertices with only a few edges. Twitter
is a good example of a scale-free graph: there are very few people on Twitter with mil‐
lions of followers, and millions of people with only a few followers.

A wide variety of natural networks are scale-free; this is the reason that supernodes
exist in graphs.

One popular theory trying to explain the prevalence of scale-free networks, called the
preferential attachment theory, speculates that as new vertices join a network over
time, they are more likely to build edges to vertices that already have a lot of edges. In
other words, it’s a classic “the rich get richer” phenomenon.

This intuitively holds true for Twitter: if a new user joins Twitter, they are more likely
to follow somebody popular like Barack Obama than a random person.

Network theory has a lot to say about natural graphs and the dynamics that shape
them. This is relevant for graph practitioners to ensure that the systems we build
work well on the graphs we are targeting. We already saw how important it is to be
aware of and work around supernodes. Network theory helps us understand when
and how supernodes arise. Similarly, there are many other topics within network
theory that can give us a better understanding of certain domain graphs.

Linked: The New Science of Networks by Albert-László Barabási (Perseus), the scien‐
tific father of the preferential attachment theory, is a good popular science introduc‐
tion to graph thinking. If you are not afraid of a denser read or of getting into the
mathematics of it all, we recommend the survey paper “The Structure and Function
of Complex Networks” by Mark Newman.1 This paper provides a high-level introduc‐
tion to many areas within network science with enough mathematical depth to
become practical, while remaining high-level enough to cover a lot of ground quickly.
And it contains a lot of references to more in-depth materials.

Where to Go from Here? | 381



Stay in Touch
If you’ve enjoyed this introduction to practical graph thinking and want to learn
more about it or join a group of like-minded individuals on a shared journey, we
encourage you to:

1. Follow us on Twitter: @Graph_Thinking
2. Visit our GitHub: https://github.com/datastax/graph-book

382 | Chapter 13: Epilogue

https://github.com/datastax/graph-book


Index

A
access pattern, partitioning graph data by, 123
actors and casting details (Kaggle dataset), 337
addresses (Bitcoin), 236

pathfinding queries with, 240, 244
picking random address to use for an exam‐

ple, 245
adjacency, 29

adjacency lists, 127
adjacency matrices, 127

aggregate step, 243
all-pairs shortest path, 231
analyzing graph data, 16
and step, 286
Anonymous traversal __., 188
Apache Cassandra, 117-142

data modeling for graph data, 136-142
loading movie data into, 310
naming conventions, using snake_case, 330
resource for further learning, 135
understanding distributed graph data in,

119
UPSERTs to handle writes, 342
working with graph data, 120-136

partition keys and data locality in dis‐
tributed environment, 121-126

primary keys, 120
understanding edges, 126-136

Apache TinkerPop documentation, 188
application features, learning to see as different

path problems, 233
as step, 72, 207

assigning labels in path structure, 182
attributes (in relational data), 26, 51

B
B-trees, 4
barrier steps, 185, 245

breadth-first search behavior guaranteeing
shortest paths, 278

examples of, 245
NoOpBarrierStep in traversal explanation,

251
order, 280

batch computation of shortcut edges, 362-363
when batch computation is better for envi‐

ronment, 362
BF (see branching factor)
bidirectional edges, 35

materialized views for, 133
bill of materials (BOM) applications, 156
Bitcoin

Bitcoin OTC Marketplace, trust ratings, 234
brief primer on terminology, 236
quantifying trust in another entity with path

analysis, 246-260
trust intervals in Bitcoin OTC dataset, 268
trust network, understanding traversals

with, 240-246
blockchains, 236
blue-green deployment patterns, 141
boolean AND, applying to traversal results, 286
bottom up, seeing hierarchies in data, 165

time in sensor data, 193
valid and invalid paths in sensor data, 195
walking tree from leaves to roots, 184

branching factor, 200-203, 351
calculating number of threads required to

process query map, 201

383



within recommendation problems, 351
working around, 202

breadth-first search (BFS), 232-233
defined, 232
repeat.until pattern, 316
and traversal strategies, 251

bulk loading graph data, 146-149
for normalized weights and shortest paths

graph, 272
in production schema for sensor data, 204
loading edge data with DataStax Bulk

Loader, 148, 172
loading edges in movie data into Cassandra,

310
loading vertex data with DataStax Bulk

loader, 146, 172
movie data vertices, 308

business, complex problems in, 10
by modulators

applying in round-robin order to mutate
objects in path strucure, 207

by(sack().min()), 281
for each key in project step, 107
shaping path results with, 183
try/catch logic in, 114

C
C360 application (see Customer 360 applica‐

tion)
camelCase, 91

converting to snake_case in MovIeLens
dataset, 330

cap step, 186
cardinality, 39

for entities in ERD, 52
case

converting camelCase to snake_case in
MovieLens dataset, 330

inconsistent use in graph naming, 91
child vertices, 160
choose step, 313, 321
clustering columns, 128-132

Cassandra table structure when modeling
clustering keys on edges, 130

synthesizing concepts, edge location in dis‐
tributed cluster, 131

coalesce step, 112-115
replacing with choose, 313
try/catch pattern in, 206

CODASYL (Conference/Committee on Data
Systems Languages), 3

collaborative filtering, 292, 295-303
defined, 295
with graph data, 297-298

recommendations via item-based collab‐
orative filtering, 298

item-based, in Gremlin, 318-324
counting paths in recommendation set,

318
net promoter score-inspired metric,

319-322
normalized NPS, 322-323

models for ranking recommendations,
299-303
net promoter score-inspired metric, 300
path counting, 299

query calculating shortcut edges for movie
data, 359

supernodes in queries, 351
understanding the problem and domain,

295-297
collections of adjacent vertices, 39
communities of trust, exploring, 238
complex problems, 10

in business, 10
making technology decisions to solve, 12-20

common missteps in understanding
data, 15

deciding if the problem needs graph
data, 13

navigating applicability of graph data,
15-19

not every problem is a graph problem,
12

relationships in data, deciding if impor‐
tant to business problem, 14

seeing the bigger picture, 19
complex systems, 10
conceptual graph model, 42
constant step, 113
content-based recommender systems, 296
continuous delivery (CD), 141
count step, 248
CREATE TABLE statements, 55
criminal investigations, trust in investigator's

story, 227
CSV files

for edge data in Chapter 5, 148

384 | Index



for edge data in Edge Energy example, 173
for edge labels in movie data, 310
for pathfinding in trust network, 237
for vertex data in Chapter 5, 146
movie data, 308

Customer 360 application, 48-80
benefits of, 50
building more realistic version, 81-116

basic Gremlin queries of expanded
C360, 97-106

graph data modeling, 82-95
implementation details for exploring

neighborhoods in development,
95-97

moving from development to produc‐
tion, 115

shaping query results with advanced
Gremlin, 106-115

data modeling for development version, 117
final production implementation, 142-152

bulk loading graph data, 146-149
final schema, 144-146
materialized views and adding time onto

edges, 142
updating Gremlin queries to use time on

edges, 149-152
implementing in a graph system, 61-75

creating graph schema, 63
data models, 62
example queries, 70-75
graph traversals, 70
inserting graph data, 64

implementing in a relational system, 51-61
creating tables and inserting data, 54
data models, 51-54
example queries, 58-61
sample data, 51

making your technology choice for, 79
cycles

defined, 162
depth in, 161
in sensor data for Edge Energy example, 168
loops versus, 169
removing with simplePath step, 179, 258

D
data

for C360 application example, 23

generating more for C360 expanded imple‐
mentation, 97

importance in graph data modeling, 94
data directory within the book's GitHub reposi‐

tory, 149
data modeling

concepts in graph data, 28-33
adjacency, 29
degree, 31
distance, 30
fundamental elements of a graph, 28
neighborhoods, 30

conceptual model of development schema
for trust network, 236

data model for movie recommendations,
303

for C360 application in relational system,
51-54
entity-relationship diagram, 51
physical data model, 52

for graph system implementation of C360
application, 62

graph data, 82-95
before you start building, 93
edge direction, 86-89
full development graph model, 91-93
importance of data, queries, and end

user, 94
naming, mistakes in, 89
vertices or edges, choosing between,

83-85
optimizing for graph data, 136-142
primary keys in distributed systems, 120
production schema for normalized edge

weights and shortest paths, 272
production schema model for sensor data,

203-205
relational, 25-27

building to an ERD, 27
entities and attributes, 26

relational versus graph databases, 75
starting development schema for Edge

Energy example, 170
top tips for getting from development to

production, 152
with merged MovieLens and Kaggle data‐

sets, 338
with MovieLens dataset, 330

mapping genome files into schema, 335

Index | 385



mapping movies file values into edge,
new vertex label, and new properties,
331

mapping ratings to vertex and edge
labels, 333

mapping tags into vertex and edge labels,
333

data serialization standards (XML, JSON,
YAML), 6

data types, their shapes, and recommended
types of databases, 14

database technologies
evolution of, 2-9

entity-relationship, 4
graph era, 7-9
hierarchical or navigational data, 3
NoSQL, 5

databases
distributed, learning more about, 135
production, loading data, then applying

indexes, 141
recommendations for different data types,

14
DataStax Graph

batch computation, 362
intelligent index recommendation system,

140
loading edge data with Bulk Loader, 148,

172
loading vertex data with Bulk loader, 146,

172
materialized views for traversals, 133
running in Apache Cassandra

partition in cluster, 122
schema APIs, 62

DataStax Graph documentation pages, 63, 102
dedup step, 241, 244
degree (in graph data), 31

implications of, 32
outgoing degree distribution in graph exam‐

ple, 284
degreeDistribution map object, 185

ordering elements in, 186
denormalization

applying to include timestamp on edges and
vertices, 137

defined, 137
using to minimize data for queries in C360

final version, 142

deployment strategies, blue-green, for produc‐
tion graph databases, 141

depth in hierarchical data, 160-162
deep hierarchy, root to leaves in Edge

Energy example, 168
depth, defined, 161
in walks, paths, and cycles, 161
limiting in recursion, 189

depth-first search (DFS), 232-233
defined, 231

development traversal source (dev.V), 118
directed edge, 35
direction (edge), 35, 86-89

modeling according to money flow, 87
distance (in graph data), 30, 262

defined, 230
distributed graph algorithms for computer net‐

works, 379
distributed graphs, 379
do/while looping, 179
domain (edge labels), 36
domain knowledge filters, pruning shortcut

edges with, 355
dsbulk load command, 147, 149

E
eager evaluation, 244

traversals evaluated by, guaranteeing BFS
behavior, 251

ecommerce, recommendations in, 294
Edge Energy network example, 175

(see also trees, using in development; trees,
using in production)

hierarchies with sensor data, 162-170
edge labels, 33

creating materialized view on, 133
creating using clustering columns, 128
domain, 36
finding where denormalization can opti‐

mize queries in C360, 144
for calculating shortcut edges for movie

data, 359
properties, 34
range, 36
schema code for movie recommendations,

306
self-referencing, 38, 170

edge lists, 126
edges

386 | Index



adding to graph database, 67
choosing between vertices and, 83-85

finding edges, 84
clustering by time, 203
defined, 28
direction, 35, 86-89

modeling according to money flow, 87
in sensor hierarchies, Edge Energy example,

169
in trust network graph, 238
loading data with DataStax Bulk Loader,

148, 172
loading in movie data, 309
optimizing storage on disk, 128-136

clustering columns, 128-132
materialized views for traversals,

132-135
properties, using to navigate branching fac‐

tor, 203
representing in data, 126

data structures for storing edges on disk,
127

shortcut (see shortcut edges)
time data on, updating Gremlin queries of

C360 to use, 149-152
time on, 191
timestep property on, 192

end users, importance in graph data modeling,
95

entities
about, 26
tables for, in C360 application data model,

53
entity resolution in graphs, 325-348

analyzing movie datasets, 329-339
development schema for merged data‐

base on movies, 339
Kaggle dataset, 336-338
MovieLens, 329-336

entity resolution problem domain, 326-328
mathematical definition, 327
seeing the complex problem, 328

matching and merging movie data, 340-343
merging multiple datasets into one graph,

325
resolving false positives, 343-348

additional errors in entity resolution
process, 344

false positives in MovieLens dataset, 344

final anslysis of merging process, 346
role of graph structure in merging movie

data, 347
entity-relationship database technologies, 4
entity-relationship diagrams (ERDs), 25

for C360 application in relational system, 51
ERD using example C360 data, 27

errors
false positive, 344
traversal taking more than 30 seconds, 189

ETL (extract-transform-load), 237
merging movie datasets, 306

evaluation strategies with Gremlin, 244
explain step, 251
expressiveness of query languages, 77

F
false positives, resolving, 343-348

additional errors in entity resolution pro‐
cess, 344

false positives in MovIeLens dataset, 344
final analysis of merging process for movie

datasets, 346
role of graph structure in merging movie

datasets, 347
filter step, 282, 285
filtering recommendations with domain knowl‐

edge, 355
filtering, collaborative (see collaborative filter‐

ing)
fold step, 109, 114
foreign key, 53

G
getting started, 47-80

foundational use case for graph data, C360
application, 48-50

implementing C360 application in graph
system, 61-75

implementing C360 application in relational
system, 51-61

relational versus graph technologies, 48
Git version control system, hierarchical data in,

157
global heuristic optimization, 264, 266
global scope in graph traversals, 102

ordering objects in traversal pipeline, 186
graph algorithms, 378
graph neighborhoods (see neighborhoods)

Index | 387



Graph Schema Language (GSL), 22, 33-42, 62
clustering edges by time, 203
conceptual model for Edge Energy example,

170
creating indexes in sensor data production

schema, 204
creating production schema for normalized

weights and shortest path, 272
edge direction, 35
full conceptual graph model, 42
mapping of table structures in Cassandra to

graph schema, 129
multiplicity of a graph, 38

modeling, 39
properties, 34
self-referencing edge labels, 38
vertex labels and edge labels, 33

graph structure, role in merging movie data,
347

graph technologies
advanced Gremlin queries of expanded

C360, 106-115
advantages for use with hierarchical data,

158
basic Gremlin navigation, 97-106
choosing between relational systems and,

75-78
data modeling, 75
for C360 application implementation, 79
query languages, 76
representing relationships, 76
summary of main points, 77

concepts in graph data, 28-33
adjacency, 29
degree, 31
distance, 30
fundamental elements of a graph, 28
neighborhoods, 30

data modeling, 82-95
before you start building, 93
choosing between vertices and edges,

83-85
full development graph model, 91-93
importance of data, queries, and end

user, 94
naming, mistakes in, 89

foundational use case, C360 application,
48-50

implementing C360 application, 61-75

benefits of, 78
creating graph schema, 63
data models, 62
example queries, 70-75
graph traversals, 70
implementation details for exploring

neighborhoods in development,
95-97

inserting graph data, 64
moving from development to produc‐

tion, 115
moving on to more complex distributed

graph problems, 152
relational technologies versus, 22-24, 48

decisions to consider, 43-45
questions to ask when choosing, 21

translating relational concepts to graph ter‐
minology, 21

graph theory, 380
visualization of corporate hierarchy as tree,

159
graph thinking, 377-382

about, 1
complex problems and complex systems, 10

complex problems in business, 10
defined, xi, 9
getting started with, 20
making technology decisions to solve com‐

plex problems, 12-20
where to go from here, 378-381

graph traversals, 70, 71
breadth-first search and traversal strategies,

251
error for taking more than 30 seconds, 189
mutating, 104
scope in, 102
starting with a vertex, 83

graph, defined, 28
Gremlin query language, 62

advanced, shaping query results, 106-115
planning for robust results with coalesce

step, 112-115
where(neq()) pattern, 110
with project, fold, and unfold steps,

106-110
and step, 286
Anonymous traversal step, 188
barrier steps, 185, 245
basic navigation of expanded C360, 97-106

388 | Index



evaluation strategies, 244
limiting depth of recursive traversal, 189
loops step, 210
sideEffect step, 286
SQL versus, 76
traversers equated to threads, 202
until.repeat pattern, 179
where.by pattern, 211-213

Groovy variant of Gremlin, 188
group step, 185
groupCount method, 105

H
hard limits on total recommendations, pruning

by, 355
has step, 72

overloading, common mistake in Gremlin,
211

has, using as edge label, problems with, 89
healthcare, recommendations in, 292
hierarchical data, 3

(see also trees, using in development; trees,
using in production)

benefits of graph technologies for, 158
defined, 155
hierarchies and nested data, examples of,

156-158
in bill of materials, 156
in self-organizing networks, 157
in version control systems, 157

understanding time in
from the bottom up, 193
from the top down, 197

highest trust path, finding between two
addresses in dataset, 269

hybrid models (recommender systems), 296

I
id, use as property, 90
identifiers

accuracy of, 325
additional errors in entity resolution pro‐

cess, 344
false positives due to incorrect mapping in

MovieLens, 344
links identifiers in MovieLens dataset, 330
resolving identities in different data sources,

process of, 327
strong identifiers from Kaggle dataset, 336

strong, linked across systems of record, 327
in step, prefixed by anonymous traversal, 188
indexes

creating in production schema for sensor
data, 204

determining for edge labels in graph
schema, 138
figuring out for yourself, 138
finding with intelligent index recom‐

mendation system, 140
keeping only edges and indexes needed

for production queries, 142
query for finding indexes, 140

loading data before applying in production
databases, 141

indexFor method, 140
indexFor(…).analyze method, 141
infinity, modeling, 270
input, model, and recommendation steps in

item-based collaborative filtering, 298
INSERT INTO statements, 55
item-based collaborative filtering, 297, 318-324

counting paths in recommendation set, 318
defined, 297
net promoter score-inspired metric,

319-322
normalized net promoter scores, 322-323
with graph data, recommendations via, 298

J
join tables, 53

from Customers to Accounts tables, 56
from Customers to Loans tables, 57

joins
Gremlin versus SQL, 76
in WHERE-JOIN-SELECT queries, 70

K
Kaggle dataset, 303, 336-338

actors and casting details, 337
development schema for merged database

on movies, 339
matching and merging with MovieLens,

340-343
movie details, 336

keys, scans, and links, extracting data by, 3, 8

Index | 389



L
labels

assigning in path data structure with as, 182
in path data structure, 181
payload from path object, 207, 211

lazy evaluation, 244
leaves

deep hierarchy, leaves to root in Edge
Energy example, 165

deep hierarchy, root to leaves in Edge
Energy example, 168

leaf, defined, 160
length of a path, 230
limit step, 252, 316

combined with graph schema's distributed
architecture, 372

limits on total recommendations, pruning
shortcut edges by, 355

LinkedIn
application of graph thinking, 10
pathfinding in, 233
retrieval path in graph thinking, 18

links in MovieLens dataset, 330
loading data

into trust network pathfinding graph, 237
movie data, 307-311

loading the edges, 309
loading the vertices, 307

production data loading for movie recom‐
mendations, 365

local scope in graph traversals, 102
ordering elements in an object, 186

logarithmic transformation for values between
0 and 1, 269

loops
cycles versus, 169
limiting repetition in recursive traversal,

189
no loops in sensor hierarchy edges, 169
self-referencing edge labels versus, 170
using sack step in, 216

loops step, 210
in overloaded has step, 212

Louvain Community Detection Algorithm, 239
lowest cost optimization, 264, 266

M
many-to-many connections, 56
materialized views, 132-135

and adding time onto edges in C360 appli‐
cation, 144

finding where needed for edge labels, 138
for bidirectional edges, 133
listing all edges on disk for, 134

merging datasets
final analysis for merging movie datasets,

346
role of graph structure in merging movie

data, 347
Moore's law, 6
movie data, 303-318

analyzing datasets, 329-339
development schema for merged data‐

base on movies, 339
Kaggle, 336-338
MovieLens, 329-336

calculating shortcut edges for, 357-363
data model for movie recommendations,

303
loading, 307-311

loading the edges, 309
loading the vertices, 307

matching and merging, 340-343
movie titles mismatched between Movie‐

Lens and Kaggle, 345
movies in MovieLens dataset, 331
neighborhood queries in, 311-314
path queries in, 316
role of graph structure in merging, 347
schema code for movie recommendations,

305-307
tree queries in, 314-316

movie details (Kaggle dataset), 336
movie recommendations

production data loading for, 365
production schema for, 363-365

MovieLens dataset, 303, 329-336
augmenting with Kaggle

adding actors into the model, 338
adding properties to movie vertices, 336

development schema for merged database
on movies, 339

false positives found in, resolving, 344
links, 330
matching and merging with Kaggle, 340-343
movies, 331
ratings, 332
tag genome, 334

390 | Index



tags, 333
multiplicity (of a graph), 38

modeling in GSL, 39
mutating traversals, 104

N
navigational data, 3
neighborhoods

about, 30
exploring in development, implementation

details, 95-97
neighborhood queries in movie data,

311-314
nested data, 15

benefits of graph technologies for, 158
examples of, 156-158

net promoter score-inspired metric, 300
item-based collaborative filtering in Grem‐

lin, 319-322
normalized net promoter scores, 302,

322-323
Netflix, 11

movie recommendations, 356
Netflix Prize, 291
network theory, 380
nodes, different meanings of the term, 29
NoOpBarrierStep, 252
normalization

normalized net promoter scores, 302,
322-323

normalizing edge weights for shortest path
problems, 267-277

norm_trust property, 272
using to explore paths between two

addresses, 273-277
NoSQL movement, 5
nouns, translation to vertices in graph data, 84
NPS (Net Promoter Score), 300, 319

(see also net promoter score-inspired met‐
ric)

O
objects in path data structure, 183
one-to-many connections, 52
order step, 186, 280
order.by pattern in Gremlin, 101
out step, 72, 249
outgoing degree distribution, 284

P
package delivery, modeling, 228
parallelism, using to divide work of calculating

shortcut edges, 361
parent vertex, 160
partition keys, 120

and data locality in distributed environ‐
ment, 121-126
final thoughts on partitioning strategies,

125
partitioning graph data by access pat‐

tern, 123
partitioning graph data by unique key,

125
partitionBy method, 121

partition, different meanings of, 121
partitions (edge), counting, 372-374
path counting, using to rank recommendations,

299
path step

assigning labels with as, 182
examining results, 247
shaping results with by, 183
using and manipulating its data structure,

180
paths

counting in recommendation set, 318
defined, 161
depth in, 162
finding in development, 225-260

depth-first search and breadth-first
search, 232-233

finding paths in trust network, 234-240
pathfinding questions, 229
quantifying trust in networks, 226
seeing application features as path prob‐

lems, 233
shortest path queries, 246-260
shortest paths, 230-232
thinking about trust, examples, 226-229
understanding traversals with Bitcoin

trust network, 240-246
finding in production, 261-289

normalizing edge weights for shortest
path problems, 267-277

shortest weighted path queries, 277-288
understanding weights, distance, and

pruning, 262

Index | 391



weighted paths and search algorithms,
262-267

weighted paths and trust, 288
from sensor to tower in Edge Energy exam‐

ple, 178
path queries in movie data, 316
understanding distance in Edge Energy

example, 166
valid and invalid from bottom up, 195
valid and invalid from top down, 199
valid and invalid paths in sensor data, 206
valid paths from top down, 197
valid, from leaves to root, 194

performance
final thoughts on distributed graph query

performance, 375
query performance and query languages, 77
response time in production, counting edge

partitions, 372-374
personalization of applications, 47

Customer 360 application, 50
pigeonhole principle, 132
Practical Gremlin: An Apache TinkerPop Tuto‐

rial (Lawrence), 106, 225
predicates, popular, for ranges on values, 101
primary key, 53

in Apache Cassandra, 120
in clustering columns for edge labels, 129
starting graph queries with, 126
supplying when adding vertices to graph

database, 65
production traversal source (g.V), 118
project step, 107-110, 206

key arguments, 107
project.where pattern, 283
properties, 34

datetime and trust, on edges in trust net‐
work graph, 238

deciding when to use in graph data, 88
duplication onto edges and vertices, 137
on vetex labels in example graph model, 42
using on edges to navigate branching factor,

203
pruning, 262

different ways to precompute shortcut
edges, 354-355

Q
queries

analyzing vs. querying graph data, 16
applying to tower failure scenarios in Edge

Energy example, 218-223
basic Gremlin navigation in expanded C360,

98-106
collabortive filtering query to calculate

shortcut edges, 359
example C360 queries in graph implementa‐

tion, 70-75
example C360 queries in relational imple‐

mentation, 58-61
final thoughts on distributed graph query

performance, 375
graph data, using semantic phrases, 83-85
mapping onto graph schema to place mate‐

rialized view on edge label, 138
modeling edge direction for, 87
neighborhood queries in movie data,

311-314
grouping user's movie ratings as liked,

disliked, or neutral, 312
of graph database, 70

(see also graph traversals)
path queries in movie data, 316
query-driven data modeling in Edge Energy

example, 170
query-driven design of graph data model, 94
querying and using tree structures in graph

data, 174
querying from leaves to roots

in development, 174-184
in production, 205-213

querying from roots to leaves
in development, 184-190
in production, 213-218

recommendation queries with shortcut
edges, 366-376
confirming edges are loaded correctly,

367
recommendations for our user, 368-372
response time, counting edge partitions,

372-374
shaping results with advanced Gremlin,

106-115
shortest path, 246-260

augmenting paths with trust scores,
253-259

do you trust this person, 259
finding paths of any length, 250

392 | Index



finding paths of fixed length, 247
shortest weighted path, 277-288

adding object to track shortest weighted
path to visited vertex, 280

and step in Gremlin, 286
interpreting results of shortest weighted

path, 287
removing traverser if path longer than

already discovered to vertex, 282
removing traversers for custom reasons,

284
sideEffect in Gremlin, 286
swapping two steps and changing limit,

279
tree queries in movie data, 314-316
updating to use time on edges in C360 final

version, 149-152
query languages, relational versus graph tech‐

nologies, 76

R
range (edge labels), 36
ranking recommendations, models for, 299-303

net promoter score-inspired metric, 300
rated edge, norm_trust property, 272
ratings

in MovieLens dataset, 332
trust ratings in Bitcoin OTC Marketplace,

235
recommendations in development, 291-324

collaborative filtering, 292, 295-303
with graph data, 297-298
item-based collaborative filtering with

graph data, 298
models for ranking recommendations,

299-303
understanding the problem and domain,

295-297
item-based collaborative filtering in Grem‐

lin, 318-324
counting paths in recommendation set,

318
net promoter score-inspired metric,

319-322
normalized NPS, 322-323

movie data, schema, loading, and query
review, 303-318
data model for movie recommendations,

303

loading movie data, 307-311
neighborhood queries, 311-314
path queries, 316
schema code for movie recommenda‐

tions, 305-307
tree queries, 314-316

recommendation system examples, 292
ecommerce, 294
healthcare, 292
social media, 293

recommendations in production, 349-376
calculating shortcut edges for movie data,

357-363
batch computation, addressing, 362-363
breaking down complex problem,

357-362
loading data for movie recommendations,

365
production schema for movie recommenda‐

tions, 363-365
recommendation queries with shortcut

edges, 366-376
confirming edges are loaded correctly,

367
final thoughts on distributed graph

query performance, 375
recommendations for our user, 368-372

response time, understanding by counting
edge partitions, 372-374

shortcut edges for recommendations in real
time, 350-356
considerations for updating recommen‐

dations, 356
fixing scalng problems with, 352
pruning shortcut edges, 354-355
seeing design for delivery in production,

353
where our development process doesn't

scale, 351
understanding shortcut edges and advanced

pruning techniques, 350
recursion

limiting depth in, 189
recursively walking through trees in a

graph, 189
relational database systems, 4
relational technologies

choosing between graph systems and, 75-78
data modeling, 75

Index | 393



for C360 application implementation, 79
query languages, 76
representing relationships, 76
summary of main points, 77
why not use relational, 79

graph technologies versus, 22-24, 48
decisions to consider, 43-45
questions to ask when choosing, 21

implementing C360 application, 51-61
complete mapping of data into relational

database, 58
creating tables and inserting data, 54
data models, 51-54
example queries, 58-61

translating concepts to graph terminology,
21

relationships
representing, relational vs. graph systems,

76
understanding relationships across data, 9

repeat.times pattern, 189, 216, 249
repeat.until pattern

barrier steps in, 252
breadth-first search without a barrier, 316
order step immediately after, 280

reports, using graph data for, 18
research and development, using graph algo‐

rithms, 18
reserved language-specific keywords, resolving

variants of Gremlin that clash with, 188
retrieval of graph data, 18
role property, 41
root

deep hierarchy, leaves to root in Edge
Energy example, 165

deep hierarchy, root to leaves in Edge
Energy example, 168

defined, 160
route optimization, 229

S
sack step

by(sack().min()), 281
comparing for traverser to our threshold,

286
using in a loop, 216
using to aggregate trust ratings, 254-259

sample step, 245
scaling out versus scaling up, 7

schema.indexFor method, 140
schemas

conceptual model of development schema
for trust network, 236

creating for graph implementation of C360
application, 63

development data model for movie recom‐
mendations, 303

development schema for merged database
on movies, 339

final C360 production schema, 144-146
implementing development schema for

Edge Energy example, 171-174
mapping MovieLens genome files into our

schema, 335
production schema for movie recommenda‐

tions, 363-365
production schema for normalized weights

and shortest paths, 272
production schema for sensor data, 203-205
production schema required for calculating

shortcut edges, 357
schema code for movie recommendations,

305-307
starting development schema for Edge

Energy example, 170
scope in graph traversals, 102, 186
score thresholds, pruning shortcut edges by,

354
SELECT clause in WHERE-JOIN-SELECT

queries, 70
select step, 72
self-organizing networks, hierarchical data in,

157
self-referencing edge labels, 38, 170
semantic phrases and graph data, 83-85
sensor data

understanding hierarchies with, 162-174
edges in sensor hierarchies, 169
seeing hierarchies, from the bottom up,

165
understanding the data, 163

sets of adjacent vertices, 39
shape of data, 13
shortcut edges, 350

calculating for movie data, 357-363
batch computation, 362-363
breaking down complex problem, 357
collaborative filtering query, 359

394 | Index



schema required for, 357
using parallelism to divide the work, 361

for recommendations in real time, 350-356
considerations for updating recommen‐

dations, 356
fixing scaling issues with, 352
pruning shortcut edges, 354-355
seeing design for delivery in production,

353
where our development process doesn't

scale, 351
precomputed, loading for movie recom‐

mendations, 365
recommendation queries with, 366-376

confirming edges are loaded correctly,
367

recommendations for our user, 368-372
shortest paths, 230-232

defined, 230
queries, 246-260

augmenting paths with trust scores,
253-259

do you trust this person, 259
finding paths of any length, 250
finding paths of fixed length, 247

types of problems, 231
shortest weighted paths

definition of shortest weighted path prob‐
lem, 263

normalizing edge weights for shortest path
problems, 267-277
changing trust interval scale to [0,1], 268
deciding how to model infinity, 270
exploring normalized edge weights,

273-277
framing new scale as shortest path prob‐

lem, 269
thoughts before going to shortest path

queries, 277
updating graph with normalized

weights, 272
queries, 277-288

building query for production, 279
search optimizations, 264-267

pseudocode for search algorithm, 266
supernode avoidance, 265-266

sideEffect step, 286, 286
simplePath step, 179

eliminating repeating paths in movie data,
315

removing cycles with, 258
single-source shortest path, 231
snake_case, 91, 330
social data mining, 296
social media

determining whether to accept connections,
226

recommendations in, 293
source, defined, 235
SQL (Structured Query Language)

Gremlin versus, 76
SELECT-FROM-WHERE statements with

basic joins, 59-61
Stanford Network Analysis Platform (SNAP),

235
supernode avoidance optimization, 264, 266

requiring sideEffect step, 286
supernodes, 265, 284, 351

in collaborative filtering queries, 351
in recommendation problems, 352
theoretical limits of, 265

T
tables

creating for C360 application implementa‐
tion, 54

for entities in C360 application data model,
53

tabular data, 15
tags (in MovieLens dataset), 333

tag genome, 334
target, defined, 235
time

adding to edge labels, 142
clustering edges by, 203
for ratings, 235
formatted in ISO 8601 standard, 307
from sensor, finding all trees up to a tower

by, 206
understanding in sensor data, 192-200

final thoughts on time series data in
graphs, 200

from the bottom up, 193
from the top down, 197

understanding time on edges, 191
times(x) step, 189
timestamps

Index | 395



adding timestamp property to with‐
draw_from, deposit_to, and charge edge
labels, 144

denormalizing timestamp property and
adding to charge edge, 144

on edge labels in C360 final version, updat‐
ing queries to use, 149-152

timestep property, 173, 192
decreasing values in top down traversal, 199
in has(“timestep”, loops()), 212
monitoring while walking through sensor

data, 209
on send edge labels, 205

top down hierarchies in data, 168
time in hierarchical data, 197

valid and invalid paths, 199
walking tree from root to leaves, 184

transactional queries for shortcut computation,
363

transactions
finding most recent for an account, 137
integrating into graph data model, 86-89
queries walking from account vertex to, 118
querying most recent twenty on an account,

98
traversal source, 70
tree, defined, 159
trees, using in development, 155-190

hierarchies and nested data, examples of,
156-158

navigating trees, hierarchical data, and
cycles, 155

querying from leaves to root, 174-184
querying from roots to leaves, 184-190
terminology, 159-162

depth in walks, paths, and cycles, 160
trees, roots, and leaves, 159

tree queries in movie data, 314-316
understanding hierarchies with sensor data,

162-174
before building queries, 174
conceptual data model using GSL nota‐

tion, 170
edges in sensor hierarchies, 169
implementing the schema, 171-174
seeing hierarchies in data, from the bot‐

tom up, 165
seeing hierarchies in data, from top

down, 168

understanding the data, 163
trees, using in production, 191-224

applying queries to tower failure scenarios
in Edge Energy example, 218-223

branching factor, depth, and time on edges,
191

production schema for sensor data, 203-205
querying from leaves to root, 205-213

where.by pattern in Gremlin, 211-213
querying from roots to leaves, 213-218
understanding branching factor in Edge

Energy example, 200-203
understanding time in sensor data, 192-200

final thoughts on time series data in
graphs, 200

from the top down, 197
time in hierarchical data, from bottom

up, 193
trust, 225-229

finding highest trust path between addresses
in Bitcoin data, 269

finding paths in trust network, 234-240
Bitcoin terminology primer, 236
creating development schema, 236
exploring communities of trust, 238
loading data, 237
source data, 234

high trust, inverse correlation with path
length, 261

how path's trust distance converts to trust or
distrust on shifted scale, 270

minimum weighted path corresponding to
maximum trust, 277

quantifying in another entity with shortest
path queries, 246-260
augmenting paths with trust scores,

253-259
do you trust this person, 259

quantifying in networks, 226
thinking about, examples, 226-229

credibility of an investigator's story, 227
how companies model package delivery,

228
how much to trust an open invitation,

226
trust distance in final shortest weighted

path, 288
trust intervals in Bitcoin OTC dataset, 268

396 | Index



understanding traversals with Bitcoin trust
network, 240-246
evaluation in Gremlin, 244
picking random address for example,

245
updating graph with normalized weights,

272
using normalized edge weights to find paths

between two addresses, 273-277
weighted paths and trust in production, 288

try/catch pattern, 206

U
understanding your data, common missteps in,

15
unfold step, 113
unified modeling language (UML), 25
unique key, partitioning graph data by, 125
until.repeat pattern, 179, 187, 207

using simplePath with, 179
UPSERTs, 342
user-based collaborative filtering, 297

V
values step, 72
values, ranging on, popular predicates for, 101
verbs, translation to edges in graph data, 84
version control systems, hierarchical data in,

157
vertex labels, 33

for calculating shortcut edges for movie
data, 358

mapping links in MovieLens dataset to, 330
properties, 34
schema code for movie recommendations,

305
vertices

adding to C360 graph database, 65
adjacent, set or collection of, 39
choosing between edges and, 83-85
defined, 28
distance from root (depth), 161
elements in DataStax Graph, 74
in hierarchical data, types of, 160
loading in movie data, 307

loading vertex data with DataStax Bulk
loader, 146, 172

looking up by full primary key, 121
visited set, 232

W
walk, navigate, and traverse, 97
walks

and edges in Egde Energy sensor hierar‐
chies, 169

defined, 161
depth in, 162
Edge Energy example, walking from sensor

to tower, 165
valid walks from sensor to tower, 194

wallets (Bitcoin), 236
trust ratings between, 238

web applications, passing data between, 6
weights, 262

normalizing edge weights for shortest path
problems, 267-277
deciding how to model infinity, 270
exploring normalized edge weights,

273-277
framing new scale as shortest path prob‐

lem, 269
shifting trust interval scale to [0, 1], 268
updating graph with normalized

weights, 272
shortest weighted path queries, 277-288
weighted paths and search algorithms,

262-267
shortest weighted path problem defini‐

tion, 263
shortest weighted path search optimiza‐

tions, 264-267
weighted paths and trust in production, 288

where step, 282
where(neq()) pattern, 110
where(without("x")) pattern, 243
WHERE-JOIN-SELECT queries, 70-75

SAVE and SELECT clauses, 73
where.by pattern, 211-213, 216
while/do looping, 179, 207
withSack step, 321

Index | 397



About the Authors
As Chief Data Officer of DataStax, Dr. Denise Koessler Gosnell applies the thought
processes in this book to make more informed decisions with data. Prior to this role,
Dr. Gosnell joined DataStax to create and lead the Global Graph Practice, a team that
builds some of the largest distributed graph applications in the world. Dr. Gosnell
earned her Ph.D. in computer science from the University of Tennessee as an NSF
fellow. Her research coined the concept social fingerprinting by applying graph algo‐
rithms to predict user identity from social media interactions.

Like this book, Dr. Gosnell’s career centers on her passion for examining, applying,
and advocating the applications of graph data. She has patented, built, published, and
spoken on dozens of topics related to graph theory, graph algorithms, graph data‐
bases, and applications of graph data across all industry verticals. Prior to her role
with DataStax, Dr. Gosnell worked in the healthcare industry, where she contributed
to software solutions for permissioned blockchains, machine learning applications of
graph analytics, and data science.

Dr. Matthias Broecheler is the Chief Technologist of DataStax and an entrepreneur
with substantial research and development experience. Dr. Broecheler’s work focuses
on disruptive software technologies and understanding complex systems. He is
known as an industry expert in graph databases, relational machine learning, and big
data analysis in general. He is a practitioner of lean methodologies and experimenta‐
tion to drive continuous improvement. Dr. Broecheler is the inventor of the Titan
graph database and a founder of Aurelius.

Colophon
The animal on the cover of The Practitioner’s Guide to Graph Data is the Mediterra‐
nean rainbow wrasse (Coris julis). This colorful fish inhabits the Northeastern Atlan‐
tic from Sweden to Senegal and into the Mediterranean. It lives near the shoreline
and favors rocky, grassy areas. It feeds on small crustaceans such as shrimp and sea
urchins and gastropods such as sea slugs. To eat its crusty prey, the rainbow wrasse
has evolved sharp teeth and a protractile jaw.

A sequential hermaphrodite, the rainbow wrasse changes in color and size over its
lifespan. These fish may be born either male or female, and in the primary phase they
are colored brown with a white belly and a yellow-orange band running down either
side of the body. Secondary-phase females reach a length of up to about seven inches,
or they may change into secondary-phase males, and increase in size up to about 10
inches. Secondary-phase males are much more colorful—green or blue with a bright
orange zig-zag stripe along either side.



The population of the Mediterranean rainbow wrasse is stable and not threatened.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Min‐
ion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.



There’s much more  
where this came from.
Experience books, videos, live online  
training courses, and more from O’Reilly  
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5


	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Goals of This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Graph Thinking
	Why Now? Putting Database Technologies in Context
	1960s–1980s: Hierarchical Data
	1980s–2000s: Entity-Relationship
	2000s–2020s: NoSQL
	2020s–?: Graph

	What Is Graph Thinking?
	Complex Problems and Complex Systems
	Complex Problems in Business

	Making Technology Decisions to Solve Complex Problems
	So You Have Graph Data. What’s Next?
	Seeing the Bigger Picture

	Getting Started on Your Journey with Graph Thinking

	Chapter 2. Evolving from Relational to Graph Thinking
	Chapter Preview: Translating Relational Concepts to Graph Terminology
	Relational Versus Graph: What’s the Difference?
	Data for Our Running Example

	Relational Data Modeling
	Entities and Attributes
	Building Up to an ERD

	Concepts in Graph Data
	Fundamental Elements of a Graph
	Adjacency
	Neighborhoods
	Distance
	Degree

	The Graph Schema Language
	Vertex Labels and Edge Labels
	Properties
	Edge Direction
	Self-Referencing Edge Labels
	Multiplicity of Your Graph
	Full Example Graph Model

	Relational Versus Graph: Decisions to Consider
	Data Modeling
	Understanding Graph Data
	Mixing Database Design with Application Purpose

	Summary

	Chapter 3. Getting Started: A Simple Customer 360
	Chapter Preview: Relational Versus Graph
	The Foundational Use Case for Graph Data: C360
	Why Do Businesses Care About C360?

	Implementing a C360 Application in a Relational System
	Data Models
	Relational Implementation
	Example C360 Queries

	Implementing a C360 Application in a Graph System
	Data Models
	Graph Implementation
	Example C360 Queries

	Relational Versus Graph: How to Choose?
	Relational Versus Graph: Data Modeling
	Relational Versus Graph: Representing Relationships
	Relational Versus Graph: Query Languages
	Relational Versus Graph: Main Points

	Summary
	Why Not Relational?
	Making a Technology Choice for Your C360 Application


	Chapter 4. Exploring Neighborhoods in Development
	Chapter Preview: Building a More Realistic Customer 360
	Graph Data Modeling 101
	Should This Be a Vertex or an Edge?
	Lost Yet? Let Us Walk You Through Direction
	A Graph Has No Name: Common Mistakes in Naming
	Our Full Development Graph Model
	Before We Start Building
	Our Thoughts on the Importance of Data, Queries, and the End User

	Implementation Details for Exploring Neighborhoods in Development
	Generating More Data for Our Expanded Example

	Basic Gremlin Navigation
	Advanced Gremlin: Shaping Your Query Results
	Shaping Query Results with the project(), fold(), and unfold() Steps
	Removing Data from the Results with the where(neq()) Pattern
	Planning for Robust Result Payloads with the coalesce() Step

	Moving from Development into Production

	Chapter 5. Exploring Neighborhoods in Production
	Chapter Preview: Understanding Distributed Graph Data in Apache Cassandra
	Working with Graph Data in Apache Cassandra
	The Most Important Topic to Understand About Data Modeling: Primary Keys
	Partition Keys and Data Locality in a Distributed Environment
	Understanding Edges, Part 1: Edges in Adjacency Lists
	Understanding Edges, Part 2: Clustering Columns
	Understanding Edges, Part 3: Materialized Views for Traversals

	Graph Data Modeling 201
	Finding Indexes with an Intelligent Index Recommendation System

	Production Implementation Details
	Materialized Views and Adding Time onto Edges
	Our Final C360 Production Schema
	Bulk Loading Graph Data
	Updating Our Gremlin Queries to Use Time on Edges

	Moving On to More Complex, Distributed Graph Problems
	Our First 10 Tips to Get from Development to Production


	Chapter 6. Using Trees in Development
	Chapter Preview: Navigating Trees, Hierarchical Data, and Cycles
	Seeing Hierarchies and Nested Data: Three Examples
	Hierarchical Data in a Bill of Materials
	Hierarchical Data in Version Control Systems
	Hierarchical Data in Self-Organizing Networks
	Why Graph Technology for Hierarchical Data?

	Finding Your Way Through a Forest of Terminology
	Trees, Roots, and Leaves
	Depth in Walks, Paths, and Cycles

	Understanding Hierarchies with Our Sensor Data
	Understand the Data
	Conceptual Model Using the GSL Notation
	Implement Schema
	Before We Build Our Queries

	Querying from Leaves to Roots in Development
	Where Has This Sensor Sent Information To?
	From This Sensor, What Was Its Path to Any Tower?
	From Bottom Up to Top Down

	Querying from Roots to Leaves in Development
	Setup Query: Which Tower Has the Most Sensor Connections So That We Could Explore It for Our Example?
	Which Sensors Have Connected Directly to Georgetown?
	Find All Sensors That Connected to Georgetown
	Depth Limiting in Recursion

	Going Back in Time

	Chapter 7. Using Trees in Production
	Chapter Preview: Understanding Branching Factor, Depth, and Time on Edges
	Understanding Time in the Sensor Data
	Final Thoughts on Time Series Data in Graphs

	Understanding Branching Factor in Our Example
	What Is Branching Factor?
	How Do We Get Around Branching Factor?

	Production Schema for Our Sensor Data
	Querying from Leaves to Roots in Production
	Where Has This Sensor Sent Information to, and at What Time?
	From This Sensor, Find All Trees up to a Tower by Time
	From This Sensor, Find a Valid Tree
	Advanced Gremlin: Understanding the where().by() Pattern

	Querying from Roots to Leaves in Production
	Which Sensors Have Connected to Georgetown Directly, by Time?
	What Valid Paths Can We Find from Georgetown Down to All Sensors?

	Applying Your Queries to Tower Failure Scenarios
	Applying the Final Results of Our Complex Problem

	Seeing the Forest for the Trees

	Chapter 8. Finding Paths in Development
	Chapter Preview: Quantifying Trust in Networks
	Thinking About Trust: Three Examples
	How Much Do You Trust That Open Invitation?
	How Defensible Is an Investigator’s Story?
	How Do Companies Model Package Delivery?

	Fundamental Concepts About Paths
	Shortest Paths
	Depth-First Search and Breadth-First Search
	Learning to See Application Features as Different Path Problems

	Finding Paths in a Trust Network
	Source Data
	A Brief Primer on Bitcoin Terminology
	Creating Our Development Schema
	Loading Data
	Exploring Communities of Trust

	Understanding Traversals with Our Bitcoin Trust Network
	Which Addresses Are in the First Neighborhood?
	Which Addresses Are in the Second Neighborhood?
	Which Addresses Are in the Second Neighborhood, but Not the First?
	Evaluation Strategies with the Gremlin Query Language
	Pick a Random Address to Use for Our Example

	Shortest Path Queries
	Finding Paths of a Fixed Length
	Finding Paths of Any Length
	Augmenting Our Paths with the Trust Scores
	Do You Trust This Person?


	Chapter 9. Finding Paths in Production
	Chapter Preview: Understanding Weights, Distance, and Pruning
	Weighted Paths and Search Algorithms
	Shortest Weighted Path Problem Definition
	Shortest Weighted Path Search Optimizations

	Normalization of Edge Weights for Shortest Path Problems
	Normalizing the Edge Weights
	Updating Our Graph
	Exploring the Normalized Edge Weights
	Some Thoughts Before Moving On to Shortest Weighted Path Queries

	Shortest Weighted Path Queries
	Building a Shortest Weighted Path Query for Production

	Weighted Paths and Trust in Production

	Chapter 10. Recommendations in Development
	Chapter Preview: Collaborative Filtering for Movie Recommendations
	Recommendation System Examples
	How We Give Recommendations in Healthcare
	How We Experience Recommendations in Social Media
	How We Use Deeply Connected Data for Recommendations in Ecommerce

	An Introduction to Collaborative Filtering
	Understanding the Problem and Domain
	Collaborative Filtering with Graph Data
	Recommendations via Item-Based Collaborative Filtering with Graph Data
	Three Different Models for Ranking Recommendations

	Movie Data: Schema, Loading, and Query Review
	Data Model for Movie Recommendations
	Schema Code for Movie Recommendations
	Loading the Movie Data
	Neighborhood Queries in the Movie Data
	Tree Queries in the Movie Data
	Path Queries in the Movie Data

	Item-Based Collaborative Filtering in Gremlin
	Model 1: Counting Paths in the Recommendation Set
	Model 2: NPS-Inspired
	Model 3: Normalized NPS
	Choosing Your Own Adventure: Movies and Graph Problems Edition


	Chapter 11. Simple Entity Resolution in Graphs
	Chapter Preview: Merging Multiple Datasets into One Graph
	Defining a Different Complex Problem: Entity Resolution
	Seeing the Complex Problem

	Analyzing the Two Movie Datasets
	MovieLens Dataset
	Kaggle Dataset
	Development Schema

	Matching and Merging the Movie Data
	Our Matching Process

	Resolving False Positives
	False Positives Found in the MovieLens Dataset
	Additional Errors Discovered in the Entity Resolution Process
	Final Analysis of the Merging Process
	The Role of Graph Structure in Merging Movie Data


	Chapter 12. Recommendations in Production
	Chapter Preview: Understanding Shortcut Edges, Precomputation, and Advanced Pruning Techniques
	Shortcut Edges for Recommendations in Real Time
	Where Our Development Process Doesn’t Scale
	How We Fix Scaling Issues: Shortcut Edges
	Seeing What We Designed to Deliver in Production
	Pruning: Different Ways to Precompute Shortcut Edges
	Considerations for Updating Your Recommendations

	Calculating Shortcut Edges for Our Movie Data
	Breaking Down the Complex Problem of Precalculating Shortcut Edges
	Addressing the Elephant in the Room: Batch Computation

	Production Schema and Data Loading for Movie Recommendations
	Production Schema for Movie Recommendations
	Production Data Loading for Movie Recommendations

	Recommendation Queries with Shortcut Edges
	Confirming Our Edges Loaded Correctly
	Production Recommendations for Our User
	Understanding Response Time in Production by Counting Edge Partitions
	Final Thoughts on Reasoning About Distributed Graph Query Performance


	Chapter 13. Epilogue
	Where to Go from Here?
	Graph Algorithms
	Distributed Graphs
	Graph Theory
	Network Theory

	Stay in Touch

	Index
	About the Authors
	Colophon



