

Applying Math with Python

Practical recipes for solving computational math problems
using Python programming and its libraries

Sam Morley

BIRMINGHAM - MUMBAI

Applying Math with Python
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Ravit Jain
Acquisition Editor: Pratik Tandel
Content Development Editor: Divya Vijayan
Senior Editor: Hayden Edwards
Technical Editor: Deepesh Patel
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan

First published: July 2020

Production reference: 1300720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-975-0

www.packt.com

http://www.packt.com

 For my parents...

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Sam Morley is an experienced lecturer in mathematics and a researcher in pure
mathematics. He is currently a research software engineer at the University of Oxford
working on the DataSig project. He was previously a lecturer in mathematics at the
University of East Anglia and Nottingham Trent University. His research interests lie in
functional analysis, especially Banach algebras. Sam has a firm commitment to providing
high-quality, inclusive, and enjoyable teaching, with the aim of inspiring his students and
spreading his enthusiasm for mathematics.

I would like to thank my friends and colleagues at the University of East Anglia for their
support and encouragement while writing this book. I would also like to thank my editorial
team and the technical reviewers for their hard work.

About the reviewers
Bryan Johns is an experienced data scientist and mathematician. Since completing his PhD
in mathematics, Bryan has been working as a data scientist, where he has been using
Python to deliver machine learning solutions to some of today's most intractable business
problems. Bryan has worked in the financial services and consulting industries, as well as
serving as a data science mentor for the next generation of data scientists. In his free time,
Bryan enjoys surfing, skiing, sailing, and other activities that start with "s." Bryan lives in
San Diego, California, with his wife, one-year-old son, and two mischievous cats.

Valeriy Babushkin is the senior director of data science at X5 Retail Group, where he leads
a team of 80+ people in the fields of machine learning, data analysis, computer vision,
natural language processing, R&D, and A/B testing. Valeriy is a Kaggle competition
grandmaster and attending lecturer at the National Research Institute Higher School of
Economics and the Central Bank of Kazakhstan. He is a technical reviewer of AI Crash
Course and Hands-On Reinforcement Learning with Python, Second Edition, published by Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Basic Packages, Functions, and Concepts 7
Technical requirements 7
Python numerical types 8

Decimal type 8
Fraction type 10
Complex type 10

Basic mathematical functions 10
NumPy arrays 13

Element access 15
Array arithmetic and functions 15
Useful array creation routines 16
Higher dimensional arrays 17

Matrices 19
Basic methods and properties 19
Matrix multiplication 20
Determinants and inverses 22
Systems of equations 24
Eigenvalues and eigenvectors 27
Sparse matrices 29

Summary 31
Further reading 32

Chapter 2: Mathematical Plotting with Matplotlib 33
Technical requirements 34
Basic plotting with Matplotlib 34

Getting ready 35
How to do it... 35
How it works... 36
There's more... 37

Changing the plotting style 39
Getting ready 39
How to do it... 39
How it works... 40
There's more... 41

Adding labels and legends to plots 42
How to do it... 42
How it works... 44

Adding subplots 44

Table of Contents

[ii]

Getting ready 45
How to do it... 45
How it works... 47
There's more... 47
See also 48

Saving Matplotlib figures 48
Getting ready 48
How to do it... 49
How it works... 49
There's more... 49
See also 50

Surface and contour plots 50
Getting ready 50
How to do it... 50
How it works... 53
There's more... 54

Customizing three-dimensional plots 56
Getting ready 56
How to do it... 56
How it works... 58
There's more... 59

Further reading 59

Chapter 3: Calculus and Differential Equations 60
Technical requirements 61
Working with polynomials and calculus 61

Getting ready 62
How to do it... 62
How it works... 63
There's more... 64
See also 65

Differentiating and integrating symbolically using SymPy 65
Getting ready 65
How to do it... 66
How it works... 67
There's more... 67

Solving equations 68
Getting ready 69
How to do it... 69
How it works... 70
There's more... 71

Integrating functions numerically using SciPy 72
Getting ready 73
How to do it... 73
How it works... 74

Table of Contents

[iii]

There's more... 75
Solving simple differential equations numerically 75

Getting ready 76
How to do it... 77
How it works... 78
There's more... 80
See also 80

Solving systems of differential equations 80
Getting ready 81
How to do it... 81
How it works... 84
There's more... 86

Solving partial differential equations numerically 86
Getting ready 87
How to do it... 87
How it works... 90
There's more... 91
See also 93

Using discrete Fourier transforms for signal processing 93
Getting ready 94
How to do it... 94
How it works... 98
There's more... 100
See also 100

Further reading 100

Chapter 4: Working with Randomness and Probability 101
Technical requirements 102
Selecting items at random 102

Getting ready 103
How to do it... 103
How it works... 105
There's more... 106

Generating random data 106
Getting ready 106
How to do it... 107
How it works... 108
There's more... 109

Changing the random number generator 109
Getting ready 109
How to do it... 110
How it works... 110
There's more... 111

Generating normally distributed random numbers 112
Getting ready 112

Table of Contents

[iv]

How to do it... 113
How it works... 114
There's more... 115

Working with random processes 116
Getting ready 117
How to do it... 117
How it works... 120
There's more... 120

Analyzing conversion rates with Bayesian techniques 122
Getting ready 122
How to do it... 123
How it works... 125
There's more... 127

Estimating parameters with Monte Carlo simulations 128
Getting ready 128
How to do it... 129
How it works... 133
There's more... 134
See also 136

Further reading 136

Chapter 5: Working with Trees and Networks 137
Technical requirements 138
Creating networks in Python 138

Getting ready 139
How to do it... 139
How it works... 140
There's more... 140

Visualizing networks 141
Getting ready 141
How to do it... 141
How it works... 143
There's more... 143

Getting the basic characteristics of networks 144
Getting ready 144
How to do it... 144
How it works... 146
There's more... 147

Generating the adjacency matrix for a network 147
Getting ready 147
How to do it... 148
How it works... 148
There's more... 149

Creating directed and weighted networks 149
Getting ready 150

Table of Contents

[v]

How to do it... 150
How it works... 151
There's more... 152

Finding the shortest paths in a network 152
Getting ready 153
How to do it... 153
How it works... 154
There's more... 154

Quantifying clustering in a network 156
Getting ready 156
How to do it... 157
How it works... 158
There's more... 159

Coloring a network 159
Getting ready 159
How to do it... 160
How it works... 161
There's more... 161

Finding minimal spanning trees and dominating sets 162
Getting ready 162
How to do it... 162
How it works... 163

Further reading 164

Chapter 6: Working with Data and Statistics 165
Technical requirements 166
Creating Series and DataFrame objects 166

Getting ready 166
How to do it... 167
How it works... 167
There's more... 168
See also 169

Loading and storing data from a DataFrame 169
Getting ready 169
How to do it... 169
How it works... 170
See also 170

Manipulating data in DataFrames 171
Getting ready 171
How to do it... 171
How it works... 172
There's more... 173

Plotting data from a DataFrame 174
Getting ready 175
How to do it... 175

Table of Contents

[vi]

How it works... 176
There's more... 177

Getting descriptive statistics from a DataFrame 177
Getting ready 177
How to do it... 178
How it works... 180
There's more... 181

Understanding a population using sampling 181
Getting ready 182
How to do it... 182
How it works... 183
See also 184

Testing hypotheses using t-tests 184
Getting ready 185
How to do it... 185
How it works... 186
There's more... 186

Testing hypotheses using ANOVA 187
Getting ready 187
How to do it... 188
How it works... 188
There's more... 189

Testing hypotheses for non-parametric data 189
Getting ready 190
How to do it... 190
How it works... 191

Creating interactive plots with Bokeh 193
Getting ready 193
How to do it... 193
How it works... 194
There's more... 195

Further reading 196

Chapter 7: Regression and Forecasting 197
Technical requirements 198
Using basic linear regression 199

Getting ready 199
How to do it... 199
How it works... 201
There's more... 203

Using multilinear regression 204
Getting ready 204
How to do it... 205
How it works... 207

Classifying using logarithmic regression 208

Table of Contents

[vii]

Getting ready 208
How to do it... 209
How it works... 211
There's more... 212

Modeling time series data with ARMA 213
Getting ready 213
How to do it... 213
How it works... 219
There's more... 221

Forecasting from time series data using ARIMA 221
Getting ready 222
How to do it... 222
How it works... 227

Forecasting seasonal data using ARIMA 228
Getting ready 228
How to do it... 228
How it works... 233
There's more... 234

Using Prophet to model time series data 234
Getting ready 235
How to do it... 235
How it works... 237
There's more... 237

Further reading 238

Chapter 8: Geometric Problems 239
Technical requirements 240
Visualizing two-dimensional geometric shapes 240

Getting ready 241
How to do it... 241
How it works... 242
There's more... 243
See also 244

Finding interior points 244
Getting ready 244
How to do it... 245
How it works... 246

Finding edges in an image 247
Getting ready 247
How to do it... 248
How it works... 249

Triangulating planar figures 250
Getting ready 250
How to do it... 250
How it works... 252

Table of Contents

[viii]

There's more... 253
See also 254

Computing convex hulls 254
Getting ready 254
How to do it... 255
How it works... 257

Constructing Bezier curves 257
Getting ready 257
How to do it... 257
How it works... 260
There's more... 262

Further reading 263

Chapter 9: Finding Optimal Solutions 264
Technical requirements 265
Minimizing a simple linear function 266

Getting ready 266
How to do it... 267
How it works... 269
There's more... 271

Minimizing a non-linear function 272
Getting ready 272
How to do it... 272
How it works... 275
There's more... 275

Using gradient descent methods in optimization 276
Getting ready 276
How to do it... 277
How it works... 281
There's more... 282

Using least squares to fit a curve to data 284
Getting ready 284
How to do it... 285
How it works... 287
There's more... 287

Analyzing simple two-player games 288
Getting ready 289
How to do it... 289
How it works... 290
There's more... 290

Computing Nash equilibria 291
Getting ready 291
How to do it... 291
How it works... 292
There's more... 293

Table of Contents

[ix]

See also 293
Further reading 293

Chapter 10: Miscellaneous Topics 294
Technical requirements 295
Keeping track of units with Pint 296

Getting ready 296
How to do it... 297
How it works... 298
There's more... 298

Accounting for uncertainty in calculations 299
Getting ready 299
How to do it... 299
How it works... 300
There's more... 300

Loading and storing data from NetCDF files 301
Getting ready 301
How to do it... 302
How it works... 304
There's more... 304

Working with geographical data 304
Getting ready 305
How to do it... 305
How it works... 306

Executing a Jupyter notebook as a script 307
Getting ready 307
How to do it... 307
How it works... 308
There's more... 309

Validating data 309
Getting ready 310
How to do it... 310
How it works... 311

Working with data streams 312
Getting ready 312
How to do it... 313
How it works... 315
See also 316

Accelerating code with Cython 316
Getting ready 317
How to do it... 318
How it works... 322
There's more... 324

Distributing computing with Dask 324
Getting ready 325

Table of Contents

[x]

How to do it... 325
How it works... 326
There's more... 327

Other Books You May Enjoy 328

Index 331

Preface
Python is a powerful and flexible programming language that is fun and easy to learn. It is
the programming language of choice for many professionals, hobbyists, and scientists. The
power of Python comes from its large ecosystem of packages and friendly community, and
from its ability to communicate seamlessly with compiled extension modules. This means
that Python is ideal for solving problems of all kinds, and mathematical problems in
particular.

Mathematics is usually associated with calculations and equations, but in reality, these are
very small parts of a much larger subject. At its core, mathematics is about solving
problems, and the logical, structured approach to solutions. Once you explore past the
equations, calculations, derivatives, and integrals, you discover a vast world of beautiful,
elegant structures.

This book is an introduction to solving mathematical problems using Python. It provides an
introduction to some of the basic concepts from mathematics – and how to use Python to
work with these concepts – and templates for solving a variety of mathematical problems
across a large number of topics within mathematics. The first few chapters focus on core
skills such as working with NumPy arrays, plotting, calculus, and probability. These topics
are very important throughout mathematics, and act as the foundation for the rest of the
book. In the remaining chapters, we discuss more practical problems, covering topics such
as data analysis and statistics, networks, regression and forecasting, optimization, and
game theory. We hope that this book provides a basis for solving mathematical problems
and the tools for you to further explore the world of mathematics.

Who this book is for
Readers will need to have a basic knowledge of Python. We don't assume any knowledge
of mathematics, although readers who are familiar with some basic mathematical concepts
will better understand the context and details of the techniques we discuss.

What this book covers
Chapter 1, Basic Packages, Functions, and Concepts, introduces some of the basic tools and
concepts that will be needed in the rest of the book, including the main Python packages for
mathematical programming, NumPy and SciPy.

Preface

[2]

Chapter 2, Mathematical Plotting with Matplotlib, covers the basics of plotting with
Matplotlib, which is useful when solving almost all mathematical problems.

Chapter 3, Calculus and Differential Equations, introduces topics from calculus such as
differentiation and integration, and some more advanced topics such as ordinary and
partial differential equations.

Chapter 4, Working with Randomness and Probability, introduces the fundamentals of
randomness and probability, and how to use Python to explore these ideas.

Chapter 5, Working with Trees and Networks, covers working with trees and networks
(graphs) in Python using the NetworkX package.

Chapter 6, Working with Data and Statistics, gives various techniques for handling,
manipulating, and analyzing data using Python.

Chapter 7, Regression and Forecasting, describes various techniques for modeling data and
predicting future values using the Statsmodels package and scikit-learn.

Chapter 8, Geometric Problems, demonstrates various techniques for working with
geometric objects in Python using the Shapely package.

Chapter 9, Finding Optimal Solutions, introduces optimization and game theory, which use
mathematical methods to find the best solutions to problems.

Chapter 10, Miscellaneous Topics, covers an assortment of situations that you might
encounter while solving mathematical problems using Python.

To get the most out of this book
The only requirement throughout this book is a recent version of Python, at least Python
3.6, but a higher version is preferable. Some readers might prefer to use the Anaconda
distribution of Python, which comes with many of the packages and tools required in this
book. If this is the case, you should use the conda package manager to install the packages.
Python is supported on all major operating systems – Windows, macOS, and Linux – and
on many platforms. The following table covers the main libraries and their versions used at
the time of writing this book:

Software/libraries covered in the book Version Chapter
Python 3.6 or higher All
NumPy 1.18.3 All

SciPy 1.4.1 All

Preface

[3]

Matplotlib 3.2.1 All

Pandas 1.0.3 6 - 10

Bokeh 2.1.0 6

Scikit-Learn 0.22.1 7

Dask 2.18.1 10

Apache Kafka 2.5.0 10

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Some readers may prefer to work through the code samples in this book in a Jupyter
notebook rather than in a simple Python file. There are one or two places in this book where
you may need to repeat plotting commands. These places are marked in the instructions.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[4]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Applying- ​Math- ​with- ​Python. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https:/ ​/​bit. ​ly/​2ZQcwIM.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The decimal package also provides a Context object, which allows fine-grained
control over the precision, display, and attributes of Decimal objects."

A block of code is set as follows:

from decimal import getcontext
ctx = getcontext()
num = Decimal('1.1')
num**4 # Decimal('1.4641')
ctx.prec = 4 # set new precision
num**4 # Decimal('1.464')

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

from numpy import linalg

A = np.array([[3, -2, 1], [1, 1, -2], [-3, -2, 1]])
b = np.array([7, -4, 1])

Any command-line input or output is written as follows::

python3.8 -m pip install numpy scipy

https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/Applying-Math-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM
https://bit.ly/2ZQcwIM

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

Preface

[6]

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Basic Packages, Functions,

and Concepts
Before getting started on any practical recipes, we'll use this opening chapter to introduce
several core mathematical concepts and structures and their Python representations. In
particular, we'll look at basic numerical types, basic mathematical functions (trigonometric
functions, the exponential function, and logarithms), and matrices. Matrices are
fundamental in most computational applications because of the connection between
matrices and solutions of systems of linear equations. We'll explore some of these
applications in this chapter, but matrices will play an important role throughout this book.

We'll cover the following main topics in this order:

Python numerical types
Basic mathematical functions
NumPy arrays
Matrices

Technical requirements
In this chapter, and throughout this book, we will use Python version 3.8, which is the most
recent version of Python at the time of writing. Most of the code in this book will work on
recent versions of Python from 3.6. We will use features that were introduced in Python 3.6
at various points, including f-strings. This means that you may need to change python3.8,
which appears in any terminal commands to match your version of Python. This might be
another version of Python, such as python3.6 or python3.7, or a more general command
such as python3 or python. For the latter commands, you need to check that the version of
Python is at least 3.6 by using the following command:

python --version

Basic Packages, Functions, and Concepts Chapter 1

[8]

Python has built-in numerical types and basic mathematical functions that suffice for small
applications that involve only small calculations. The NumPy package provides a high
performance array type and associated routines (including basic mathematical functions
that operate efficiently on arrays). This package will be used in many of the recipes in this
chapter and the remainder of this book. We will also make use of the SciPy package in the
latter recipes of this chapter. Both can be installed using your preferred package manager,
such as pip:

python3.8 -m pip install numpy scipy

By convention, we import these package under a shorter alias. We import numpy as np
and scipy as sp using the following import statements:

import numpy as np
import scipy as sp

These conventions are used in the official documentation for these packages, along with
many tutorials and other materials that use these packages.

The code for this chapter can be found in the Chapter 01 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2001.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​3g3eBXv.

Python numerical types
Python provides basic numerical types such as arbitrarily sized integers and floating-point
numbers (double precision) as standard, but it also provides several additional types that
are useful in specific applications where precision is especially important. Python also
provides (built-in) support for complex numbers, which are useful for some more advanced
mathematical applications.

Decimal type
For applications that require decimal digits with accurate arithmetic operations, use
the Decimal type from the decimal module in the Python Standard Library:

from decimal import Decimal
num1 = Decimal('1.1')
num2 = Decimal('1.563')
num1 + num2 # Decimal('2.663')

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2001
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv
https://bit.ly/3g3eBXv

Basic Packages, Functions, and Concepts Chapter 1

[9]

Performing this calculation with float objects gives the result 2.6630000000000003, which
includes a small error arising from the fact that certain numbers cannot be represented
exactly using a finite sum of powers of 2. For example, 0.1 has a binary expansion
0.000110011..., which does not terminate. Any floating-point representation of this number
will therefore carry a small error. Note that the argument to Decimal is given as a string
rather than a float.

The Decimal type is based on the IBM General Decimal Arithmetic Specification (http:/ ​/
speleotrove.​com/ ​decimal/ ​decarith. ​html), which is an alternative specification for
floating-point arithmetic that represents decimal numbers exactly by using powers of 10
rather than powers of 2. This means that it can be safely used for calculations in finance
where the accumulation of rounding errors would have dire consequences. However,
the Decimal format is less memory efficient, since it must store decimal digits rather than
binary digits (bits), and are more computationally expensive than traditional floating-point
numbers.

The decimal package also provides a Context object, which allows fine-grained control
over the precision, display, and attributes of Decimal objects. The current (default) context
can be accessed using the getcontext function from the decimal module.
The Context object returned by getcontext has a number of attributes that can be
modified. For example, we can set the precision for arithmetic operations:

from decimal import getcontext
ctx = getcontext()
num = Decimal('1.1')
num**4 # Decimal('1.4641')
ctx.prec = 4 # set new precision
num**4 # Decimal('1.464')

When we set the precision to 4, rather than the default 28, we see that the fourth power of
1.1 is rounded to 4 significant figures.

The context can even be set locally by using the localcontext function, which returns a
context manager that restores the original environment at the end of the with block:

from decimal import localcontext
num = Decimal("1.1")
with localcontext() as ctx:
 ctx.prec = 2
 num**4 # Decimal('1.5')
num**4 # Decimal('1.4641')

This means that the context can be freely modified inside the with block, and will be
returned to the default at the end.

http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html

Basic Packages, Functions, and Concepts Chapter 1

[10]

Fraction type
Alternatively, for working with applications that require accurate representations of integer
fractions, such as when working with proportions or probabilities, there is the
Fraction type from the fractions module in the Python Standard Library. The usage is
similar, except that we typically give the numerator and denominator of the fraction as
arguments:

from fractions import Fraction
num1 = Fraction(1, 3)
num2 = Fraction(1, 7)
num1 * num2 # Fraction(1, 21)

The Fraction type simply stores two integers, the numerator and the denominator, and
arithmetic is performed using the basic rules for the addition and multiplication of
fractions.

Complex type
Python also has support for complex numbers, including a literal character to denote the
complex unit 1j in code. This might be different from the idiom for representing the
complex unit that you are familiar with from other sources on complex numbers. Most
mathematical texts will often use the symbol i to represent the complex unit:

z = 1 + 1j
z + 2 # 3 + 1j
z.conjugate() # 1 - 1j

Special "complex number" - aware mathematical functions are provided in the
cmath module of the Python Standard Library.

Basic mathematical functions
Basic mathematical functions appear in many applications. For example, logarithms can be
used to scale data that grows exponentially to give linear data. The exponential function
and trigonometric functions are common fixtures when working with geometric
information, the gamma function appears in combinatorics, and the Gaussian error function is
important in statistics.

Basic Packages, Functions, and Concepts Chapter 1

[11]

The math module in the Python Standard Library provides all of the standard
mathematical functions, along with common constants and some utility functions, and it
can be imported using the following command:

import math

Once it's imported, we can use any of the mathematical functions that are contained in this
module. For instance, to find the square root of a non-negative number, we would use the
sqrt function from math:

import math
math.sqrt(4) # 2.0

Attempting to use the sqrt function with a negative argument will raise a ValueError. The
square root of a negative number is not defined for this sqrt function, which deals only
with real numbers. The square root of a negative number—this will be a complex
number—can be found using the alternative sqrt function from the cmath module in the
Python Standard Library.

The trigonometric functions, sine, cosine, and tangent, are available under their common
abbreviations sin, cos, and tan, respectively, in the math module. The pi constant holds
the value of π, which is approximately 3.1416:

theta = pi/4
math.cos(theta) # 0.7071067811865476
math.sin(theta) # 0.7071067811865475
math.tan(theta) # 0.9999999999999999

The inverse trigonometric functions are named acos, asin, and atan in the math module:

math.asin(-1) # -1.5707963267948966
math.acos(-1) # 3.141592653589793
math.atan(1) # 0.7853981633974483

The log function in the math module performs logarithms. It has an optional argument to
specify the base of the logarithm (note that the second argument is positional only). By
default, without the optional argument, it is the natural logarithm with base e. The e
constant can be accessed using math.e:

math.log(10) # 2.302585092994046
math.log(10, 10) # 1.0

Basic Packages, Functions, and Concepts Chapter 1

[12]

The math module also contains the function gamma, which is the gamma function, and the
function erf, the Gaussian error function, which is important in statistics. Both of these
functions are defined by integrals. The gamma function is defined by the integral

and the error function is defined by

The integral in the definition of the error function cannot be evaluated using calculus, and
instead must be computed numerically:

math.gamma(5) # 24.0
math.erf(2) # 0.9953222650189527

In addition to standard functions such as trigonometric functions, logarithms, and
exponential functions, the math module contains various number of theoretic and
combinatorial functions. These include the functions comb and factorial, which are
useful in a variety of applications. The comb function called with arguments n and k returns
the number of ways to choose k items from a collection of n without repeats if order is not
important. For example, picking 1 then 2 is the same as picking 2 then 1. This number is
sometimes written nCk. The factorial called with argument n returns the factorial n! =
n(n-1)(n-2)…1:

math.comb(5, 2) # 10
math.factorial(5) # 120

Applying the factorial to a negative number raises a ValueError. The factorial of an
integer n, coincides with the value of the gamma function at n + 1; that is,

The math module also contains a function that returns the greatest common divisor of its
arguments called gcd. The greatest common divisor of a and b is the largest integer k such
that k divides both a and b exactly:

math.gcd(2, 4) # 2
math.gcd(2, 3) # 1

Basic Packages, Functions, and Concepts Chapter 1

[13]

There are also a number of functions for working with floating-point numbers. The
fsum function performs addition on an iterable of numbers and keeps track of the sums
each step to reduce the error in the result. This is nicely illustrated by the following
example:

nums = [0.1]*10 # list containing 0.1 ten times
sum(nums) # 0.9999999999999999
math.fsum(nums) # 1.0

The isclose function returns True if the difference between the arguments is smaller than
the tolerance. This is especially useful in unit tests, where there may be small variations in
results based on machine architecture or data variability.

Finally, the floor and ceil functions from math provide the floor and ceiling of their
argument. The floor of a number x is the largest integer f with f ≤ x, and the ceiling of x is the
smallest integer c with x ≤ c. These functions are useful when converting between a float
obtained by dividing one number by another and an integer.

The math module contains functions that are implemented in C (assuming you are running
CPython), and so are much faster than those implemented in Python. This module is a good
choice if you need to apply a function to a relatively small collection of numbers. If you
want to apply these functions to a large collection of data simultaneously, it is better to use
their equivalents from the NumPy package, which are more efficient for working with
arrays.​ In general, if you have imported the NumPy package already, then it is probably
best to always use NumPy equivalents of these functions to limit the chance of error.

NumPy arrays
NumPy provides high performance array types and routines for manipulating these arrays
in Python. These arrays are useful for processing large datasets where performance is
crucial. NumPy forms the base for the numerical and scientific computing stack in Python.
Under the hood, NumPy makes use of low-level libraries for working with vectors and
matrices, such as the Basic Linear Algebra Subprograms (BLAS) package, and the Linear
Algebra Package (LAPACK) contains more advanced routines for linear algebra.

Traditionally, the NumPy package is imported under the shorter alias np, which can be
accomplished using the following import statement:

import numpy as np

In particular, this convention is used in the NumPy documentation and in the wider
scientific Python ecosystem (SciPy, Pandas, and so on).

Basic Packages, Functions, and Concepts Chapter 1

[14]

The basic type provided by the NumPy library is the ndarray type (henceforth referred to
as a NumPy array). Generally, you won't create your own instances of this type, and will
instead use one of the helper routines such as array to set up the type correctly. The array
routine creates NumPy arrays from an array-like object, which is typically a list of numbers
or a list of lists (of numbers). For example, we can create a simple array by providing a list
with the required elements:

ary = np.array([1, 2, 3, 4]) # array([1, 2, 3, 4])

The NumPy array type (ndarray) is a Python wrapper around an underlying C array
structure. The array operations are implemented in C and optimized for
performance. NumPy arrays must consist of homogeneous data (all elements have the same
type), although this type could be a pointer to an arbitrary Python object. NumPy will infer
an appropriate data type during creation if one is not explicitly provided using
the dtype keyword argument:

np.array([1, 2, 3, 4], dtype=np.float32)
array([1., 2., 3., 4.], dtype=float32)

Under the hood, a NumPy array of any shape is a buffer containing the raw data as a flat
(one-dimensional) array, and a collection of additional metadata that specifies details such
as the type of the elements.

After creation, the data type can be accessed using the dtype attribute of the
array. Modifying the dtype attribute will have undesirable consequences since the raw
bytes that constitute the data in the array will simply be reinterpreted as the new data type.
For example, if we create an array using Python integers, NumPy will convert those to 64-
bit integers in the array. Changing the dtype value will cause NumPy to reinterpret these
64-bit integers to the new data type:

arr = np.array([1, 2, 3, 4])
print(arr.dtype) # dtype('int64')
arr.dtype = np.float32
print(arr)
[1.e-45 0.e+00 3.e-45 0.e+00 4.e-45 0.e+00 6.e-45 0.e+00]

Each 64-bit integer has been re-interpreted as two 32-bit, floating-point numbers, which
clearly gives nonsense values. Instead, if you wish to change the data type after creation,
use the astype method to specify the new type. The correct way to change the data type is
shown here:

arr = arr.astype(np.float32)
print(arr)
[1. 2. 3. 4.]

Basic Packages, Functions, and Concepts Chapter 1

[15]

NumPy also provides a number of routines for creating various standard arrays.
The zeros routine creates an array, of the specified shape, in which every element is 0, and
the ones routine creates an array in which every element is 1.

Element access
NumPy arrays support the getitem protocol, so elements in an array can be accessed as if
it were a list and support all of the arithmetic operations, which are performed component-
wise. This means we can use the index notation and the index to retrieve the element from
the specified index as follows:

ary = np.array([1, 2, 3, 4])
ary[0] # 1
ary[2] # 3

This also includes the usual slice syntax for extracting an array of data from an existing
array. A slice of an array is again an array, containing the elements specified by the slice.
For example, we can retrieve an array containing the first two elements of ary, or an array
containing the elements at even indexes, as follows:

first_two = ary[:2] # array([1, 2])
even_idx = ary[::2] # array([1, 3])

The syntax for a slice is start:stop:step. We can omit either, or both, of start and stop
to take from the beginning or the end, respectively, of all elements. We can also omit
the step parameter, in which case we also drop the trailing :. The step parameter
describes the elements from the chosen range that should be selected. A value of 1 selects
every element or, as in the recipe, a value of 2 selects every second element (starting from 0
gives even-numbered elements). This syntax is the same as for slicing Python lists.

Array arithmetic and functions
NumPy provides a number of universal functions (ufunc), which are routines that can
operate efficiently on NumPy array types. In particular, all of the basic mathematical
functions discussed in the Basic mathematical functions section have analogues in NumPy
that can operate on NumPy arrays. Universal functions can also perform broadcasting, to
allow them to operate on arrays of different—but compatible—shapes.

Basic Packages, Functions, and Concepts Chapter 1

[16]

The arithmetic operations on NumPy arrays are performed component-wise. This is best
illustrated by the following example:

arr_a = np.array([1, 2, 3, 4])
arr_b = np.array([1, 0, -3, 1])
arr_a + arr_b # array([2, 2, 0, 5])
arr_a - arr_b # array([0, 2, 6, 3])
arr_a * arr_b # array([1, 0, -9, 4])
arr_b / arr_a # array([1. , 0. , -1. , 0.25])
arr_b**arr_a # array([1, 0, -27, 1])

Note that the arrays must be the same shape, which means have the same length. Using an
arithmetic operation on arrays of different shapes will result in a ValueError. Adding,
subtracting, multiplying, or dividing by a number will result in array where the operation
has been applied to each component. For example, we can multiply all elements in an array
by 2 by using the following command:

arr = np.array([1, 2, 3, 4])
new = 2*arr
print(new)
[2, 4, 6, 8]

Useful array creation routines
To generate arrays of numbers at regular intervals between two given end points, you can
use either the arange routine or the linspace routine. The difference between these two
routines is that linspace generates a number (the default is 50) of values with equal
spacing between the two end points, including both endpoints, while arange generates
numbers at a given step size up to, but not including, the upper limit. The linspace
routine generates values in the closed interval a ≤ x ≤ b and the arange routine generates
values in the half-open interval a≤ x < b:

np.linspace(0, 1, 5) # array([0., 0.25, 0.5, 0.75, 1.0])
np.arange(0, 1, 0.3) # array([0.0, 0.3, 0.6, 0.9])

Note that the array generated using linspace has exactly 5 points, specified by the third
argument, including the two end points, 0 and 1. The array generated by arange has 4
points, and does not include the right end point, 1; an additional step of 0.3 would equal
1.2, which is larger than 1.

Basic Packages, Functions, and Concepts Chapter 1

[17]

Higher dimensional arrays
NumPy can create arrays with any number of dimensions, which are created using the
same array routine as simple one-dimensional arrays. The number of dimensions of an
array is specified by the number of nested lists provided to the array routine. For example,
we can create a two-dimensional array by providing a list of lists, where each member of
the inner list is a number, such as the following:

mat = np.array([[1, 2], [3, 4]])

NumPy arrays have a shape attribute, which describes the arrangement of the elements in
each dimension. For a two-dimensional array, the shape can be interpreted as the number
of rows and the number of columns of the array.

NumPy stores the shape as the shape attribute on the array object, which is a tuple. The
number of elements in this tuple is the number of dimensions:

vec = np.array([1, 2])
mat.shape # (2, 2)
vec.shape # (2,)

Since the data in a NumPy array is stored in a flat (one-dimensional) array, an array can be
reshaped with little cost by simply changing the associated metadata. This is done using
the reshape method on a NumPy array:

mat.reshape(4,) # array([1, 2, 3, 4])

Note that the total number of elements must remain unchanged. The matrix mat originally
has shape (2, 2) with a total of 4 elements, and the latter is a one-dimensional array with
shape (4,), which again has a total of 4 elements. Attempting to reshape when there is a
mismatch in the total number of elements will result in a ValueError.

To create an array of higher dimensions, simply add more levels of nested lists. To make
this clearer, in the following example, we separate out the lists for each element in the third
dimension before we construct the array:

mat1 = [[1, 2], [3, 4]]
mat2 = [[5, 6], [7, 8]]
mat3 = [[9, 10], [11, 12]]
arr_3d = np.array([mat1, mat2, mat3])
arr_3d.shape # (3, 2, 2)

Basic Packages, Functions, and Concepts Chapter 1

[18]

Note that the first element of the shape is the outermost, and the last
element is the innermost.

This means that adding an additional dimension to an array is a simple matter of providing
the relevant metadata. Using the array routine, the shape metadata is described by the
length of each list in the argument. The length of the outermost list defines the
corresponding shape parameter for that dimension, and so on.

The size in memory of a NumPy array does not significantly depend on the number of
dimensions, but only on the total number of elements, which is the product of the shape
parameters. However, note that th e total number of elements tends to be larger in higher
dimensional arrays.

To access an element in a multi-dimensional array, you use the usual index notation, but
rather than providing a single number, you need to provide the index in each dimension.
For a 2 × 2 matrix, this means specifying the row and column for the desired element:

mat[0, 0] # 1 - top left element
mat[1, 1] # 4 - bottom right element

The index notation also supports slicing in each dimension, so we can extract all members
of a single column by using the slice mat[:, 0] like so:

mat[:, 0]
array([1, 3])

Note that the result of the slice is a one-dimensional array.

The array creation functions, zeros and ones, can create multi-dimensional arrays by
simply specifying a shape with more than one dimension parameter.

Basic Packages, Functions, and Concepts Chapter 1

[19]

Matrices
NumPy arrays also serve as matrices, which are fundamental in mathematics and
computational programming. A matrix is simply a two-dimensional array. Matrices are
central in many applications, such as geometric transformations and simultaneous
equations, but also appear as useful tools in other areas such a statistics. Matrices
themselves are only distinctive (compared to any other array) once we equip them
with matrix arithmetic. Matrices have element-wise addition and subtraction operations, just
as for NumPy arrays, a third operation called scalar multiplication, where we multiply every
element of the matrix by a constant number, and a different notion of matrix multiplication.
Matrix multiplication is fundamentally different from other notions of multiplication, as we
will see later.

One of the most important attributes of a matrix is its shape, defined exactly as for NumPy
arrays. A matrix with m rows and n columns is usually described as an m × n matrix. A
matrix that has the same number of rows as columns is said to be a square matrix, and these
matrices play a special role in the theory of vectors and matrices.

The identity matrix (of size n) is the n × n matrix where the (i, i)-th entry is 1, and the (i, j)-th
entry is zero for i ≠ j. There is an array creation routine that gives an n × n identity matrix
for a specified n value:

np.eye(3)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])

Basic methods and properties
There are a large number of terms and quantities associated with matrices. We only
mention two such properties here, since they will be useful later. These are the transpose of a
matrix, where rows and columns are interchanged, and the trace of a square matrix, which
is the sum of the elements along the leading diagonal. The leading diagonal consists of the
elements aii along the line from the top left of the matrix to the bottom right.

Basic Packages, Functions, and Concepts Chapter 1

[20]

NumPy arrays can be easily transposed by calling the transpose method on the array
object. In fact, since this is such a common operation, arrays have a convenience property
T that returns the transpose of the matrix. The transposition reverses the order of the shape
of a matrix (array), so that rows become columns and columns become rows. For example,
if we start with a 3 × 2 matrix (3 rows, 2 columns), then its transpose will be a 2 × 3 matrix,
such as in the following example:

mat = np.array([[1, 2], [3, 4]])
mat.transpose()
array([[1, 3],
[2, 4]])
mat.T
array([[1, 3],
[2, 4]])

Another quantity associated with matrices that is occasionally useful is the trace.
The trace of a square matrix A, with entries as in the preceding code, is defined to be the
sum of the elements along the leading diagonal, which consists of the elements starting
from the top left diagonally to the bottom right. The formula for the trace is given as

NumPy arrays have a trace method that returns the trace of a matrix:

A = np.array([[1, 2], [3, 4]])
A.trace() # 5

The trace can also be accessed using the np.trace function, which is not bound to the
array.

Matrix multiplication
Matrix multiplication is an operation performed on two matrices, which preserves some of
the structure and character of both matrices. Formally, if A is an l × m matrix, and B is an
m × n matrix, say

Basic Packages, Functions, and Concepts Chapter 1

[21]

then the matrix product C of A and B is an l × n matrix whose (p, q)-th entry is given by

Note that the number of columns of the first matrix must match the number of rows of the
second matrix in order for matrix multiplication to be defined. We usually write AB for the
matrix product of A and B, if it is defined. Matrix multiplication is a peculiar operation. It is
not commutative like most other arithmetic operations: even if AB and BA can both be
computed, there is no need for them to be equal. In practice, this means that the order of
multiplication matters for matrices. This arises from the origins of matrix algebras as
representations of linear maps, where multiplication corresponds to the composition of
functions.

Python has an operator reserved for matrix multiplication @, which was added in Python
3.5. NumPy arrays implement the operator to perform matrix multiplication. Note that this
is fundamentally different from the component-wise multiplication of arrays *:

A = np.array([[1, 2], [3, 4]])
B = np.array([[-1, 1], [0, 1]])
A @ B
array([[-1, 3],
[-3, 7]])
A * B # different from A @ B
array([[-1, 2],
[0, 4]])

The identity matrix is a neutral element under matrix multiplication. That is, if A is any l ×
m matrix, and I is the m × m identity matrix, then AI = A. This can be easily checked for
specific examples using NumPy arrays:

A = np.array([[1, 2], [3, 4]])
I = np.eye(2)
A @ I
array([[1, 2],
[3, 4]])

Basic Packages, Functions, and Concepts Chapter 1

[22]

Determinants and inverses
The determinant of a square matrix is important in most applications because of its strong
link with finding the inverse of a matrix. A matrix is square if the number of rows and
columns are equal. In particular, a matrix that has a non-zero determinant has a (unique)
inverse, which translates to unique solutions of certain systems of equations. The
determinant of a matrix is defined recursively. For a 2 × 2 matrix

the determinant of A is defined by the formula

For a general n × n matrix

where n > 2, we define the submatrix Ai,j for 1 ≤ i, j ≤ n, to be the result of deleting the ith
row and jth column from A. The submatrix Ai,j is an (n-1) × (n-1) matrix, and so we can
compute the determinant. We then define the determinant of A to be the quantity

In fact, the index 1 that appears in the preceding equation can be replaced by any 1 ≤
i ≤ n and the result will be the same.

The NumPy routine for computing the determinant of a matrix is contained in a separate
module called linalg. This module contains many common routines for linear algebra,
which is the branch of mathematics that covers vector and matrix algebra. The routine for
computing the determinant of a square matrix is the det routine:

from numpy import linalg
linalg.det(A) # -2.0000000000000004

Basic Packages, Functions, and Concepts Chapter 1

[23]

Note that a floating-point rounding error has occurred in the calculation of the determinant.

The SciPy package, if installed, also offers a linalg module that extends
NumPy's linalg. The SciPy version not only includes additional
routines, but it is also always compiled with BLAS and LAPACK support,
while for the NumPy version, this is optional. Thus, the SciPy variant may
be preferable, depending on how NumPy was compiled, if speed is
important.

The inverse of an n × n matrix A is the (necessarily unique) n × n matrix B, such
that AB = BA = I, where I denotes the n × n identity matrix and the multiplication
performed here is matrix multiplication. Not every square matrix has an inverse; those that
do not are sometimes called singular matrices. In fact, a matrix is non-singular (that is, has
an inverse) if, and only if, the determinant of that matrix is not 0. When A has an inverse, it
is customary to denote it by A-1.

The inv routine from the linalg module computes the inverse of a matrix, if it exists:

linalg.inv(A)
array([[-2. , 1.],
[1.5, -0.5]])

We can check that the matrix given by the inv routine is indeed the matrix inverse of A by
matrix multiplying (on either side) by the inverse and checking that we get the 2 × 2
identity matrix:

Ainv = linalg.inv(A)
Ainv @ A
Approximately
array([[1., 0.],
[0., 1.]])
A @ Ainv
Approximately
array([[1., 0.],
[0., 1.]])

There will be a floating-point error in these computations, which has been hidden away
behind the Approximately comment, due to the way that matrix inverses are computed.

The linalg package also contains a number of other methods such as norm, which
computes various norms of a matrix. It also contains functions for decomposing matrices in
various ways and solving systems of equations.

Basic Packages, Functions, and Concepts Chapter 1

[24]

There are also the matrix analogues of the exponential function expm, the logarithm
logm, sine sinm, cosine cosm, and tangent tanm. Note that these functions are not the same
as the standard exp, log, sin, cos, and tan functions in the base NumPy package, which
apply the corresponding function on an element by element basis. In contrast, the matrix
exponential function is defined using a "power series" of matrices

where A is an n × n matrix and Ak is the kth matrix power of A; that is, the A matrix
multiplied by itself k times. Note that this "power series" always converges in an
appropriate sense. By convention, we take A

0
 = I, where I is the n × n identity matrix. This is

completely analogous to the usual power series definition of the exponential function for
real or complex numbers, but with matrices and matrix multiplication in place of numbers
and (regular) multiplication. The other functions are defined in a similar fashion, but we
will skip the details.

Systems of equations
Solving systems of (linear) equations is one of the main motivations for studying matrices
in mathematics. Problems of this type occur frequently in a variety of applications. We start
with a system of linear equations written as

where n is at least two, ai,j and bi are known values, and the xi values are the unknown values
that we wish to find.

Basic Packages, Functions, and Concepts Chapter 1

[25]

Before we can solve such a system of equations, we need to convert the problem into a
matrix equation. This is achieved by collecting together the coefficients ai,j into an n × n
matrix and using the properties of matrix multiplication to relate this matrix to the system
of equations. So, let

be the matrix containing the coefficients taken from the equations. Then, if we take x to be
the unknown (column) vector containing the xi values and b to be the (column) vector
containing the known values bi, then we can rewrite the system of equations as the single
matrix equation

which we can now solve using matrix techniques. In this situation, we view a column
vector as an n × 1 matrix, so the multiplication in the preceding equation is matrix
multiplication. To solve this matrix equation, we use the solve routine in the linalg
module. To illustrate the technique, we will solve the following system of equations as an
example:

These equations have three unknown values, x1, x2, and x3. First, we create the matrix of
coefficients and the vector b. Since we are using NumPy as our means of working with
matrices and vectors, we create a two-dimensional NumPy array for the matrix A and a
one-dimensional array for b:

import numpy as np
from numpy import linalg

A = np.array([[3, -2, 1], [1, 1, -2], [-3, -2, 1]])
b = np.array([7, -4, 1])

Now, the solution to the system of equations can be found using the solve routine:

linalg.solve(A, b) # array([1., -1., 2.])

Basic Packages, Functions, and Concepts Chapter 1

[26]

This is indeed the solution to the system of equations, which can be easily verified by
computing A @ x and checking the result against the b array. There may be a floating-point
rounding error in this computation.

The solve function expects two inputs, which are the matrix of coefficients A and the right-
hand side vector b. It solves the system of equations using LAPACK routines that
decompose matrix A into simpler matrices to quickly reduce to an easier problem that can
be solved by simple substitution. This technique for solving matrix equations is extremely
powerful and efficient, and is less prone to the floating-point rounding errors that dog
some other methods. For instance, the solution to a system of equations could be computed
by multiplying (on the left) by the inverse of the matrix A, if the inverse is known.
However, this is generally not as good as using the solve routine since it may be slower or
result in larger numerical errors.

In the example we used, the coefficient matrix A was square. That is, there are the same
number of equations as there are unknown values. In this case, the system of equations has
a unique solution if (and only if) the determinant of this matrix A is not 0. In cases where
the determinant of A is 0, one of two things can happen: the system can have no solution, in
which case we say that the system is inconsistent; or there can be infinitely many solutions.
The difference between a consistent and inconsistent system is usually determined by the
vector b. For example, consider the following systems of equations:

The left-hand system of equations is consistent and has infinitely many solutions; for
instance, taking x = 1 and y = 1 or x = 0 and y = 2 are both solutions. The right-hand system
of equations is inconsistent, and there are no solutions. In both of the above, the solve
routine will fail because the coefficient matrix is singular.

The coefficient matrix does not need to be square for the system to be solvable. For
example, if there are more equations than there are unknown values (a coefficient matrix
has more rows than columns). Such a system is said to be over-specified and, provided that it
is consistent, it will have a solution. If there are fewer equations than there are unknown
values, then the system is said to be under-specified. Under-specified systems of equations
generally have infinitely many solutions if they are consistent, since there is not enough
information to uniquely specify all the unknown values. Unfortunately, the solve routine
will not be able to find solutions for systems where the coefficient matrix is not square, even
if the system does have a solution.

Basic Packages, Functions, and Concepts Chapter 1

[27]

Eigenvalues and eigenvectors
Consider the matrix equation Ax = λx, where A is a square (n × n) matrix, x is a vector, and λ
is a number. Numbers λ for which there is an x that solves this equation are
called eigenvalues, and the corresponding vectors x are called eigenvectors. Pairs of
eigenvalues and corresponding eigenvectors encode information about the matrix A, and
are therefore important in many applications where matrices appear.

We will demonstrate computing eigenvalues and eigenvectors using the following matrix:

We must first define this as a NumPy array:

import numpy as np
from numpy import linalg
A = np.array([[3, -1, 4], [-1, 0, -1], [4, -1, 2]])

The eig routine in the linalg module is used to find the eigenvalues and eigenvectors of a
square matrix. This routine returns a pair (v, B) where v is a one-dimensional array
containing the eigenvalues and B is a two-dimensional array whose columns are the
corresponding eigenvectors:

v, B = linalg.eig(A)

It is perfectly possible for a matrix with only real entries to have complex eigenvalues and
eigenvectors. For this reason, the return type of the eig routine will sometimes be a
complex number type such as complex32 or complex64. In some applications, complex
eigenvalues have a special meaning, while in others we only consider the real eigenvalues.

We can extract an eigenvalue/eigenvector pair from the output of eig using the following
sequence:

i = 0 # first eigenvalue/eigenvector pair
lambda0 = v[i]
print(lambda0)
6.823156164525971
x0 = B[:, i] # ith column of B
print(x0)
array([0.73271846, -0.20260301, 0.649672352])

Basic Packages, Functions, and Concepts Chapter 1

[28]

The eigenvectors returned by the eig routine are normalized so that they have norm (length)
1. (The Euclidean norm is defined to be the square root of the sum of the squares of the
members of the array.) We can check that this is the case by evaluating in the norm of the
vector using the norm routine from linalg:

linalg.norm(x0) # 1.0 - eigenvectors are normalized.

Finally, we can check that these values do indeed satisfy the definition of an
eigenvalue/eigenvector pair by computing the product A @ x0 and checking that, up to
floating-point precision, this is equal to lambda0*x0:

lhs = A @ x0
rhs = lambda0*x0
linalg.norm(lhs - rhs) # 2.8435583831733384e-15 - very small.

The norm computed here represents the "distance" between the left-hand side lhs and the
right-hand side rhs of the equation Ax = λx. Since this distance is extremely small (0 to 14
decimal places), we can be fairly confident that they are actually the same. The fact that this
is not zero is likely due to floating-point precision error.

The eig routine is a wrapper around the low-level LAPACK routines for computing
eigenvalues and eigenvectors. The theoretical procedure for finding eigenvalues and
eigenvectors is to first find the eigenvalues by solving the equation

where I is the appropriate identity matrix, to find the values λ. The equation determined by
the left-hand side is a polynomial in λ and is called the characteristic polynomial of A. The
corresponding eigenvectors can then be found by solving the matrix equation

where λj is one of the eigenvalues already found. In practice, this process is somewhat
inefficient, and there are alternative strategies for computing eigenvalues and eigenvectors
numerically more efficiently.

One key application of eigenvalues and eigenvectors is in principal component analysis,
which is a key technique for reducing a large, complex dataset to better understand the
internal structure.

We can only compute eigenvalues and eigenvectors for square matrices; for non-square
matrices, the definition does not make sense. There is a generalization of eigenvalues and
eigenvalues to non-square matrices called singular values.

Basic Packages, Functions, and Concepts Chapter 1

[29]

Sparse matrices
Systems of linear equations such as those discussed earlier are extremely common
throughout mathematics and, in particular, in mathematical computing. In many
applications, the coefficient matrix will be extremely large, with thousands of rows and
columns, and will likely be obtained from an alternative source rather than simply entering
by hand. In many cases, it will also be a sparse matrix, where most of the entries are 0.

A matrix is sparse if a large number of the elements are zero. The exact number of elements
that need to be zero in order to call a matrix sparse is not well defined. Sparse matrices can
be represented more efficiently, for example, by simply storing the indexes (i, j) and the
values ai,j that are non-zero. There are entire collections of algorithms for sparse matrices
that offer great improvements in performance, assuming the matrix is indeed sufficiently
sparse.

Sparse matrices appear in many applications, and often follow some kind of pattern. In
particular, several techniques for solving partial differential equations (PDEs) involve
solving sparse matrix equations (see Chapter 3, Calculus and Differential Equations), and
matrices associated with networks are often sparse. There are additional routines for sparse
matrices associated with networks (graphs) contained in the sparse.csgraph module. We
will discuss these further in Chapter 5, Working with Trees and Networks.

The sparse module contains several different classes representing the different means of
storing a sparse matrix. The most basic means of storing a sparse matrix is to store three
arrays, two containing integers representing the indices of non zero elements, and the third
the data of the corresponding element. This is the format of the coo_matrix class. Then
there are the compressed column CSC (csc_matrix) and the compressed row CSR
(csr_matrix) formats, which provide efficient column or row slicing, respectively. There
are three additional sparse matrix classes in sparse, including dia_matrix, which
efficiently stores matrices where the non-zero entries appear along a diagonal band.

The sparse module from SciPy contains routines for creating and working with sparse
matrices. We import the sparse module from SciPy using the following import statement:

import numpy as np
from scipy import sparse

A sparse matrix can be created from a full (dense) matrix, or some other kind of data
structure. This is done using the constructor for the specific format in which you wish to
store the sparse matrix.

Basic Packages, Functions, and Concepts Chapter 1

[30]

For example, we can take a dense matrix and store it in CSR format by using the following
command:

A = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
sp_A = sparse.csr_matrix(A)

If you are generating a sparse matrix by hand, the matrix probably follows some kind of
pattern, such as the following tridiagonal matrix:

Here, the non-zero entries appear on the diagonal and on either side of the diagonal, and
the non-zero entries in each row follow the same pattern. To create such a matrix, we could
use one of the array creation routines in sparse such as diags, which is a convenience
routine for creating matrices with diagonal patterns:

T = sparse.diags([-1, 2, -1], (-1, 0, 1), shape=(5, 5), format="csr")

This will create the matrix T as described previously and store it as a sparse matrix
in compressed sparse row CSR format. The first argument specifies the values that should
appear in the output matrix, and the second argument is the positions relative to the
diagonal position in which the values should be placed. So the 0 index in the tuple
represents the diagonal entry, -1 is to the left of the diagonal in the row, and +1 is to the
right of the diagonal in the row. The shape keyword argument gives the dimensions of the
matrix produced, and the format specifies the storage format for the matrix. If no format is
provided using the optional argument, then a reasonable default will be used. The
array T can be expanded to a full (dense) matrix using the toarray method:

T.toarray()
array([[2, -1, 0, 0, 0],
[-1, 2, -1, 0, 0],
[0, -1, 2, -1, 0],
[0, 0, -1, 2, -1],
[0, 0, 0, -1, 2]])

When the matrix is small (as it is here), there is little difference in performance between the
sparse solving routine and the usual solving routines.

Basic Packages, Functions, and Concepts Chapter 1

[31]

Once a matrix is stored in a sparse format, we can use the sparse solving routines in
the linalg submodule of sparse. For example, we can solve a matrix equation using
the spsolve routine from this module. The spsolve routine will convert the matrix into
CSR or CSC, which may add additional time to the computation if it is not provided in one
of these formats:

from scipy.sparse import linalg
linalg.spsolve(T.tocsr(), np.array([1, 2, 3, 4, 5]))
array([5.83333333, 10.66666667, 13.5 , 13.33333333, 9.16666667])

The sparse.linalg module also contains many of the routines that can be found in
the linalg module of NumPy (or SciPy) that accept sparse matrices instead of full NumPy
arrays, such as eig and inv.

Summary
Python offers built-in support for mathematics with some basic numerical types, arithmetic,
and basic mathematical functions. However, for more serious computations involving large
arrays of numerical values, you should use the NumPy and SciPy packages. NumPy
provides high-performance array types and basic routines, while SciPy provides more
specific tools for solving equations and working with sparse matrices (among many other
things).

NumPy arrays can be multi-dimensional. In particular, two-dimensional arrays have matrix
properties that can be accessed using the linalg module from either NumPy or SciPy (the
former is a subset of the latter). Moreover, there is a special operator in Python for matrix
multiplication, @, which is implemented for NumPy arrays.

In the next chapter, we'll get started looking at some recipes.

Basic Packages, Functions, and Concepts Chapter 1

[32]

Further reading
There are many mathematical textbooks describing the basic properties of matrices
and linear algebra, which is the study of vectors and matrices. A good introductory text
is Blyth, T. and Robertson, E. (2013). Basic Linear Algebra. London: Springer London, Limited.

NumPy and SciPy are part of the Python mathematical and scientific computing ecosystem,
and have extensive documentation that can be accessed from the official website, https:/ ​/
scipy.​org. We will see several other packages from this ecosystem throughout this book.

More information about the BLAS and LAPACK libraries that NumPy and SciPy use
behind the scenes can be found at the following links: BLAS: https:/ ​/​www. ​netlib. ​org/
blas/​ and LAPACK: https:/ ​/​www. ​netlib. ​org/ ​lapack/ ​.

https://scipy.org
https://scipy.org
https://scipy.org
https://scipy.org
https://scipy.org
https://scipy.org
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/blas/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/

2
Mathematical Plotting with

Matplotlib
Plotting is a fundamental tool in all of mathematics. A good plot can reveal hidden details,
suggest future directions, verify results, or reinforce an argument. It is no surprise, then,
that the scientific Python stack features a powerful and flexible plotting library called
Matplotlib.

In this chapter, we will plot functions and data in a variety of styles and create figures that
are fully labeled and annotated. We will create three-dimensional plots, customize the
appearance of figures, create figures that contain multiple plots using subplots, and save
figures directly to files for applications that are not running in an interactive environment.

In this chapter, we will cover the following recipes:

Basic plotting with Matplotlib
Changing the plotting style
Adding labels and legends to plots
Adding subplots
Saving Matplotlib figures
Surface and contour plots
Customizing three-dimensional plots

Mathematical Plotting with Matplotlib Chapter 2

[34]

Technical requirements
The main plotting package for Python is Matplotlib, which can be installed using your
favorite package manager, such as pip:

python3.8 -m pip install matplotlib

This will install the most recent version of Matplotlib, which, at the time of writing this
book, is version 3.2.1.

Matplotlib contains numerous sub-packages, but the main user interface is
the matplotlib.pyplot package, which, by convention, is imported under the plt alias.
This is achieved using the following import statement:

import matplotlib.pyplot as plt

Many of the recipes in this chapter also require NumPy, which, as usual, is imported under
the np alias.

The code for this chapter can be found in the Chapter 02 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2002.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​2ZOSuhs.

Basic plotting with Matplotlib
Plotting is an important part of understanding behavior. So much can be learned by simply
plotting a function or data that would otherwise be hidden. In this recipe, we will walk
through how to plot a simple function or data using Matplotlib.

Matplotlib is a very powerful plotting library, which means it can be rather intimidating to
perform simple tasks with it. For users who are used to working with MATLAB and other
mathematical software packages, there is a state-based interface called pyplot. There is
also an object-orientated interface, which might be more appropriate for more complex
plots. The pyplot interface is a convenient way to create basic objects.

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2002
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs
https://bit.ly/2ZOSuhs

Mathematical Plotting with Matplotlib Chapter 2

[35]

Getting ready
Most commonly, the data that you wish to plot will be stored in two separate NumPy
arrays, which we will label x and y for clarity (although this naming does not matter in
practice). We will demonstrate plotting the graph of a function, so we will generate an
array of x values and use the function to generate the corresponding y values. We define
the function that we will plot as follows:

def f(x):
 return x*(x - 2)*np.exp(3 - x)

How to do it...
Before we can plot the function, we must generate the x and y data to be plotted. If you are
plotting existing data, you can skip these commands. We need to create a set of the x values
that cover the desired range, and then use the function to create the y values:

The linspace routine from NumPy is ideal for creating arrays of numbers for1.
plotting. By default, it will create 50 equally spaced points between the specified
arguments. The number of points can be customized by providing an additional
argument, but 50 is sufficient for most cases:

x = np.linspace(-0.5, 3.0) # 100 values between -0.5 and 3.0

Once we have created the x values, we can generate the y values:2.

y = f(x) # evaluate f on the x points

To plot the data, we simply need to call the plot function from3.
the pyplot interface, which is imported under the plt alias. The first argument
is the x data and the second is the y data. The function returns a handle to the
axes object on which the data is plotted:

plt.plot(x, y)

This will plot the y values against the x values on a new figure. If you are4.
working within IPython or with a Jupyter notebook, then the plot should
automatically appear at this point; otherwise, you might need to call
the plt.show function to make the plot appear:

plt.show()

Mathematical Plotting with Matplotlib Chapter 2

[36]

If you use plt.show, the figure should appear in a new window. The resulting plot should
look something like the plot in Figure 2.1. The default plot color might be different on your
plot. It has been changed for high visibility for this book:

Figure 2.1: Plot of a function produced using Matplotlib without any additional styling parameters

We won't add this command to any further recipes in this chapter, but you should be aware
that you will need to use it if you are not working in an environment where plots will be
rendered automatically, such as an IPython console or Jupyter Notebook.

How it works...
If there are currently no Figure or Axes objects, the plt.plot routine creates a new
Figure object, adds a new Axes object to the figure, and populates this Axes object with
the plotted data. A list of handles to the plotted lines is returned. Each of these handles is
a Lines2D object. In this case, this list will contain a single Lines2D object. We can use
this Lines2D object to customize the appearance of the line later (see the Changing the
plotting style recipe).

Mathematical Plotting with Matplotlib Chapter 2

[37]

The object layer of Matplotlib interacts with a lower-level backend, which does the heavy
lifting of producing the graphical plot. The plt.show function issues an instruction to the
backend to render the current figure. There are a number of backends that can be used with
Matplotlib, which can be customized by setting the MPLBACKEND environment variable,
modifying the matplotlibrc file, or by calling matplotlib.use from within Python with
the name of an alternative backend.

The plt.show function does more than simply call the show method on a
figure. It also hooks into an event loop to correctly display the figure.
The plt.show routine should be used to display a figure, rather than
the show method on a Figure object.

There's more...
It is sometimes useful to manually instantiate a Figure object prior to calling
the plot routine—for instance, to force the creation of a new figure. The code in this recipe
could instead have been written as follows:

fig = plt.figure() # manually create a figure
lines = plt.plot(x, y) # plot data

The plt.plot routine accepts a variable number of positional inputs. In the preceding
code, we supplied two positional arguments that were interpreted as x values and y values
(in that order). If we had instead provided only a single array, the plot routine would have
plotted the values against their position in the array; that is, the x values are taken to be 0,
1, 2, and so on. We could also supply multiple pairs of arrays to plot several sets of data on
the same axes:

x = np.linspace(-0.5, 3.0)
lines = plt.plot(x, f(x), x, x**2, x, 1 - x)

Mathematical Plotting with Matplotlib Chapter 2

[38]

The output of the preceding code is as follows:

Figure 2.2: Multiple plots on a single figure, produced using a single call to the plot routine in Matplotlib

It is occasionally useful to create a new figure and explicitly create a new set of axes in this
figure together. The best way to accomplish this is to use the subplots routine in
the pyplot interface (refer to the Adding subplots recipe). This routine returns a pair, where
the first object is Figure and the second is an Axes object:

fig, ax = plt.subplots()
l1 = ax.plot(x, f(x))
l2 = ax.plot(x, x**2)
l3 = ax.plot(x, 1 - x)

This sequence of commands produces the same plot as the preceding one displayed in
Figure 2.2.

Matplotlib has many other plotting routines besides the plot routine described here. For
example, there are plotting methods that use a different scale for the axes, including
the logarithmic x or y axes separately (semilogx or semilogy, respectively) or together
(loglog). These are explained in the Matplotlib documentation.

Mathematical Plotting with Matplotlib Chapter 2

[39]

Changing the plotting style
The basic style of Matplotlib plots is fine for plotting functions or data that is ordered, but it
is less appropriate for plotting discrete data that is not presented in any order. To prevent
Matplotlib from drawing lines between each data point, we can change the plotting style to
"turn off" the line drawing. In this recipe, we will customize the plotting style for each line
on the axes by adding a format string argument to the plot method.

Getting ready
You will need to have your data stored in pairs of arrays. For the purposes of this
demonstration, we will define the following data:

y1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
y2 = np.array([1.2, 1.6, 3.1, 4.2, 4.8])
y3 = np.array([3.2, 1.1, 2.0, 4.9, 2.5])

We will plot these points against their position in the array (that is, the x coordinate will be
0, 1, 2, 3, or 4, respectively, for each array).

How to do it...
The easiest way to control the style of a plot is to use a format string, which is provided as
an optional argument after the x-y pair or the y data in the plot command. When plotting
multiple sets of data, a different format string can be provided for each set of arguments.
The following steps give a general procedure for creating a new figure and plotting data on
this figure:

We first create the Figure and Axes objects explicitly using the subplots1.
routine from pyplot:

fig, ax = plt.subplots()

Now that we have created the Figure and Axes objects, we can plot the data2.
using the plot method on the Axes object. This method takes the same
arguments as the plot routine from pyplot:

lines = ax.plot(y1, 'o', y2, 'x', y3, '*')

Mathematical Plotting with Matplotlib Chapter 2

[40]

This plots the first dataset (y1) with a circle marker, the second (y2) with an x marker, and
the third (y3) with a star (*) marker. The output of this command is shown in Figure 2.3.
The format string can specify a number of different marker lines and color styles. The same
applies if we instead used the plot routine from the pyplot interface, which has the same
calling signature as the plot method:

Figure 2.3: Plot of three sets of data, each plotted using a different marker style

How it works...
The format string has three optional parts, each consisting of one or more characters. The
first part controls the marker style, which is the symbol that is printed at each data point;
the second controls the style of the line that connects the data points; and the third controls
the color of the plot. In this recipe, we only specified the marker style, which means that no
connecting line is drawn between adjacent data points. This is useful for plotting discrete
data where no interpolation between points is necessary. Four line style parameters are
available: a solid line (-); a dashed line (--); a dash-dot line (-.); or a dotted line (:). Only a
limited number of colors can be specified in the format string; they are red, green, blue,
cyan, yellow, magenta, black, and white. The character used in the format string is the first
letter of each color (with the exception of black), so the corresponding characters are
r, g, b, c, y, m, k, and w, respectively.

Mathematical Plotting with Matplotlib Chapter 2

[41]

For example, if we want to change the marker style only, as we did in this recipe, to a plus
character, we would use the "+" format string. If we also want to change the line style to a
dash-dot line, we would use the "+-." format string. Finally, if we also wish to change the
color of the marker to red, we would use the "+-.r" format string. These specifiers can
also be provided in other configurations, such as specifying the color before the marker
style, but this might lead to ambiguities in the way Matplotlib parses the format string.

If you are using a Jupyter notebook and the subplots command, you
must include the call to subplots within the same cell as the plotting
commands or the figure will not be produced.

There's more...
The plot method also accepts a number of keyword arguments that can also be used to
control the style of a plot. Keyword arguments take precedence over format string
parameters if both are present, and they apply to all sets of data plotted by the call. The
keyword to control the marker style is marker, the keyword for the line style
is linestyle, and the keyword for color is color. The color keyword argument accepts a
number of different formats to specify a color, which includes RGB values as a (r, g,
b) tuple, where each character is a float between 0 and 1 or is a hex string. The width of the
line plotted can be controlled using the linewidth keyword, which should be provided
with a float value. There are many other keyword arguments that can be passed to plot;
a list is given in the Matplotlib documentation. Many of these keyword arguments have a
shorter version, such as c for color and lw for linewidth.

For example, we could set the color of all of the markers in the recipe by using the color
keyword argument in the call to plot using the following command:

ax.plot(y1, 'o', y2, 'x', y3, '*', color="k")

The Line2D objects returned from calls to the plot method (or the plt.plot routine) can
also be used to customize the appearance of each set of data. For example,
the set_linestyle method in a Line2D object can be used, with the appropriate line style
format string, to set the line style.

Mathematical Plotting with Matplotlib Chapter 2

[42]

Other aspects of the plot can be customized by using methods on the Axes object. The axes
ticks can be modified using the set_xticks and set_yticks methods on the Axes object,
and the grid appearance can be configured using the grid method. There are also
convenient methods in the pyplot interface that apply these modifications to the current
axes (if they exist).

For example, we modify the axis limits, set the ticks at every multiple of 0.5 in both the x
and y direction, and add a grid to the plot by using the following commands:

ax.axis([-0.5, 5.5, 0, 5.5]) # set axes
ax.set_xticks([0.5*i for i in range(9)]) # set xticks
ax.set_yticks([0.5*i for i in range(11)] # set yticks
ax.grid() # add a grid

Notice how we set the limits slightly larger than the extent of the plot. This is to avoid
markers being placed on the boundary of the plot window.

The scatter plotting routine may be better if you wish to plot discrete data on axes
without connecting the points with a line. This allows more control over the style of the
marker. For example, you can scale the marker according to some additional information.

Adding labels and legends to plots
Every plot should have a title, and the axes should be properly labeled. For plots displaying
multiple sets of data, legends are a good way to help the reader quickly identify the marker,
the line, and the color of different datasets. In this recipe, we will add axes labels and a title
to a plot, and then add a legend to help distinguish between the different sets of data. To
keep the code simple, we will plot the data from the previous recipe.

How to do it...
Follow these steps to add labels and a legend to your plots to help distinguish the sets of
data that they represent:

We first recreate the plot from the previous recipe using the following plot1.
command:

fig, ax = plt.subplots()
ax = ax.plot(y1, "o-", y2, "x--", y3, "*-.")

Mathematical Plotting with Matplotlib Chapter 2

[43]

Now, we have a reference to the Axes object on which our data is plotted, and so2.
we can start to customize these axes by adding labels and titles. The title and axes
labels can be added to a figure by using the set_title, set_xlabel,
and set_ylabel methods on the ax object created by the subplots routine. In
each case, the argument is a string that contains the text to be displayed:

ax.set_title("Plot of the data y1, y2, and y3")
ax.set_xlabel("x axis label")
ax.set_ylabel("y axis label")

Here, we plot the three datasets with a different style. The marker style is the
same as in the previous recipe, but we have added a solid line for the first dataset,
a dashed line for the second, and a dash-dot line for the third.

To add a legend, we call the legend method on the ax object. The argument 3.
should be a tuple or list containing the description to be placed in the legend for
each set of data:

ax.legend(("data y1", "data y2", "data y3"))

The result of the preceding sequence of commands is shown here:

Figure 2.4: A plot with axes labels, a title, and a legend produced using Matplotlib

Mathematical Plotting with Matplotlib Chapter 2

[44]

How it works...
The set_title, set_xlabel, and set_ylabel methods simply add the text argument to
the corresponding position of the Axes object. The legend method, as called in the
preceding code, adds the labels to the datasets in the order that they were added to the
plot—in this case, y1, y2, and then y3.

There are a number of keyword arguments that can be supplied to
the set_title, set_xlabel, and set_ylabel routines to control the style of the text. For
example, the fontsize keyword can be used to specify the size of the label font in the
usual pt point measure. The text argument can also be rendered using TeX for additional
formatting by supplying usetex=True to the routine. The TeX formatting of labels is
demonstrated in Figure 2.5. This is especially useful if the title or axis label contains a
mathematical formula. Unfortunately, the usetex keyword argument cannot be used if
TeX is not installed on the system—it will cause an error in this case. However, it is still
possible to use the TeX syntax for formatting mathematical text within labels, but this will
be typeset by Matplotlib, rather than by TeX.

We can use a different font by using the fontfamily keyword, the value of which can be
the name of a font or serif, sans-serif, or monospace, which will choose the
appropriate built-in font. A complete list of modifiers can be found in the Matplotlib
documentation for the matplotlib.text.Text class.

To add separate text annotations to a plot, you can use the annotate method on the Axes
object. This routine takes two arguments—the text to display as a string and the coordinates
of the point at which the annotation should be placed. This routine also accepts the
previously mentioned styling keyword arguments.

Adding subplots
Occasionally, it is useful to place multiple related plots within the same figure side by side
but not on the same axes. Subplots allow us to produce a grid of individual plots within a
single figure. In this recipe, we will see how to create two plots side by side on a single
figure using subplots.

Mathematical Plotting with Matplotlib Chapter 2

[45]

Getting ready
You will need the data to be plotted on each subplot. As an example, we will plot the first
five iterates of Newton's method applied to the f(x) = x2-1 function with an initial value of x0

= 2 on the first subplot, and for the second, we will plot the error of the iterate. We first
define a generator function to get the iterates:

def generate_newton_iters(x0, number):
 iterates = [x0]
 errors = [abs(x0 - 1.)]
 for _ in range(number):
 x0 = x0 - (x0*x0 - 1.)/(2*x0)
 iterates.append(x0)
 errors.append(abs(x0 - 1.))
 return iterates, errors

This routine generates two lists. The first list contains iterates of Newton's method applied
to the function, and the second contains the error in the approximation:

iterates, errors = generate_newton_iters(2.0, 5)

How to do it...
The following steps show how to create a figure that contains multiple subplots:

We use the subplots routine to create a new figure and references to all of1.
the Axes objects in each subplot, arranged in a grid with one row and two
columns. We also set the tight_layout keyword argument to True to fix the
layout of the resulting plots. This isn't strictly necessary, but it is in this case as it
produces a better result than the default:

fig, (ax1, ax2) = plt.subplots(1, 2, tight_layout=True) # 1 row, 2
columns

Mathematical Plotting with Matplotlib Chapter 2

[46]

Once the Figure and Axes objects are created, we can populate the figure by2.
calling the relevant plotting method on each Axes object. For the first plot
(displayed on the left), we use the plot method on the ax1 object, which has the
same signature as the standard plt.plot routine. We can then call
the set_title, set_xlabel, and set_ylabel methods on ax1 to set the title
and the x and y labels. We also use TeX formatting for the axes labels by
providing the usetex keyword argument; you can ignore this if you don't have
TeX installed on your system:

ax1.plot(iterates, "x")
ax1.set_title("Iterates")
ax1.set_xlabel("i", usetex=True)
ax1.set_ylabel("x_i", usetex=True)

Now, we can plot the error values on the second plot (displayed on the right)3.
using the ax2 object. We use an alternative plotting method that uses a
logarithmic scale on the y-axis, called semilogy. The signature for this method is
the same as the standard plot method. Again, we set the axes labels and the title.
Again, the use of usetex can be left out if you don't have TeX installed:

ax2.semilogy(errors, "x") # plot y on logarithmic scale
ax2.set_title("Error")
ax2.set_xlabel("i", usetex=True)
ax2.set_ylabel("Error")

The result of this sequence of commands is shown here:

Figure 2.5: Matplotlib subplots

Mathematical Plotting with Matplotlib Chapter 2

[47]

The left-hand side plots the first five iterates of Newton's method and the right-hand side is
the approximation error plotted on a logarithmic scale.

How it works...
A Figure object in Matplotlib is simply a container for plot elements, such as Axes, of a
certain size. A Figure object will usually only hold a single Axes object, which occupies
the entire figure area, but it can contain any number of Axes objects in the same area.
The subplots routine does several things. It first creates a new figure and then creates a
grid with the specified shape in the figure area. Then, a new Axes object is added to each
position of the grid. The new Figure object and one or more Axes objects are then returned
to the user. If a single subplot is requested (one row and one column, with no arguments)
then a plain Axes object is returned. If a single row or column is requested (with more than
one column or row, respectively), then a list of the Axes objects is returned. If more than
one row and column is requested, a list of lists, with rows represented by inner lists filled
with the Axes objects, will be returned. We can then use the plotting methods on each of
the Axes objects to populate the figure with the desired plots.

In this recipe, we used the standard plot method for the left-hand side plot, as we have
seen in previous recipes. However, for the right-hand side plot, we used a plot where the y-
axis had been changed to a logarithmic scale. This means that each unit on the y-axis
represents a change of a power of 10, rather than a change of one unit, so that 0 represents
10

0
 = 1, 1 represents 10, 2 represents 100, and so on. The axes labels are automatically

changed to reflect this change in scale. This type of scaling is useful when the values change
by an order of magnitude, such as the error in an approximation, as we use more and more
iterations. We can also plot with a logarithmic scale for x only by using the semilogx
method, or both axes on a logarithmic scale by using the loglog method.

There's more...
There are several ways to create subplots in Matplotlib. If you have already created a
Figure object, then subplots can be added using the add_subplot method of
the Figure object. Alternatively, you can use the subplot routine
from matplotlib.pyplot to add subplots to the current figure. If one does not yet exist, it
will be created when this routine is called. The subplot routine is a convenience wrapper
of the add_subplot method on the Figure object.

Mathematical Plotting with Matplotlib Chapter 2

[48]

To create a new figure with one or more subplots, you can also use the subplots routine
from the pyplot interface—as we saw in the Changing the plotting style recipe—which
returns a new figure object and an array of the Axes objects, one for each position. All three
of these methods require the number of rows and columns for the subplot matrix.
The add_subplot method and the subplot routine also require a third argument, which is
the index of the subplot to modify. The Axes object of the current subplot is returned.

In the preceding example, we created two plots with differently scaled y-axes. This
demonstrates one of the many possible uses of subplots. Another common use is for
plotting data in a matrix where columns have a common x label and rows have a
common y label, which is especially common in multivariate statistics when investigating
the correlation between various sets of data. The plt.subplots routine for creating
subplots accepts the sharex and sharey keyword parameters, which allows the axes to be
shared among all the subplots or among a row or column. This setting affects the scale and
ticks of the axes.

See also
Matplotlib supports more advanced layouts by providing the gridspec_kw keyword
arguments to the subplots routine. See the documentation for matplotlib.gridspec for
more information.

Saving Matplotlib figures
When you work in an interactive environment, such as an IPython console or a Jupyter
notebook, displaying a figure at runtime is perfectly normal. However, there are plenty of
situations where it would be more appropriate to store a figure directly to a file, rather than
rendering it on screen. In this recipe, we will see how to save a figure directly to a file,
rather than displaying it on screen.

Getting ready
You will need the data to be plotted and the path or file object in which you wish to store
the output. We store the result in savingfigs.png in the current directory. In this
example, we will plot the following data:

x = np.arange(1, 5, 0.1)
y = x*x

Mathematical Plotting with Matplotlib Chapter 2

[49]

How to do it...
The following steps show how to save a Matplotlib plot directly to a file:

The first step is to create the figure, as usual, and add any labels, titles, and1.
annotations that are necessary. The figure will be written to the file in its current
state, so any changes to the figure should be made before saving:

fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title("Graph of $y = x^2$", usetex=True)
ax.set_xlabel("x", usetex=True)
ax.set_ylabel("y", usetex=True)

Then, we use the savefig method on fig to save this figure to a file. The only2.
required argument is the path to output to or a file-like object that the figure can
be written to. We can adjust various settings for the output format, such as the
resolution, by providing the appropriate keyword arguments. We'll set the Dots
per Inch (DPI) of the output figure to 300, which is a reasonable resolution for
most applications:

fig.savefig("savingfigs.png", dpi=300)

Matplotlib will infer that we wish to save the image in the Portable Network Graphics
(PNG) format from the extension of the file given. Alternatively, a format can be explicitly
provided as a keyword argument (by using the format keyword), or it will fall back to the
default from the configuration file.

How it works...
The savefig method chooses the appropriate backend for the output format and then
renders the current figure in that format. The resulting image data is written to the
specified path or file-like object. If you have manually created a Figure instance, the same
effect can be achieved by calling the savefig method on that instance.

There's more...
The savefig routine takes a number of additional optional keyword arguments to
customize the output image. For example, the resolution of the image can be specified
using the dpi keyword. The plots in this chapter have been produced by saving the
Matplotlib figures to the file.

Mathematical Plotting with Matplotlib Chapter 2

[50]

The output formats available include PNG, Scalable Vector Graphics (SVG), PostScript
(PS), Encapsulated PostScript (EPS), and Portable Document Format (PDF). You can also
save to JPEG format if the Pillow package is installed, but Matplotlib does not support this
natively since version 3.1. There are additional customization keyword arguments for JPEG
images, such as quality and optimize. A dictionary of image metadata can be passed to
the metadata keyword, which will be written as image metadata when saving.

See also
The examples gallery on the Matplotlib website includes examples of embedding
Matplotlib figures into a Graphical User Interface (GUI) application using several common
Python GUI frameworks.

Surface and contour plots
Matplotlib can also plot three-dimensional data in a variety of ways. Two common choices
for displaying data like this are by using surface plots or contour plots (think of contour
lines on a map). In this recipe, we will see a method for plotting surfaces from three-
dimensional data and how to plot contours of three-dimensional data.

Getting ready
To plot three-dimensional data, it needs to be arranged into two-dimensional arrays for
the x, y, and z components, where both the x and y components must be of the same shape
as the z component. For the sake of this demonstration, we will plot the surface
corresponding to the f(x, y) = x2y3 function.

How to do it...
We want to plot the f(x, y) = x2y3 function on the -2 ≤ x ≤ 2 and -1 ≤ y ≤ 1 range. The first
task is to create a suitable grid of (x, y) pairs on which to evaluate this function:

 We first use np.linspace to generate a reasonable number of points in these1.
ranges:

X = np.linspace(-2, 2)
Y = np.linspace(-1, 1)

Mathematical Plotting with Matplotlib Chapter 2

[51]

Now, we need to create a grid on which to create our z values. For this, we use2.
the np.meshgrid routine:

x, y = np.meshgrid(X, Y)

Now, we can create the z values to plot, which hold the value of the function at3.
each of the grid points:

z = x**2 * y**3

To plot three-dimensional surfaces, we need to load a Matplotlib4.
toolbox, mplot3d, which comes with the Matplotlib package. This won't be used
explicitly in the code, but behind the scenes, it makes the three-dimensional
plotting utilities available to Matplotlib:

from mpl_toolkits import mplot3d

Next, we create a new figure and a set of three-dimensional axes for the figure:5.

fig = plt.figure()
ax = fig.add_subplot(projection="3d") # declare 3d plot

Now, we can call the plot_surface method on these axes to plot the data:6.

ax.plot_surface(x, y, z)

It is extra important to add axis labels to three-dimensional plots because it might7.
not be clear which axis is which on the displayed plot:

ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

We should also set a title at this stage:8.

ax.set_title("Graph of the function $f(x) = x^2y^3$)

Mathematical Plotting with Matplotlib Chapter 2

[52]

You can use the plt.show routine to display the figure in a new window (if you
are using Python interactively and not in a Jupyter notebook or on an IPython
console) or plt.savefig to save the figure to a file. The result of the preceding
sequence is shown here:

Figure 2.6: A three-dimensional surface plot produced with Matplotlib using the default settings

Contour plots do not require the mplot3d toolkit, and there is9.
a contour routine in the pyplot interface that produces contour plots.
However, unlike the usual (two-dimensional) plotting routines, the contour
routine requires the same arguments as the plot_surface method. We use the
following sequence to produce a plot:

fig = plt.figure() # Force a new figure
plt.contour(x, y, z)
plt.title("Contours of $f(x) = x^2y^3$")
plt.xlabel("x")
plt.ylabel("y")

Mathematical Plotting with Matplotlib Chapter 2

[53]

The result is shown in the following plot:

Figure 2.7: Contour plot produced using Matplotlib with the default settings

How it works...
The mplot3d toolkit provides an Axes3D object, which is a three-dimensional version of
the Axes object in the core Matplotlib package. This is made available to the axes method
on a Figure object when the projection="3d" keyword argument is given. A surface
plot is obtained by drawing quadrilaterals, in the three-dimensional projection, between
nearby points in the same way that a two-dimensional curve is approximated by straight
lines joining adjacent points.

The plot_surface method needs the z values to be provided as a two-dimensional array
that encodes the z values on a grid of (x, y) pairs. We created the range of x and y values
that we are interested in, but if we simply evaluate our function on the pairs of
corresponding values from these arrays, we will get the z values along a line and not over a
grid. Instead, we use the meshgrid routine, which takes the two X and Y arrays and creates
from them a grid consisting of all the possible combinations of values in X and Y. The
output is a pair of two-dimensional arrays on which we can evaluate our function. We can
then provide all three of these two-dimensional arrays to the plot_surface method.

Mathematical Plotting with Matplotlib Chapter 2

[54]

There's more...
The routines described in the preceding section, contour and plot_contour, only work
with highly structured data where the x, y, and z components are arranged into grids.
Unfortunately, real-life data is rarely so structured. In this case, you need to perform some
kind of interpolation between known points to approximate the value on a uniform grid,
which can then be plotted. A common method for performing this interpolation is by
triangulating the collection of (x, y) pairs and then using the values of the function on the
vertices of each triangle to estimate the value on the grid points. Fortunately, Matplotlib has
a method that does all of these steps and then plots the result, which is the plot_trisurf
routine. We briefly explain how this can be used here:

To illustrate the use of plot_trisurf, we will plot a surface and contours from1.
the following data:

x = np.array([0.19, -0.82, 0.8 , 0.95, 0.46, 0.71,
 -0.86, -0.55, 0.75,-0.98, 0.55, -0.17, -0.89,
 -0.4 , 0.48, -0.09, 1., -0.03, -0.87, -0.43])
y = np.array([-0.25, -0.71, -0.88, 0.55, -0.88, 0.23,
 0.18,-0.06, 0.95, 0.04, -0.59, -0.21, 0.14, 0.94,
 0.51, 0.47, 0.79, 0.33, -0.85, 0.19])
z = np.array([-0.04, 0.44, -0.53, 0.4, -0.31, 0.13,
 -0.12, 0.03, 0.53, -0.03, -0.25, 0.03, -0.1 ,
 -0.29, 0.19, -0.03, 0.58, -0.01, 0.55, -0.06])

This time, we will plot both the surface and contour (approximations) on the2.
same figure as two separate subplots. For this, we supply
the projection="3d" keyword argument to the subplot that will contain the
surface. We use the plot_trisurf method on the three-dimensional axes to plot
the approximated surface, and the tricontour method on the two-dimensional
axes to plot the approximated contours:

fig = plt.figure(tight_layout=True) # force new figure
ax1 = fig.add_subplot(1, 2, 1, projection="3d") # 3d axes
ax1.plot_trisurf(x, y, z)
ax1.set_xlabel("x")
ax1.set_ylabel("y")
ax1.set_zlabel("z")
ax1.set_title("Approximate surface")

Mathematical Plotting with Matplotlib Chapter 2

[55]

We can now plot the contours for the triangulated surface using the following3.
command:

ax2 = fig.add_subplot(1, 2, 2) # 2d axes
ax2.tricontour(x, y, z)
ax2.set_xlabel("x")
ax2.set_ylabel("y")
ax2.set_title("Approximate contours")

We include the tight_layout=True keyword argument with the figure to save a call to
the plt.tight_layout routine later. The result is shown here:

Figure 2.8: Approximate surface and contour plots generated from unstructured data using triangulation

In addition to surface plotting routines, the Axes3D object has a plot (or plot3D) routine
for simple three-dimensional plotting, which works exactly as the usual plot routine but
on the three-dimensional axes. This method can also be used to plot two-dimensional data
on one of the axes.

Mathematical Plotting with Matplotlib Chapter 2

[56]

Customizing three-dimensional plots
Contour plots can hide some detail of the surface that they represent since they only show
where the "height" is similar and not what the value is, even in relation to the surrounding
values. On a map, this is remedied by printing the height onto certain contours. Surface
plots are more revealing, but the problem of projecting three-dimensional objects into 2D to
be displayed on a screen can itself obscure some details. To address these issues, we can
customize the appearance of a three-dimensional plot (or contour plot) to enhance the plot
and make sure the detail that we wish to highlight is clear. The easiest way to do this is by
changing the colormap of the plot.

In this recipe, we will use the reverse of the binary colormap.

Getting ready
We will generate surface plots for the following function:

We generate the points at which this should be plotted as in the previous recipe:

X = np.linspace(-2, 2)
Y = np.linspace(-2, 2)
x, y = np.meshgrid(X, Y)
t = x**2 + y**2 # small efficiency
z = np.cos(2*np.pi*t)*np.exp(-t)

How to do it...
Matplotlib has a number of built-in colormaps that can be applied to plots. By default,
surface plots are plotted with a single color that is shaded according to a light source (see
the There's more... section of this recipe). A colormap can dramatically improve the effect of
a plot. The following steps show how to add a colormap to surface and contour plots:

To start, we simply apply one of the built-in colormaps, binary_r, which is done1.
by providing the cmap="binary_r" keyword argument to the plot_surface
routine:

fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_surface(x, y, z, cmap="binary_r")

Mathematical Plotting with Matplotlib Chapter 2

[57]

ax.set_title("Surface with colormap")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

The result is a figure (Figure 2.9) where the surface is colored according to its
value, with the most extreme values at either end of the colormap—in this case,
the larger the z value, the lighter the shade of gray. Note that the jaggedness of
the plot in the following diagram is due to the relatively small number of points
in the mesh grid:

Figure 2.9: A surface plot with a grayscale colormap applied

Colormaps apply to other plot types in addition to surface plots. In particular,
colormaps can be applied to contour plots, which can help to distinguish between
the contours that represent higher values and those that represent lower values.

For the contour plot, the method for changing the colormap is the same; we2.
simply specify a value for the cmap keyword argument:

fig = plt.figure()
plt.contour(x, y, z, cmap="binary_r")
plt.xlabel("x")
plt.ylabel("y")
plt.title("Contour plot with colormap set")

Mathematical Plotting with Matplotlib Chapter 2

[58]

The result of the preceding code is shown here:

Figure 2.10: A contour plot with an alternative colormap set

The darker shades of gray in the diagram correspond to the lower values of z.

How it works...
Color mapping works by assigning an RGB value according to a scale—the colormap. First,
the values are normalized so that they lie between 0 and 1, which is typically done by a
linear transformation that takes the minimum value to 0 and the maximum value to 1. The
appropriate color is then applied to each face of the surface plot (or line, in another kind of
plot).

Matplotlib comes with a number of built-in colormaps that can be applied by simply
passing the name to the cmap keyword argument. A list of these colormaps is given in the
documentation (https:/ ​/​matplotlib. ​org/​tutorials/ ​colors/ ​colormaps. ​html), and also
comes with a reversed variant, which is obtained by adding the _r suffix to the name of the
chosen colormap.

https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html
https://matplotlib.org/tutorials/colors/colormaps.html

Mathematical Plotting with Matplotlib Chapter 2

[59]

There's more...
The normalization step in applying a colormap is performed by an object derived from
the Normalize class. Matplotlib provides a number of standard normalization routines,
including LogNorm and PowerNorm. Of course, you can also create your own subclass
of Normalize to perform the normalization. An alternative Normalize subclass can be
added using the norm keyword of plot_surface or other plotting functions.

For more advanced uses, Matplotlib provides an interface for creating custom shading
using light sources. This is done by importing the LightSource class from
the matplotlib.colors package, and then using an instance of this class to shade the
surface elements according to the z value. This is done using the shade method on
the LightSource object:

from matplotlib.colors import LightSource
light_source = LightSource(0, 45) # angles of lightsource
cmap = plt.get_cmap("binary_r")
vals = light_source.shade(z, cmap)
surf = ax.plot_surface(x, y, z, facecolors=vals)

Complete examples are shown in the Matplotlib gallery should you wish to learn more
about how this works.

Further reading
The Matplotlib package is extensive and we can scarcely do it justice in such a short space.
The documentation contains far more detail than is provided here. Moreover, there is a
large gallery (https:/ ​/​matplotlib. ​org/ ​gallery/ ​index. ​html#) of examples covering many
more of the capabilities of the package than in this book.

There are other packages that build on top of Matplotlib that offer high-level plotting
methods for specific applications. For example, the Seaborn libraries provide routines for
visualizing data (https:/ ​/ ​seaborn. ​pydata. ​org/ ​).

https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://matplotlib.org/gallery/index.html#
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/

3
Calculus and Differential

Equations
In this chapter, we will discuss various topics related to calculus. Calculus is the branch of
mathematics that concerns the processes of differentiation and integration. Geometrically,
the derivative of a function represents the gradient of the curve of the function, and the
integral of a function represents the area below the curve of the function. Of course, these
characterizations only hold in certain circumstances, but they provide a reasonable
foundation for this chapter.

We start by looking at calculus for a simple class of functions: the polynomials. In the first
recipe, we create a class that represents a polynomial and define methods that differentiate
and integrate the polynomial. Polynomials are convenient because the derivative or integral
of a polynomial is again a polynomial. Then, we use the SymPy package to perform
symbolic differentiation and integration on more general functions. After that, we see
methods for solving equations using the SciPy package. Next, we turn our attention to
numerical integration (quadrature) and solving differential equations. We use the SciPy
package to solve ordinary differential equations and systems of ordinary differential
equations, and then use a finite difference scheme to solve a simple partial differential
equation. Finally, we use the fast Fourier transform to process a noisy signal and filter out
the noise.

In this chapter, we will cover the following recipes:

Working with polynomials and calculus
Differentiating and integrating symbolically using SymPy
Solving equations
Integrating functions numerically using SciPy

Calculus and Differential Equations Chapter 3

[61]

Solving simple differential equations numerically
Solving systems of differential equations
Solving partial differential equations numerically
Using discrete Fourier transforms for signal processing

Technical requirements
In addition to the scientific Python packages NumPy and SciPy, we also need the SymPy
package. This can be installed using your favorite package manager, such as pip:

python3.8 -m pip install sympy

The code for this chapter can be found in the Chapter 03 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2003.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​32HuH4X.

Working with polynomials and calculus
Polynomials are among the simplest functions in mathematics and are defined as a sum:

x represents a placeholder to be substituted, and ai is a number. Since polynomials are
simple, they provide an excellent means for a brief introduction to calculus. Calculus
concerns the differentiation and integration of functions. Integration is, roughly
speaking, anti-differentiation, in the sense that first integrating and then differentiating yields
the original function.

In this recipe, we will define a simple class that represents a polynomial and write methods
for this class to perform differentiation and integration.

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2003
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X
https://bit.ly/32HuH4X

Calculus and Differential Equations Chapter 3

[62]

Getting ready
Geometrically, the derivative, obtained by differentiating, of a function is its gradient, and
the integral, obtained by integrating, of a function is the area that lies between the curve of
the function and the x axis, accounting for whether the curve lies above or below the axis.
In practice, differentiating and integrating are done symbolically, using a set of rules and
standard results that are particularly simple for polynomials.

There are no additional packages required for this recipe.

How to do it...
The following steps describe how to create a class representing a polynomial and
implement differentiation and integration methods for this class:

Let's start by defining a simple class to represent a polynomial: 1.

class Polynomial:
 """Basic polynomial class"""

 def __init__(self, coeffs):
 self.coeffs = coeffs

 def __repr__(self):
 return f"Polynomial({repr(self.coeffs)})"

 def __call__(self, x):
 return sum(coeff*x**i for i, coeff
 in enumerate(self.coeffs))

Now that we have defined a basic class for a polynomial, we can move on to2.
implement the differentiation and integration operations for
this Polynomial class to illustrate how these operations change polynomials. We
start with differentiation. We generate new coefficients by multiplying each
element in the current list of coefficients without the first element. We use this
new list of coefficients to create a new Polynomial instance that is returned:

 def differentiate(self):
 """Differentiate the polynomial and return the
derivative"""
 coeffs = [i*c for i, c in enumerate(self.coeffs[1:],
start=1)]
 return Polynomial(coeffs)

Calculus and Differential Equations Chapter 3

[63]

To implement the integration method, we need to create a new list of coefficients3.
containing the new constant (converted to a float for consistency) given by the
argument. We then add to this list of coefficients the old coefficients divided by
their new position in the list:

 def integrate(self, constant=0):
 """Integrate the polynomial, returning the integral"""
 coeffs = [float(constant)]
 coeffs += [c/i for i, c in enumerate(self.coeffs, start=1)]
 return Polynomial(coeffs)

Finally, to make sure these methods work as expected, we should test these two 4.
methods with a simple case. We can check this using a very simple polynomial,
such as x2 - 2x + 1:

p = Polynomial([1, -2, 1])
p.differentiate()
Polynomial([-2, 2])
p.integrate(constant=1)
Polynomial([1.0, 1.0, -1.0, 0.3333333333])

How it works...
Polynomials offer an easy introduction to the basic operations of calculus, but it isn't so
easy to construct Python classes for other general classes of functions. That being said,
polynomials are extremely useful because they are well understood and, perhaps more
importantly, calculus for polynomials is very easy. For powers of a variable x, the rule for
differentiation is to multiply by the power and reduce the power by 1, so
that xn becomes nxn-1.

Integration is more complex, since the integral of a function is not unique. We can add any
constant to an integral and obtain a second integral. For powers of a variable x, the rule for
integration is to increase the power by 1 and divide by the new power, so
that xn becomes xn+1/(n+1), so to integrate a polynomial, we increase each power of x by 1
and divide the corresponding coefficient by the new power.

The Polynomial class that we defined in the recipe is rather simplistic, but represents the
core idea. A polynomial is uniquely determined by its coefficients, which we can store as a
list of numerical values. Differentiation and integration are operations that we can perform
on this list of coefficients. We include a simple __repr__ method to help with the display
of Polynomial objects, and a __call__ method to facilitate evaluation at specific
numerical values. This is mostly to demonstrate the way that a polynomial is evaluated.

Calculus and Differential Equations Chapter 3

[64]

Polynomials are useful for solving certain problems that involve evaluating a
computationally expensive function. For such problems, we can sometimes use some kind
of polynomial interpolation, where we "fit" a polynomial to another function, and then use
the properties of polynomials to help solve the original problem. Evaluating a polynomial
is much "cheaper" than the original function, so this can lead to dramatic improvements in
speed. This usually comes at the cost of some accuracy. For example, Simpson's rule for
approximating the area under a curve approximates the curve by quadratic polynomials
over intervals defined by three consecutive mesh points. The area below each quadratic
polynomial can be calculated easily by integration.

There's more...
Polynomials have many more important roles in computational programming than simply
demonstrating the effect of differentiation and integration. For this reason, a much
richer Polynomial class is provided in the NumPy package, numpy.polynomial. The
NumPy Polynomial class, and the various derived subclasses, are useful in all kinds of
numerical problems, and support arithmetic operations as well as other methods. In
particular, there are methods for fitting polynomials to collections of data.

NumPy also provides classes, derived from Polynomial, that represent various special
kinds of polynomials. For example, the Legendre class represents a specific system of
polynomials called the Legendre polynomials. The Legendre polynomials are defined for x
satisfying -1 ≤ x ≤ 1 and form an orthogonal system, which is important for applications
such as numerical integration and the finite element method for solving partial differential
equations. The Legendre polynomials are defined using a recursive relation. We define

and for each n ≥ 2, we define the nth Legendre polynomial to satisfy the recurrence
relation,

There are several other so called orthogonal (systems of) polynomials, including Laguerre
polynomials, Chebyshev polynomials, and Hermite polynomials.

Calculus and Differential Equations Chapter 3

[65]

See also
Calculus is certainly well documented in mathematical texts, and there are many textbooks
that cover from the basic methods all the way to the deep theory. Orthogonal systems of
polynomials are also well documented among numerical analysis texts.

Differentiating and integrating symbolically
using SymPy
At some point, you may have to differentiate a function that is not a simple polynomial,
and you may need to do this in some kind of automated fashion, for example, if you are
writing software for education. The Python scientific stack includes a package called
SymPy, which allows us to create and manipulate symbolic mathematical expressions
within Python. In particular, SymPy can perform differentiation and integration of
symbolic functions, just like a mathematician.

In this recipe, we will create a symbolic function, and then differentiate and integrate this
function using the SymPy library.

Getting ready
Unlike some of the other scientific Python packages, there does not seem to be a standard
alias under which SymPy is imported in the literature. Instead the documentation uses a
star import at several points, which is not in line with the PEP8 style guide. This is possibly
to make the mathematical expressions more natural. We will simply import the module
under its name sympy, to avoid any confusion with the scipy package's standard
abbreviation, sp (which is the natural choice for sympy too):

import sympy

In this recipe, we will define a symbolic expression that represents the function

Calculus and Differential Equations Chapter 3

[66]

How to do it...
Differentiating and integrating symbolically (as you would do by hand) is very easy using
the SymPy package. Follow these steps to see how it is done:

Once SymPy is imported, we define the symbols that will appear in our1.
expressions. This is a Python object that has no particular value, just like a
mathematical variable, but can be used in formulas and expressions to represent
many different values simultaneously. For this recipe, we need only define a
symbol for x, since we will only require constant (literal) symbols and functions
in addition to this. We use the symbols routine from sympy to define a new
symbol. To keep the notation simple, we will name this new symbol x:

x = sympy.symbols('x')

The symbols defined using the symbols function support all of the arithmetic2.
operations, so we can construct the expression directly using the symbol x we
just defined:

f = (x**2 - 2*x)*sympy.exp(3 - x)

Now we can use the symbolic calculus capabilities of SymPy to compute the3.
derivative of f, that is, differentiate f. We do this using the diff routine
in sympy, which differentiates a symbolic expression with respect to a specified
symbol, and returns an expression for the derivative. This is often not expressed
in its simplest form, so we use the sympy.simplify routine to simplify the
result:

fp = sympy.simplify(sympy.diff(f)) # (x*(2 - x) + 2*x - 2)
 *exp(3 - x)

We can check whether the result of the symbolic differentiation using SymPy is4.
correct, compared to the derivative computed by hand, defined as a
SymPy expression, as follows:

fp2 = (2*x - 2)*sympy.exp(3 - x) - (x**2 - 2*x)*sympy.exp(3 - x)

SymPy equality tests whether two expressions are equal, but not whether they5.
are symbolically equivalent. Therefore, we must first simplify the difference of
the two statements we wish to test and test for equality to 0:

sympy.simplify(fp2 - fp) == 0 # True

Calculus and Differential Equations Chapter 3

[67]

We can integrate the function f using SymPy by using the integrate function.6.
It is a good idea to also provide the symbol with which the integration is to be
performed by providing it as the second optional argument:

F = sympy.integrate(f, x) # -x**2*exp(3 - x)

How it works...
SymPy defines various classes to represent certain kinds of expressions. For example,
symbols, represented by the Symbol class, are examples of atomic expressions. Expressions
are built up in a similar way to how Python builds an abstract syntax tree from source code.
These expression objects can then be manipulated using methods and the standard
arithmetic operations.

SymPy also defines standard mathematical functions that can operate on the Symbol
objects to create symbolic expressions. The most important feature is the ability to perform
symbolic calculus – rather than the numerical calculus that we explore in the remainder of
this chapter – and give exact (sometimes called analytic) solutions to calculus problems.

The diff routine from the SymPy package performs differentiation on these symbolic
expressions. The result of this routine is usually not in its simplest form, which is why we
used the simplify routine to simplify the derivative in the recipe. The integrate routine
symbolically integrates a scipy expression with respect to a given symbol. (The diff
routine also accepts a symbol argument that specifies the symbol for differentiating
against.) This returns an expression whose derivative is the original expression. This
routine does not add a constant of integration, which is good practice when doing integrals
by hand.

There's more...
SymPy can do much more than simple algebra and calculus. There are submodules for
various areas of mathematics, such as number theory, geometry, and other discrete
mathematics (such as combinatorics).

Calculus and Differential Equations Chapter 3

[68]

SymPy expressions (and functions) can be built into Python functions that can be applied to
NumPy arrays. This is done using the lambdify routine from the sympy.utilities
module. This converts a SymPy expression to a numerical expression that uses the NumPy
equivalents of the SymPy standard functions to evaluate the expressions numerically. The
result is similar to defining a Python Lambda, hence the name. For example, we could
convert the function and derivative from this recipe into Python functions using this
routine:

from sympy.utilities import lambdify
lam_f = lambdify(x, f)
lam_fp = lambdify(x, fp)

The lambdify routine takes two arguments. The first is the variables to be provided, x in
the previous code block, and the second is the expression to be evaluated when this
function is called. For example, we can evaluate the lambdified SymPy expressions defined
previously as if they were ordinary Python functions:

lam_f(4) # 2.9430355293715387
lam_fp(7) # -0.4212596944408861

We can even evaluate these lambdified expressions on NumPy arrays:

lam_f(np.array([0, 1, 2])) # array([0. , -7.3890561, 0.])

The lambdify routine uses the Python exec routine to execute the code,
so it should not be used with unsanitized input.

Solving equations
Many mathematical problems eventually reduce to solving an equation of the form f(x) = 0,
where f is a function of a single variable. Here, we try to find a value of x for which the
equation holds. The values of x for which the equation holds are sometimes called roots of
the equation. There are numerous algorithms for finding solutions to equations of this
form. In this recipe, we will use the Newton-Raphson and secant methods to solve an
equation of the form f(x) = 0.

The Newton-Raphson method (Newton's method) and the secant method are good,
standard root finding algorithms that can be applied in almost any situation. These
are iterative methods that start with an approximation of the root and iteratively improve this
approximation until it lies within a given tolerance.

Calculus and Differential Equations Chapter 3

[69]

To demonstrate these techniques, we will use the function from the Symbolic calculus using
SymPy recipe defined by

which is defined for all real values of x and has exactly two roots, one at x = 0 and one at x =
2.

Getting ready
The SciPy package contains routines for solving equations (among many other things). The
root finding routines can be found in the optimize module from the scipy package.

If your equation is not in the form f(x) = 0, then you will need to rearrange it so that this is
the case. This is usually not too difficult, and simply requires moving any terms on the
right-hand side over to the left-hand side. For example, if you wish to find the fixed points
of a function, that is, when g(x) = x, then we would apply the method to the related function
given by f(x) = g(x) - x.

How to do it...
The optimize package provides routines for numerical root finding. The following
instructions describe how to use the newton routine from this module:

The optimize module is not listed in the scipy namespace, so you must import1.
it separately:

from scipy import optimize

Then we must define this function and its derivative in Python:2.

from math import exp

def f(x):
 return x*(x - 2)*exp(3 - x)

The derivative of this function was computed in the previous recipe:3.

def fp(x):
 return -(x**2 - 4*x + 2)*exp(3 - x)

Calculus and Differential Equations Chapter 3

[70]

For both the Newton-Raphson and secant methods, we use the newton routine4.
from optimize. Both the secant method and the Newton-Raphson method
require the function and the first argument and the first approximation, x0, as
the second argument. To use the Newton-Raphson method, we must provide
the derivative of f, using the fprime keyword argument:

optimize.newton(f, 1, fprime=fp) # Using the Newton-Raphson method
2.0

To use the secant method, only the function is needed, but we must provide the5.
first two approximations for the root; the second is provided as the x1 keyword
argument:

optimize.newton(f, 1., x1=1.5) # Using x1 = 1.5 and the secant
method
1.9999999999999862

Neither the Newton-Raphson nor the secant method are guaranteed to
converge to a root. It is perfectly possible that the iterates of the method
will simply cycle through a number of points (periodicity) or fluctuate
wildly (chaos).

How it works...
The Newton-Raphson method for a function f(x) with derivative f'(x) and initial
approximation x0 is defined iteratively using the formula

for each integer i ≥ 0. Geometrically, this formula arises by considering the direction in
which the gradient is negative (so the function is decreasing) if f(xi) > 0 or positive (so the
function is increasing) if f(xi) < o.

The secant method is based on the Newton-Raphson method, but replaces the first
derivative by the approximation

Calculus and Differential Equations Chapter 3

[71]

when xi - xi-1 is sufficiently small, which occurs if the method is converging, then this is a
good approximation. The price paid for not requiring the derivative of the function f is that
we require an additional initial guess to start the method. The formula for the method is
given by

Generally speaking, if either method is given an initial guess (guesses for the secant
method) that is sufficiently close to a root, then the method will converge to that root. The
Newton-Raphson method can also fail if the derivative is zero at one of the iterations, in
which case the formula is not well defined.

There's more...
The methods mentioned in this recipe are general purpose methods, but there are others
that may be faster or more accurate in some circumstances. Broadly speaking, root finding
algorithms fall into two categories: algorithms that use information about the function's
gradient at each iterate (Newton-Raphson, secant, Halley) and algorithms that require
bounds on the location of a root (bisection method, regula-falsi, Brent). The algorithms
discussed so far are of the first kind, and while generally quite fast, they may fail to
converge.

The second kind of algorithms are those for which a root is known to exist within a
specified interval a ≤ x ≤ b. We can check whether a root lies within such an interval by
checking that f(a) and f(b) have different signs, that is, one of f(a) < 0 < f(b) or f(b) < 0 < f(a) is
true. (Provided, of course, that the function is continuous, which tends to be the case in
practice.) The most basic algorithm of this kind is the bisection algorithm, which repeatedly
bisects the interval until a sufficiently good approximation to the root is found. The basic
premise is to split the interval between a and b at the mid-point and select the interval in
which the function changes sign. The algorithm repeats until the interval is very small. The
following is a rudimentary implementation of this algorithm in Python:

from math import copysign

def bisect(f, a, b, tol=1e-5):
 """Bisection method for root finding"""
 fa, fb = f(a), f(b)
 assert not copysign(fa, fb) == fa, "Function must change signs"
 while (b - a) > tol:
 m = (b - a)/2 # mid point of the interval

Calculus and Differential Equations Chapter 3

[72]

 fm = f(m)
 if fm == 0:
 return m
 if copysign(fm, fa) == fm: # fa and fm have the same sign
 a = m
 fa = fm
 else: # fb and fm have the same sign
 b = m
 return a

This method is guaranteed to converge, since at each step the distance b-a is halved.
However, it is possible that the method will require more iterations than Newton-Raphson
or the secant method. A version of the bisection method can also be found in optimize.
This version is implemented in C and is considerably more efficient that the version
presented here, but the bisection method is not the fastest method in most cases.

Brent's method is an improvement on the bisection method, and is available in
the optimize module as brentq. It uses a combination of bisection and interpolation to
quickly find the root of an equation:

optimize.brentq(f, 1.0, 3.0) # 1.9999999999998792

It is important to note that the techniques that involve bracketing (bisection, regula-falsi,
Brent) cannot be used to find the root functions of a complex variable, whereas those
techniques that do not use bracketing (Newton, secant, Halley) can.

Integrating functions numerically using
SciPy
Integration can be interpreted as the area that lies between a curve and the x axis, signed
according to whether this area is above or below the axis. Some integrals cannot be
computed directly, using symbolic means, and instead have to be approximated
numerically. One classic example of this is the Gaussian error function, which was
mentioned in the Basic mathematical functions section in Chapter 1, Basic Packages, Functions,
and Concepts. This is defined by the formula

and the integral that appears here cannot be evaluated symbolically.

Calculus and Differential Equations Chapter 3

[73]

In this recipe, we will see how to use the numerical integration routines in the SciPy
package to compute the integral of a function.

Getting ready
We use the scipy.integrate module, which contains several routines for computing
numerical integrals. We import this module as follows:

from scipy import integrate

How to do it...
The following steps describe how to numerically integrate a function using SciPy:

We evaluate the integral that appears in the definition of the error function at the1.
value x = 1. For this, we need to define the integrand (the function that appears
inside the integral) in Python:

def erf_integrand(t):
 return np.exp(-t**2)

There are two main routines in scipy.integrate for performing numerical
integration (quadrature) that can be used. The first is the quad function, which
uses QUADPACK to perform the integration, and the second is quadrature.

The quad routine is a general-purpose integration tool. It expects three2.
arguments, which are the function to be integrated (erf_integrand), the lower
limit (-1.0), and the upper limit (1.0):

val_quad, err_quad = integrate.quad(erf_integrand, -1.0, 1.0)
(1.493648265624854, 1.6582826951881447e-14)

The first returned value is the value of the integral and the second is an estimate
for the error.

Repeating the computation with the quadrature routine, we get the following.3.
The arguments are the same as for the quad routine:

val_quadr, err_quadr = integrate.quadrature(erf_integrand, -1.0,
 1.0)
(1.4936482656450039, 7.459897144457273e-10)

Calculus and Differential Equations Chapter 3

[74]

The output is the same format as the code, with the value of the integral and then an
estimate of the error. Notice that the error is larger for the quadrature routine. This is a
result of the method terminating once the estimated error falls below a given tolerance,
which can be modified when the routine is called.

How it works...
Most numerical integration techniques follow the same basic procedure. First, we choose
points xi for i = 1, 2,…, n in the region of integration, and then use these values and the
values f(xi) to approximate the integral. For example, with the trapezium rule, we
approximate the integral by

where a < x1 < x2 < … < xn-1 < b and h is the (common) difference between adjacent xi values,
including the end points a and b. This can be implemented in Python as follows:

def trapezium(func, a, b, n_steps):
 """Estimate an integral using the trapezium rule"""
 h = (b - a) / n_steps
 x_vals = np.arange(a + h, b, h)
 y_vals = func(x_vals)
 return 0.5*h*(func(a) + func(b) + 2.*np.sum(y_vals))

The algorithms used by quad and quadrature are far more sophisticated than this. Using
this function to approximate the integral of erf_integrand using trapezium yields a
result of 1.4936463036001209, which agrees with the approximations from the quad and
quadrature routines to 5 decimal places.

The quadrature routine uses a fixed tolerance Gaussian quadrature, whereas
the quad routine uses an adaptive algorithm implemented in the Fortran library
QUADPACK routines. Timing both routines, we find that the quad routine is
approximately 5 times faster than the quadrature routine for the problem described in the
recipe. The quad routine executes in approximately 27 µs, averaged over 1 million
executions, while the quadrature routine executes in approximately 134 µs. (Your results
may differ depending on your system.)

Calculus and Differential Equations Chapter 3

[75]

There's more...
The routines mentioned in this section require the integrand function to be known, which is
not always the case. Instead, it might be the case that we know a number of pairs (x, y)
with y = f(x), but we don't know the function f to evaluate at additional points. In this case,
we can use one of the sampling quadrature techniques from scipy.integrate. If the
number of known points is very large and all points are equally spaced, we can use
Romberg integration for a good approximation of the integral. For this, we use
the romb routine. Otherwise, we can use a variant of the trapezium rule (as above) using
the trapz routine, or Simpson's rule using the simps routine.

Solving simple differential equations
numerically
Differential equations arise in situations where a quantity evolves, usually over time,
according to a given relationship. They are extremely common in engineering and physics,
and appear quite naturally. One of the classic examples of a (very simple) differential
equation is the law of cooling devised by Newton. The temperature of a body cools at a rate
proportional to the current temperature. Mathematically, this means that we can write the
derivative of the temperature T of the body at time t > 0 using the differential equation

where k is a positive constant that determines the rate of cooling. This differential equation
can be solved analytically by first "separating the variables" and then integrating and
rearranging. After performing this procedure, we obtain the general solution

where T0 is the initial temperature.

In this recipe, we will solve a simple ordinary differential equation numerically using
the solve_ivp routine from SciPy.

Calculus and Differential Equations Chapter 3

[76]

Getting ready
We will demonstrate the technique for solving a differential equation numerically in
Python using the cooling equation described previously since we can compute the true
solution in this case. We take the initial temperature to be T0 = 50 and k = 0.2. Let's also find
the solution for t values between 0 and 5.

A general (first order) differential equation has the form

where f is some function of t (the independent variable) and y (the dependent variable). In
this formula, T is the dependent variable and f(t, T) = -kt. The routines for solving
differential equations in the SciPy package require the function f and an initial value y0 and
the range of t values where we need to compute the solution. To get started, we need to
define our function f in Python and create the variables y0 and t range ready to be supplied
to the SciPy routine:

def f(t, y):
 return -0.2*y

t_range = (0, 5)

Next, we need to define the initial condition from which the solution should be found. For
technical reasons, the initial y values must be specified as a one-dimensional NumPy array:

T0 = np.array([50.])

Since, in this case, we already know the true solution, we can also define this in Python
ready to compare to the numerical solution that we will compute:

def true_solution(t):
 return 50.*np.exp(-0.2*t)

Calculus and Differential Equations Chapter 3

[77]

How to do it...
Follow these steps to solve a differential equation numerically and plot the solution along
with the error:

We use the solve_ivp routine from the integrate module in SciPy to solve the1.
differential equation numerically. We add a parameter for the maximum step
size, with a value of 0.1, so the solution is computed at a reasonable number of
points:

sol = integrate.solve_ivp(f, t_range, T0, max_step=0.1)

Next, we extract the solution values from the sol object returned from2.
the solve_ivp method:

t_vals = sol.t
T_vals = sol.y[0, :]

Next, we plot the solution on a set of axes as follows. Since we are also going to3.
plot the approximation error on the same figure, we create two subplots using
the subplots routine:

fig, (ax1, ax2) = plt.subplots(1, 2, tight_layout=True)
ax1.plot(t_vals, T_vals)
ax1.set_xlabel("t")
ax1.set_ylabel("T")
ax1.set_title("Solution of the cooling equation")

This plots the solution on a set of axes displayed in the left-hand side of Figure 3.1.

To do this, we need to compute the true solution at the points that we obtained4.
from the solve_ivp routine, and then calculate the absolute value of the
difference between the true and approximated solutions:

err = np.abs(T_vals - true_solution(t_vals))

Finally, on the right-hand side of Figure 3.1, we plot the error in the5.
approximation with a logarithmic scale on the y axis. We can then plot this on the
right-hand side with a logarithmic scale y axis using the semilogy plot
command as we saw in Chapter 2, Mathematical Plotting with Matplotlib:

ax2.semilogy(t_vals, err)
ax2.set_xlabel("t")
ax2.set_ylabel("Error")
ax2.set_title("Error in approximation")

Calculus and Differential Equations Chapter 3

[78]

The left-hand plot in Figure 3.1 shows decreasing temperature over time, while the right-
hand plot shows that the error increases as we move away from the known value given by
the initial condition:

Figure 3.1: Plot of the numerical solution to the cooling equation obtained using the solve_ivp routine with default settings

How it works...
Most methods for solving differential equations are "time-stepping" methods. The pairs (ti,
yi) are generated by taking small t steps and approximating the value of the function y. This
is perhaps best illustrated by Euler's method, which is the most basic time-stepping
method. Fixing a small step size h > 0, we form the approximation at the ith step using the
formula

Calculus and Differential Equations Chapter 3

[79]

starting from the known initial value y0. We can easily write a Python routine that performs
Euler's method as follows (there are, of course, many different ways to implement Euler's
method; this is a very simple example):

First, we set up the method by creating lists that will store the t values and y1.
values that we will return:

def euler(func, t_range, y0, step_size):
 """Solve a differential equation using Euler's method"""
 t = [t_range[0]]
 y = [y0]
 i = 0

Euler's method continues until we hit the end of the t range. Here, we use a2.
while loop to accomplish this. The body of the loop is very simple; we first
increment a counter i, and then append the new t and y values to their respective
lists:

 while t[i] < t_range[1]:
 i += 1
 t.append(t[i-1] + step_size) # step t
 y.append(y[i-1] + step_size*func(t[i-1], y[i-1])) # step y
 return t, y

The method used by the solve_ivp routine, by default, is the Runge-Kutta-Fehlberg
method (RK45), which has the ability to adapt the step size to ensure that the error in the
approximation stays within a given tolerance. This routine expects three positional
arguments: the function f, the t range on which the solution should be found, and the
initial y value (T0 in our example). Optional arguments can be provided to change the
solver, the number of points to compute, and several other settings.

The function passed to the solve_ivp routine must have two arguments as in the general
differential equation described in Getting ready section. The function can have additional
arguments, which can be provided using the args keyword for the solve_ivp routine, but
these must be positioned after the two necessary arguments. Comparing the euler routine
we defined earlier to the solve_ivp routine, both with a step size of 0.1, we find that the
maximum true error between the solve_ivp solution is in the order of 10-6, whereas
the euler solution only manages an error of 31. The euler routine is working, but the step
size is much too large to overcome the accumulating error.

Calculus and Differential Equations Chapter 3

[80]

The solve_ivp routine returns a solution object that stores information about the solution
that has been computed. Most important here are the t and y attributes, which contain
the t values on which the solution y is computed and the solution y itself. We used these
values to plot the solution we computed. The y values are stored in a NumPy array of
shape (n, N), where n is the number of components of the equation (here, 1), and N is the
number of points computed. The y values held in sol are stored in a two-dimensional
array, which in this case has 1 row and many columns. We use the slice y[0, :] to extract
this first row as a one-dimensional array that can be used to plot the solution in step 4.

We use a logarithmically scaled y axis to plot the error because what is interesting there is
the order of magnitude. Plotting it on a non-scaled y axis would give a line that is very close
to the x axis, which doesn't show the increase in the error as we move through the t values.
The logarithmically scaled y axis shows this increase clearly.

There's more...
The solve_ivp routine is a convenient interface for a number of solvers for differential
equations, the default being the Runge-Kutta-Fehlberg (RK45) method. The different
solvers have different strengths, but the RK45 method is a good general-purpose solver.

See also
For more detailed instructions on how to add subplots to a figure in Matplotlib, see
the Adding subplots recipe from Chapter 2, Mathematical Plotting with Matplotlib.

Solving systems of differential equations
Differential equations sometimes occur in systems consisting of two or more interlinked
differential equations. A classical example is a simple model of the populations of
competing species. This is a simple model of competing species labeled P (the
prey) and W (the predators) given by the following equations:

Calculus and Differential Equations Chapter 3

[81]

The first equation dictates the growth of the prey species P, which, without any predators,
would be exponential growth. The second equation dictates the growth of the predator
species W, which, without any prey, would be exponential decay. Of course, these two
equations are coupled; each population change depends on both populations. The predators
consume the prey at a rate proportional to the product of their two populations, and the
predators grow at a rate proportional to the relative abundance of prey (again the product
of the two populations).

In this recipe, we will will analyze a simple system of differential equations and use the
SciPy integrate module to obtain approximate solutions.

Getting ready
The tools for solving a system of differential equations using Python are the same as those
for solving a single equation. We again use the solve_ivp routine from the integrate
module in SciPy. However, this will only give us a predicted evolution over time with
given starting populations. For this reason, we will also employ some plotting tools from
Matplotlib to better understand the evolution.

How to do it...
The following steps walk through how to analyze a simple system of differential equations:

Our first task is to define a function that holds the system of equations. This1.
function needs to take two arguments as for a single equation, except the
dependent variable y (in the notation from the Solving simple differential equations
numerically recipe) will now be an array with as many elements as there are
equations. Here, there will be two elements. The function we need for the
example system in this recipe is as follows:

def predator_prey_system(t, y):
 return np.array([5*y[0] - 0.1*y[0]*y[1], 0.1*y[1]*y[0] -
 6*y[1]])

Calculus and Differential Equations Chapter 3

[82]

Now we have defined the system in Python, we can use the quiver routine from2.
Matplotlib to produce a plot that will describe how the populations will
evolve—given by the equations—at numerous starting populations. We first set
up a grid of points on which we will plot this evolution. It is a good idea to
choose a relatively small number of points for the quiver routine, otherwise it
becomes difficult to see details in the plot. For this example, we plot the
population values between 0 and 100:

p = np.linspace(0, 100, 25)
w = np.linspace(0, 100, 25)
P, W = np.meshgrid(p, w)

Now, we compute the values of the system at each of these pairs. Notice that3.
neither equation in the system is time-dependent (they are autonomous); the time
variable t is unimportant in the calculation. We supply the value 0 for the t
argument:

dp, dw = predator_prey_system(0, np.array([P, W]))

The variables dp and dw now hold the "direction" in which the population of P4.
and W will evolve, respectively, if we started at each point in our grid. We can
plot these directions together using the quiver routine
from matplotlib.pyplot:

fig, ax = plt.subplots()
ax.quiver(P, W, dp, dw)
ax.set_title("Population dynamics for two competing species")
ax.set_xlabel("P")
ax.set_ylabel("W")

Calculus and Differential Equations Chapter 3

[83]

Plotting the result of these commands now gives us Figure 3.2, which gives a
"global" picture of how solutions evolve:

Figure 3.2: A quiver plot showing the population dynamics of two competing species modeled by a system of differential equations

To understand a solution more specifically, we need some initial conditions so we
can use the solve_ivp routine described in the previous recipe.

Since we have two equations, our initial conditions will have two values. (Recall5.
in the Solving simple differential equations numerically recipe, we saw that the initial
condition provided to solve_ivp needs to be a NumPy array.) Let's consider the
the initial values P(0) = 85 and W(0) = 40. We define these in a NumPy array,
being careful to place them in the correct order:

initial_conditions = np.array([85, 40])

Now we can use solve_ivp from the scipy.integrate module. We need to6.
provide the max_step keyword argument to make sure that we have enough
points in the solution to give a smooth solution curve:

from scipy import integrate
sol = integrate.solve_ivp(predator_prey_system, (0., 5.),
 initial_conditions, max_step=0.01)

Calculus and Differential Equations Chapter 3

[84]

Let's plot this solution on our existing figure to show how this specific solution7.
relates to the direction plot we have already produced. We also plot the initial
condition at the same time:

ax.plot(initial_conditions[0], initial_conditions[1], "ko")
ax.plot(sol.y[0, :], sol.y[1, :], "k", linewidth=0.5)

The result of this is shown in Figure 3.3:

Figure 3.3: Solution trajectory plotted over a quiver plot showing the general behavior

How it works...
The method used for a system of ordinary differential equations is exactly the same as for a
single ordinary differential equation. We start by writing the system of equations as a single
vector differential equation,

that can then be solved using a time-stepping method as though y were a simple scalar
value.

Calculus and Differential Equations Chapter 3

[85]

The technique of plotting the directional arrows on a plane using the quiver routine is a
quick and easy way of learning how a system might evolve from a given state. The
derivative of a function represents the gradient of the curve (x, u(x)), and so a differential
equation describes the gradient of the solution function at position y and time t. A system
of equations describes the gradient of separate solution functions at a given position y and
time t. Of course, the position is now a two-dimensional point, so when we plot the
gradient at a point, we represent this as an arrow that starts at the point, in the direction of
the gradient. The length of the arrow represents the size of the gradient; the longer the
arrow, the "faster" the solution curve will move in that direction.

When we plot the solution trajectory on top of this direction field, we can see that the curve
(starting at the point) follows the direction indicated by the arrows. The behavior shown by
the solution trajectory is a limit cycle, where the solution for each variable is periodic as the
two species populations grow or decline. This description of the behavior is perhaps more
clear if we plot each population against time, as seen in Figure 3.4. What is not immediately
obvious from Figure 3.3 is that the solution trajectory loops around several times, but this is
clearly shown in Figure 3.4:

Figure 3.4: Plots of populations P and W against time. Both populations exhibit periodic behavior

Calculus and Differential Equations Chapter 3

[86]

There's more...
The technique of analyzing a system of ordinary differential equations by plotting the
variables against one another, starting at various initial conditions, is called phase space
(plane) analysis. In this recipe, we used the quiver plotting routine to quickly generate an
approximation of the phase plane for the system of differential equations. By analyzing the
phase plane of a system of differential equations, we can identify different local and global
characteristics of the solution, such as limit cycles.

Solving partial differential equations
numerically
Partial differential equations are differential equations that involve partial derivatives of
functions in two or more variables, as opposed to ordinary derivatives in only a single
variable. Partial differential equations is a vast topic, and could easily fill a series of books.
A typical example of a partial differential equation is the (one-dimensional) heat equation

where α is a positive constant and f(t, x) is a function. The solution to this partial differential
equation is a function u(t, x), which represents the temperature of a rod, occupying the x
range 0 ≤ x ≤ L, at a given time t > 0. To keep things simple, we will take f(t, x) = 0, which
amounts to saying that no heating/cooling is applied to the system, α = 1, and L = 2. In
practice, we can rescale the problem to fix the constant α, so this is not a restrictive
problem. In this example, we will use the boundary conditions

which are equivalent to saying that the ends of the rod are held at the constant temperature
0. We will also use the initial temperature profile

This initial temperature profile describes a smooth curve between the values of 0 and 2, that
peaks at a value of 3, which might be the result of heating the rod at the center to a
temperature of 3.

Calculus and Differential Equations Chapter 3

[87]

We're going to use a method called finite differences, where we divide the rod into a number
of equal segments and the time range into a number of discrete steps. We then compute
approximations for the solution at each of the segments and each time step.

In this recipe, we will use finite differences to solve a simple partial differential equation.

Getting ready
For this recipe, we will need the NumPy package and Matplotlib package, imported as np
and plt as usual. We also need to import the mplot3d module from mpl_toolkits since
we will be producing a 3D plot:

from mpl_toolkits import mplot3d

We will also need some modules from the SciPy package.

How to do it...
In the following steps, we work through solving the heat equation using finite differences:

Let's first create variables that represent the physical constraints of the system:1.
the extent of the bar and the value of α:

alpha = 1
x0 = 0 # Left hand x limit
xL = 2 # Right hand x limit

We first divide the x range into N equal intervals—we take N = 10 for this2.
example—using N+1 points. We can use the linspace routine from NumPy to
generate these points. We also need the common length of each interval h:

N = 10
x = np.linspace(x0, xL, N+1)
h = (xL - x0) / N

Next, we need to set up the steps in the time direction. We take a slightly3.
different approach here; we set the time step size k and the number of steps
(implicitly making the assumption that we start at time 0):

k = 0.01
steps = 100
t = np.array([i*k for i in range(steps+1)])

Calculus and Differential Equations Chapter 3

[88]

In order for the method to behave properly, we must have4.

otherwise the system can become unstable. We store the left-hand side of this in a
variable for use in Step 4, and use an assertion to check that this inequality holds:

r = alpha*k / h**2
assert r < 0.5, f"Must have r < 0.5, currently r={r}"

Now we can construct a matrix that holds the coefficients from the finite5.
difference scheme. To do this, we use the diags routine from the scipy.sparse
module to create a sparse, tridiagonal matrix:

from scipy import sparse
diag = [1, *(1-2*r for _ in range(N-1)), 1]
abv_diag = [0, *(r for _ in range(N-1))]
blw_diag = [*(r for _ in range(N-1)), 0]

A = sparse.diags([blw_diag, diag, abv_diag], (-1, 0, 1),
shape=(N+1,
 N+1), dtype=np.float64, format="csr")

Next, we create a blank matrix that will hold the solution:6.

u = np.zeros((steps+1, N+1), dtype=np.float64)

We need to add the initial profile to the first row. The best way to do this is to7.
create a function that holds the initial profile and store the result of evaluating
this function on the x array in the matrix u that we just created:

def initial_profile(x):
 return 3*np.sin(np.pi*x/2)

u[0, :] = initial_profile(x)

Now we can simply loop through each step, computing the next row of the8.
matrix u by multiplying A and the previous row:

for i in range(steps):
 u[i+1, :] = A @ u[i, :]

Calculus and Differential Equations Chapter 3

[89]

Finally, to visualize the solution we have just computed, we can plot the solution9.
as a surface using Matplotlib:

X, T = np.meshgrid(x, t)
fig = plt.figure()
ax = fig.add_subplot(projection="3d")

ax.plot_surface(T, X, u, cmap="hot")
ax.set_title("Solution of the heat equation")
ax.set_xlabel("t")
ax.set_ylabel("x")
ax.set_zlabel("u")

The result of this is the surface plot shown in Figure 3.5:

Figure 3.5: Surface plot of the solution of the heat equation over the range 0 ≤ x ≤ 2 computed using the finite difference method with 10 mesh points

Calculus and Differential Equations Chapter 3

[90]

How it works...
The finite difference method works by replacing each of the derivatives with a simple
fraction that involves only the value of the function, which we can estimate. To implement
this method, we first break down the spatial range and time range into a number of discrete
intervals, separated by mesh points. This process is called discretization. Then we use the
differential equation and the initial conditions and boundary conditions to form successive
approximations, in a manner very similar to the time-stepping methods used by
the solve_ivp routine in the Solving differential equations numerically recipe.

In order to solve a partial differential equation such as the heat equation, we need at least
three pieces of information. Usually, for the heat equation, this will come in the form
of boundary conditions for the spatial dimension, which tell us what the behavior is at either
end of the rod, and initial conditions for the time dimension, which is the initial temperature
profile over the rod.

The finite difference scheme described previously is usually referred to as the forward time
central spatial (FTCS) scheme, since we use the forward finite difference to estimate the time
derivative and the central finite difference to estimate the (second order) spatial derivative.
The formulas for these finite differences are given by

and

Substituting these approximations into the heat equation, and using the
approximation ui

j for the value of u(tj, xi) after j time steps at the i spatial point, we get

which can be rearranged to obtain the formula

Calculus and Differential Equations Chapter 3

[91]

Roughly speaking, this equation says that the next temperature at a given point depends on
the surrounding temperatures at the previous time. This also shows why the condition on
the r value is necessary; if the condition does not hold, the middle term on the right-hand
side will be negative.

We can write this system of equations in matrix form,

where uj is a vector containing the approximation ui
j and matrix A, which was defined in

step 4. This matrix is tridiagonal, which means the non-zero entries appear on, or adjacent
to, the leading diagonal. We use the diag routine from the SciPy sparse module, which is
a utility for defining these kinds of matrices. This is very similar to the process described in
the Solving equations recipe of this chapter. The first and last row of this matrix have zeros,
except in the top left and bottom right, respectively, that represent the (non-changing)
boundary conditions. The other rows have coefficients that are given by the finite difference
approximations for the derivatives on either side of differential equation. We first create the
diagonal entries and the entries above and below the diagonal, and then we use
the diags routine to create the sparse matrix. The matrix should have N+1 rows and
columns, to match the number of mesh points, and we set the data type as double-precision
floats and CSR format.

The initial profile gives us the vector u
0
, and from this first point, we can compute each

subsequent time step by simply performing a matrix multiplication, as we saw in step 7.

There's more...
The method we describe here is rather crude since the approximation can become unstable,
as we mentioned, if the relative sizes of time steps and spatial steps are not carefully
controlled. This method is explicit since each time step is computed explicitly using only
information from the previous time step. There are also implicit methods, which give a
system of equations that can be solved to obtain the next time step. Different schemes have
different characteristics in terms of the stability of the solution.

When the function f(t, x) is not 0, we can easily accommodate this change by instead using
the assignment

Calculus and Differential Equations Chapter 3

[92]

where the function is suitably vectorized to make this formula valid. In terms of the code
used to solve the problem, we need only include the definition of the function and then
change the loop of the solution as follows:

for i in range(steps):
 u[i+1, :] = A @ u[i, :] + f(t[i], x)

Physically, this function represents an external heat source (or sink) at each point along the
rod. This may change over time, which is why, in general, the function should have both t
and x as arguments (though they need not both be used).

The boundary conditions we gave in this example represent the ends of the rod being kept
at a constant temperature of 0. These kinds of boundary conditions are sometimes
called Dirichlet boundary conditions. There are also Neumann boundary conditions, where
the derivative of the function u is given at the boundary. For example, we might have been
given the boundary conditions

which could be interpreted physically as the ends of the rod being insulated so that heat
cannot escape through the end points. For such boundary conditions we need to modify the
matrix A slightly, but otherwise the method remains the same. Indeed, inserting an
imaginary x value to the left of the boundary and using the backward finite difference at
the left-hand boundary (x = 0), we obtain

Using this in the second order finite difference approximation, we get

which means that the first row of our matrix should contain 1-r, then r, followed by 0.
Using a similar computation for the right-hand limit gives a similar final row of the matrix:

diag = [1-r, *(1-2*r for _ in range(N-1)), 1-r]
abv_diag = [*(r for _ in range(N))]
blw_diag = [*(r for _ in range(N))]

A = sparse.diags([blw_diag, diag, abv_diag], (-1, 0, 1), shape=(N+1, N+1),
dtype=np.float64, format="csr")

Calculus and Differential Equations Chapter 3

[93]

For more complex problems involving partial differential equations, it is probably more
appropriate to use a finite elements solver. Finite element methods use a more sophisticated
approach for computing solutions than partial differential equations, which are generally
more flexible than the finite difference method we saw in this recipe. However, this comes
at the cost of requiring more setup that relies on more advanced mathematical theory. On
the other hand, there is a Python package for solving partial differential equations using
finite element methods such as FEniCS (fenicsproject.org). The advantage of using a
package such as FEniCS is that they are usually tuned for performance, which is important
when solving with complex problems to high accuracy.

See also
The FEniCS documentation gives a good introduction to the finite element method and a
number of examples of using the package to solve various classic partial differential
equations. A more comprehensive introduction to the method and the theory is given in the
following book:

Johnson, C. (2009). Numerical solution of partial differential equations by the finite
element method. Mineola, N.Y.: Dover Publications.

For more details on how to produce three-dimensional surface plots using Matplotlib, see
the Surface and contour plots recipe from Chapter 2, Mathematical Plotting with Matplotlib.

Using discrete Fourier transforms for signal
processing
One of the most useful tools coming from calculus is the Fourier transform. Roughly
speaking, the Fourier transform changes the representation, in a reversible way, of certain
functions. This change of representation is particularly useful in dealing with signals
represented as a function of time. In this instance, the Fourier transform takes the signal
and represents it as a function of frequency; we might describe this as transforming from
signal space to frequency space. This can be used to identify the frequencies present in a
signal for identification and other processing. In practice, we will usually have a discrete
sample of a signal, so we have to use the discrete Fourier transform to perform this kind of
analysis. Fortunately, there is a computationally efficient algorithm, called the fast Fourier
transform (FFT), for applying the discrete Fourier transform to a sample.

https://fenicsproject.org

Calculus and Differential Equations Chapter 3

[94]

We will follow a common process for filtering a noisy signal using FFT. The first step is to
apply the FFT and use the data to compute the power spectral density of the signal. Then
we identify the peaks and filter out the frequencies that do no contribute a sufficiently large
amount to the signal. Then we apply the inverse FFT to obtain the filtered signal.

In this recipe, we use the FFT to analyze a sample of a signal and identify the frequencies
present and clean the noise from the signal.

Getting ready
For this recipe, we will only need the NumPy and Matplotlib packages imported as np
and plt, as usual.

How to do it...
Follow these instructions to use the FFT to process a noisy signal:

We define a function that will generate our underlying signal:1.

def signal(t, freq_1=4.0, freq_2=7.0):
 return np.sin(freq_1 * 2 * np.pi * t) + np.sin(freq_2 * 2 *
 np.pi * t)

Next, we create our sample signal by adding some Gaussian noise to the2.
underlying signal. We also create an array that holds the true signal at the
sample t values for convenience later:

state = np.random.RandomState(12345)
sample_size = 2**7 # 128
sample_t = np.linspace(0, 4, sample_size)
sample_y = signal(sample_t) + state.standard_normal(sample_size)
sample_d = 4./(sample_size - 1) # Spacing for linspace array
true_signal = signal(sample_t)

We use the fft module from NumPy to compute discrete Fourier transforms.3.
We import this from NumPy before we start our analysis:

from numpy import fft

Calculus and Differential Equations Chapter 3

[95]

To see what the noisy signal looks like, we can plot the sample signal points with4.
the true signal superimposed:

fig1, ax1 = plt.subplots()
ax1.plot(sample_t, sample_y, "k.", label="Noisy signal")
ax1.plot(sample_t, signal(sample_t), "k--", label="True signal")

ax1.set_title("Sample signal with noise")
ax1.set_xlabel("Time")
ax1.set_ylabel("Amplitude")
ax1.legend()

The plot created here is shown in Figure 3.6. As we can see, the noisy signal does
not bear much resemblance to the true signal (shown with the dashed line):

Figure 3.6: Noisy signal sample with true signal superimposed

Now, we will use the discrete Fourier transform to extract the frequencies that5.
are present in the sample signal. The fft routine in the fft module performs the
FFT (discrete Fourier transform):

spectrum = fft.fft(sample_y)

Calculus and Differential Equations Chapter 3

[96]

The fft module provides a routine for constructing the appropriate frequency6.
values called fftfreq. For convenience, we also generate an array containing
the integers at which the positive frequencies occur:

freq = fft.fftfreq(sample_size, sample_d)
pos_freq_i = np.arange(1, sample_size//2, dtype=int)

Next, compute the power spectral density (PSD) of the signal as follows:7.

psd = np.abs(spectrum[pos_freq_i])**2 + np.abs(spectrum[-
 pos_freq_i])**2

Now, we can plot the PSD of the signal for the positive frequencies and use this8.
plot to identify the frequencies:

fig2, ax2 = plt.subplots()
ax2.plot(freq[pos_freq_i], psd)
ax2.set_title("PSD of the noisy signal")
ax2.set_xlabel("Frequency")
ax2.set_ylabel("Density")

The result can be seen in Figure 3.7. We can see in this diagram that there are
spikes at roughly 4 and 7, which are the frequencies of the signal that we defined
earlier:

Figure 3.7: Power spectral density of a signal generated using the FFT

Calculus and Differential Equations Chapter 3

[97]

We can identify these two frequencies to try and reconstruct the true signal from9.
the noisy sample. All of the minor peaks that appear are not larger than 10,000,
so we can use this as a cut-off value for the filter. Let's now extract from the list of
all positive frequency indices the (hopefully 2) indices that correspond to the
peaks above 10,000 in the PSD:

filtered = pos_freq_i[psd > 1e4]

Next, we create a new, clean spectrum that contains only the frequencies that we10.
have extracted from the noisy signal. We do this by creating an array that
contains only 0, and then copying the value of spectrum from those indices that
correspond to the filtered frequencies and the negatives thereof:

new_spec = np.zeros_like(spectrum)
new_spec[filtered] = spectrum[filtered]
new_spec[-filtered] = spectrum[-filtered]

Now, we use the inverse FFT (using the ifft routine) to transform this clean11.
spectrum back to the time domain of the original sample. We take the real part
using the real routine from NumPy to eliminate the erroneous imaginary parts:

new_sample = np.real(fft.ifft(new_spec))

Finally, we plot this filtered signal over the true signal and compare the results:12.

fig3, ax3 = plt.subplots()
ax3.plot(sample_t, true_signal, color="#8c8c8c", linewidth=1.5,
label="True signal")
ax3.plot(sample_t, new_sample, "k--", label="Filtered signal")
ax3.legend()
ax3.set_title("Plot comparing filtered signal and true signal")
ax3.set_xlabel("Time")
ax3.set_ylabel("Amplitude")

The result of step 12 is shown in Figure 3.8. We can see that the filtered signal closely
matches the true signal, except for some small discrepancies:

Calculus and Differential Equations Chapter 3

[98]

Figure 3.8: Plot comparing the filtered signal generated using FFTs and filtering to the true signal

How it works...
The Fourier transform of a function f(t) is given by the integral

and the discrete Fourier transform is given by

Here, the fk values are the sample values as complex numbers. The discrete Fourier
transform can be computed using the preceding formula, but in practice this is not efficient.
Computing using this formula is O(N2). The FFT algorithm improves the complexity to O(N
log N), which is significantly better. The book Numerical Recipes (full bibliographic details
given in the Further reading section) gives a very good description of the FFT algorithm and
the discrete Fourier transform.

Calculus and Differential Equations Chapter 3

[99]

We will apply the discrete Fourier transform to a sample generated from a known signal
(with known frequency modes) so we can see the connection between the results we obtain
and the original signal. To keep this signal simple, we created a signal that has only two
frequency components with values 4 and 7. From this signal, we generated the sample that
we analyzed. Because of the way the FFT works, it is best if the sample has a size that is a
power of 2; if this isn't the case, we can pad the sample with zero elements to make this the
case. We add some Gaussian noise to the sample signal, which takes the form of a normally
distributed random number.

The array returned by the fft routine contains N+1 elements, where N is the sample size.
The element that index 0 corresponds to is the 0 frequency, or DC shift. The
next N/2 elements are the values corresponding to the positive frequencies, and the
final N/2 elements are the values corresponding to the negative frequencies. The actual
values of the frequencies are determined by the number of sampled points N and the
sample spacing, which, in this example, is stored in sample_d.

The power spectral density at the frequency ω is given by the formula

where H(ω) represents the Fourier transform of the signal at frequency ω. The power
spectral density measures the contribution of each frequency to the overall signal, which is
why we see peaks at approximately 4 and 7. Since Python indexing allows us to use
negative indices for elements starting from the end of the sequence, we can use the positive
index array to get both the positive and negative frequency elements from spectrum.

In step 9, we extracted the indices of the two frequencies that peak above 10,000 on the
plot. The frequencies that correspond to these indices are 3.984375 and 6.97265625, which
are not exactly equal to 4 and 7, but are very close. The reason for this discrepancy is the
fact that we have sampled a continuous signal using a finite number of points. (Using more
points will, of course, yield better approximations.)

In step 11, we took the real part of the data returned from the inverse FFT. This is because,
technically speaking, the FFT works with complex data. Since our data contained only real
data, we expect that this new signal should also contain only real data. However, there will
be some small errors made, meaning that the results are not totally real. We can remedy
this by taking the real part of the inverse FFT. This is appropriate because we can see that
the imaginary parts are very small.

We can see in Figure 3.8 that the filtered signal very closely matches the true signal, but not
exactly. This is because, as mentioned previously, we are approximating a continuous
signal with a relatively small sample.

Calculus and Differential Equations Chapter 3

[100]

There's more...
Signal processing in a production setting would probably make use of a specialized
package, such as the signal module from scipy, or some lower-level code or hardware to
perform filtering or cleaning of a signal. This recipe should be taken as more of a
demonstration of the use of FFT as a tool for working with data sampled from some kind of
underlying periodic structure (the signal). FFTs are useful for solving partial differential
equations, such as the heat equation seen in the Solving partial differential equations
numerically recipe.

See also
More information about random numbers and the normal distribution (Gaussian) can be
found in Chapter 4, Working with Randomness and Probability.

Further reading
Calculus is a very important part of every undergraduate mathematics course. There are a
number of excellent textbooks on calculus, including the classic textbook by Spivak and the
more comprehensive course by Adams and Essex:

Spivak, M. (2006). Calculus. 3rd ed. Cambridge: Cambridge University Press
Adams, R. and Essex, C. (2018). Calculus: A Complete Course. 9th ed. Don Mills, Ont:
Pearson.Guassian

A good source for numerical differentiation and integration is the classic Numerical
Recipes book, which gives a comprehensive description of how to solve many
computational problems in C++, including a summary of the theory:

Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (2007). Numerical recipes: The
Art of Scientific Computing. 3rd ed. Cambridge: Cambridge University Press

4
Working with Randomness and

Probability
In this chapter, we will discuss randomness and probability. We will start by briefly
exploring the fundamentals of probability by selecting elements from a set of data. Then,
we will learn how to generate (pseudo) random numbers using Python and NumPy, and
how to generate samples according to a specific probability distribution. We will conclude
the chapter by looking at a number of advanced topics covering random processes and
Bayesian techniques, and using Markov chain Monte Carlo methods to estimate parameters
on a simple model.

Probability is a quantification of the likelihood of a specific event occurring. We use
probabilities intuitively all of the time, although sometimes the formal theory can be quite
counterintuitive. Probability theory aims to describe the behavior of random variables, whose
value is not known, but where the probabilities of the value of this random variable taking
some (range of) values is known. These probabilities are usually in the form of one of
several probability distributions. Arguably, the most famous such probability distribution
is normal distribution which, for example, can describe the spread of a certain characteristic
over a large population.

We will see probability again in a more applied setting in Chapter 6, Working with Data and
Statistics, where we discuss statistics. Here, we will put probability theory to use to quantify
errors and build a systematic theory of analyzing data.

In this chapter, we will cover the following recipes:

Selecting items at random
Generating random data
Changing the random number generator
Generating normally distributed random numbers

Working with Randomness and Probability Chapter 4

[102]

Working with random processes
Analyzing conversion rates with Bayesian techniques
Estimating parameters with Monte Carlo simulations

Technical requirements
For this chapter, we require the standard scientific Python packages, NumPy, Matplotlib,
and SciPy. We will also require the PyMC3 package for the final recipe. You can install this
using your favorite package manager, such as pip:

python3.8 -m pip install pymc3

This command will install the most recent version of PyMC3, which, at the time of writing,
was 3.9.2. This package provides facilities for probabilistic programming, which involves
performing many calculations driven by randomly generated data to understand the likely
distribution of a solution to a problem.

The code for this chapter can be found in the Chapter 04 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2004.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​2OP3FAo.

Selecting items at random
At the core of probability and randomness is the idea of selecting an item from some kind
of collection. As we know, the probability of selecting an item from a collection quantifies
the likelihood of that item being selected. Randomness describes the selection of items from
a collection according to the probabilities without any additional bias. The opposite of a
random selection might be described as a deterministic selection. In general, it is very
difficult to replicate a purely random process using a computer, because computers and
their processing are inherently deterministic. However, we can generate sequences of
pseudo-random numbers that, when properly constructed, demonstrate a reasonable
approximation of randomness.

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2004
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo
https://bit.ly/2OP3FAo

Working with Randomness and Probability Chapter 4

[103]

In this recipe, we will select items from a collection and learn some of the key terminology
associated with probability and randomness that we will need throughout this chapter.

Getting ready
The Python Standard Library contains a module for generating (pseudo) random numbers
called random, but in this recipe, and throughout this chapter, we will instead use the
NumPy random module. The routines in the NumPy random module can be used to
generate arrays of random numbers and are slightly more flexible than their standard
library counterparts. As usual, we import NumPy under the alias np.

Before we can proceed, we need to fix some terminology. A sample space is a set (a collection
with no repeated elements), and an event is a subset of the sample space. The probability that
an event A occurs is denoted as P(A), and is a number between 0 and 1. A probability of 0
indicates that the event can never occur, while a probability of 1 indicates that an event will
certainly occur. The probability of the whole sample space must be 1.

When the sample space is discrete, then probabilities are just numbers between 0 and 1
associated with each of the elements, where the sum of all these numbers is 1. This gives
meaning to the probability of selecting a single item (an event consisting of a single
element) from a collection. We will consider methods for selecting items from a discrete
collection here and deal with the continuous case in the Generating normally distributed
random numbers recipe.

How to do it...
Perform the following steps to select items at random from a container:

The first step is to set up the random number generator. For the moment, we will1.
use the default random number generator for NumPy, which is recommended in
most cases. We can do this by calling the default_rng routine from the
NumPy random module, which will return an instance of a random number
generator. We will usually call this function without a seed, but for this recipe,
we will add the seed 12345 so that our results are repeatable:

rng = np.random.default_rng(12345)
changing seed for repeatability

Working with Randomness and Probability Chapter 4

[104]

Next, we need to create the data and probabilities that we will select from. This2.
step can be skipped if you already have the data stored or if you want to select
elements with equal probabilities:

data = np.arange(15)
probabilities = np.array(
 [0.3, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.025,
 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025]
)

As a quick sanity test, we can use an assertion to check that these probabilities do
indeed sum to 1:

assert round(sum(probabilities), 10) == 1.0, \
 "Probabilities must sum to 1"

Now, we can use the choice method on the random number generator, rng, to3.
select the samples from data according to the probabilities just created. For this
selection, we want to turn the replacement on, so calling the method multiple
times can select from the whole of data:

selected = rng.choice(data, p=probabilities, replace=True)
0

To select multiple items from data, we can also supply the size argument,4.
which specifies the shape of the array to be selected. This plays the same role as
the shape keyword argument to many of the other NumPy array creation
routines. The argument given to size can be either an integer or a tuple of
integers:

selected_array = rng.choice(data, p=probabilities, replace=True,
size=(5, 5))
#array([[1, 6, 4, 1, 1],
[2, 0, 4, 12, 0],
[12, 4, 0, 1, 10],
[4, 1, 5, 0, 0],
[0, 1, 1, 0, 7]])

Working with Randomness and Probability Chapter 4

[105]

How it works...
The default_rng routine creates a new pseudo random number generator (PRNG)
instance (with or without a seed) that can be used to generate random numbers or, as we
saw in the recipe, select items at random from predefined data. NumPy also has an implicit
state-based interface for generating random numbers using routines directly from
the random module. However, it is generally advisable to create the generator explicitly,
using default_rng or create a Generator instance yourself. Being more explicit in this
way is more Pythonic, and should lead to more reproducible results (in some sense).

A seed is a value that is passed to a random number generator in order to generate the
values. The generator generates a sequence of numbers in a completely deterministic way
based only on the seed. This means that two instances of the same PRNGs provided with
the same seed will generate the same sequence of random numbers. If no seed is provided,
the generators typically produce a seed that depends on the user's system.

The Generator class from NumPy is a wrapper around a low-level pseudo random bit
generator, which is where the random numbers are actually generated. In recent versions of
NumPy, the default PRNG algorithm is the 128-bit permuted congruential generator. By
contrast, Python's built-in random module uses a Mersenne Twister PRNG. More
information about the different options for PRNG algorithms is given in the Changing the
random number generator recipe.

The choice method on a Generator instance performs selections according to random
numbers generated by the underlying BitGenerator. The optional p keyword argument
specifies the probability associated with each item from the data provided. If this argument
isn't provided, then a uniform probability is assumed, where each item has equal probability
of being selected. The replace keyword argument specifies whether selections should be
made with or without a replacement. We turned replacement on so that the same element
can be selected more than once. The choice method uses the random numbers given by
the generator to make the selections, which means that two PRNGs of the same type using
the same seed will select the same items when using the choice method.

Working with Randomness and Probability Chapter 4

[106]

There's more...
The choice method can also be used to create random samples of a given size by
passing replace=False as an argument. This guarantees the selection of distinct items
from the data, which is good for generating a random sample. This might be used, for
example, to select users to test a new version of an interface from the whole group of users;
most sample statistical techniques rely on randomly selected samples.

Generating random data
Many tasks involve generating large quantities of random numbers, which, in their most
basic form, are either integers or floating-point numbers (double precision) lying in the
range 0 ≤ x < 1. Ideally, these numbers should be selected uniformly, so that if we draw a
large quantity of such numbers, they should be distributed roughly evenly across the
range 0 ≤ x < 1.

In this recipe, we will see how to generate large quantities of random integers and floating-
point numbers using NumPy, and show the distribution of these numbers using a
histogram.

Getting ready
Before we start, we need to import the default_rng routine from the NumPy random
module and create an instance of the default random number generator to use in the recipe:

from numpy.random import default_rng
rng = default_rng(12345) # changing seed for reproducibility

We have discussed this process in the Selecting items at random recipe.

We also import the Matplotlib pyplot module under the alias plt.

Working with Randomness and Probability Chapter 4

[107]

How to do it...
Perform the following steps to generate uniform random data and plot a histogram to
understand its distribution:

To generate random floating-point numbers between 0 and 1, including 0 but not1.
1, we use the random method on the rng object:

random_floats = rng.random(size=(5, 5))
array([[0.22733602, 0.31675834, 0.79736546, 0.67625467,
0.39110955],
[0.33281393, 0.59830875, 0.18673419, 0.67275604,
0.94180287],
[0.24824571, 0.94888115, 0.66723745, 0.09589794,
0.44183967],
[0.88647992, 0.6974535 , 0.32647286, 0.73392816,
0.22013496],
[0.08159457, 0.1598956 , 0.34010018, 0.46519315,
0.26642103]])

To generate random integers, we use the integers method on the rng object.2.
This will return integers in the specified range:

random_ints = rng.integers(1, 20, endpoint=True, size=10)
array([12, 17, 10, 4, 1, 3, 2, 2, 3, 12])

To examine the distribution of the random floating-point numbers, we first need3.
to generate a large array of random numbers, just as we did in Step 1. While this
is not strictly necessary, a larger sample will be able to show the distribution
more clearly. We generate these numbers as follows:

dist = rng.random(size=1000)

To show the distribution of the numbers we have generated, we plot a4.
histogram of the data:

fig, ax = plt.subplots()
ax.hist(dist)
ax.set_title("Histogram of random numbers")
ax.set_xlabel("Value")
ax.set_ylabel("Density")

Working with Randomness and Probability Chapter 4

[108]

The resulting plot is shown in Figure 4.1. As we can see, the data is roughly evenly
distributed across the whole range:

Figure 4.1: Histogram of randomly generated random numbers between 0 and 1

How it works...
The Generator interface provides three simple methods for generating basic random
numbers, not including the choice method that we discussed in the Selecting items at
random recipe. In addition to the random method, for generating random floating-point
numbers, and the integers method, for generating random integers, there is also a bytes
method for generating raw random bytes. Each of these methods calls a relevant method on
the underlying BitGenerator instance. Each of these methods also enables the data type
of the generated numbers to be changed, for example, from double to single precision
floating-point numbers.

Working with Randomness and Probability Chapter 4

[109]

There's more...
The integers method on the Generator class combines the functionality of the randint
and random_integers methods on the old RandomState interface through the addition of
the endpoint optional argument. (In the old interface, the randint method excluded the
upper end point, whereas the random_integers method included the upper end point.)
All of the random data generating methods on Generator allow the data type of the data
they generate to be customized, which was not possible using the old interface. (This
interface was introduced in NumPy 1.17.)

In Figure 4.1, we can see that the histogram of the data that we generated is approximately
uniform over the range 0 ≤ x < 1. That is, all of the bars are approximately level. (They are
not completely level due to the random nature of the data.) This is what we expect from
uniformly distributed random numbers, such as those generated by the random method.
We will explain distributions of random numbers in greater detail in the Generating
normally distributed random numbers recipe.

Changing the random number generator
The random module in NumPy provides several alternatives to the default PRNG, which
uses a 128-bit permutation congruential generator. While this is a good general-purpose
random number generator, it might not be sufficient for your particular needs. For
example, this algorithm is very different from the one used in Python’s internal random
number generator. We will follow the guidelines for best practice set out in the NumPy
documentation for running repeatable, but suitably random, simulations.

In this recipe, we will show you how to change to an alternative pseudo random number
generator, and how to use seeds effectively in your programs.

Getting ready
As usual, we import NumPy under the alias np. Since we will be using multiple items from
the random package, we import that module from NumPy, too, using the following code:

from numpy import random

You will need to select one of the alternative random number generators that are provided
by NumPy (or define your own; refer to the There's more... section in this recipe). For this
recipe, we will use the MT19937 random number generator, which uses a Mersenne
Twister-based algorithm like the one used in Python's internal random number generator.

Working with Randomness and Probability Chapter 4

[110]

How to do it...
The following steps show how to generate seeds and different random number generators
in a reproducible way:

We will generate a SeedSequence object that can reproducibly generate new1.
seeds from a given source of entropy. We can either provide our own entropy as
an integer, very much like how we provide the seed to default_rng, or we can
let Python gather entropy from the operating system. We will use the latter case
here, to demonstrate its use. For this, we do not provide any additional
arguments to create the SeedSequence object:

seed_seq = random.SeedSequence()

Now that we have a means to generate the seeds for random number generators2.
for the rest of the session, we next log the entropy so that we can reproduce this
session later, if necessary. The following is an example of what the entropy
should look like; your results will inevitably differ somewhat:

print(seed_seq.entropy)
​​# 9219863422733683567749127389169034574

Now, we can create the underlying BitGenerator instance that will provide the3.
random numbers for the wrapping Generator object:

bit_gen = random.MT19937(seed_seq)

Next, we create the wrapping Generator object around this BitGenerator4.
instance to create a usable random number generator:

rng = random.Generator(bit_gen)

How it works...
As mentioned in the Selecting items at random recipe, the Generator class is a wrapper
around an underlying BitGenerator that implements a given pseudo random number
algorithm. NumPy provides several implementations of pseudo random number
algorithms through the various subclasses of the BitGenerator class: PCG64 (default);
MT19937 (as seen in this recipe); Philox; and SFC64. These bit generators are implemented
in Cython.

Working with Randomness and Probability Chapter 4

[111]

The PCG64 generator should provide high-performance random number generation with
good statistical quality. (This might not be the case on 32 bit systems.)
The MT19937 generator is slower than more modern PRNGs and does not produce random
numbers with good statistical properties. However, this is the random number generator
algorithm that is used by the Python Standard Library random module. The Philox
generator is relatively slow, but produces random numbers of very high quality, and
the SFC64 generator is fast and of good quality, but lacks some features available in other
generators.

The SeedSequence object created in this recipe is a means to create seeds for random
number generators in an independent and reproducible manner. In particular, this is useful
if you need to create independent random number generators for several parallel processes,
but still need to be able to reconstruct each session later to debug or inspect results. The
entropy stored on this object is a 128-bit integer that was gathered from the operating
system, and serves as a source of random seeds.

The SeedSequence object allows us to create a separate random number generator for each
process/thread that are independent of one another, which eliminates any data race
problems that might make results unpredictable. It also generates seed values that are very
different from one another, which can help avoid problems with some PRNGs (such as
MT19937, which can produce very similar streams with two similar 32-bit integer seed
values). Obviously having two independent random number generators producing the
same or very similar values will be problematic when we are depending on the
independence of these values.

There's more...
The BitGenerator class serves as a common interface for generators of raw random
integers. The classes mentioned previously are those that are implemented in NumPy with
the BitGenerator interface. You can also create your own BitGenerator subclasses,
although this needs to be implemented in Cython.

Refer to the NumPy documentation at https:/ ​/​numpy. ​org/ ​devdocs/
reference/ ​random/ ​extending. ​html#new- ​bit-​generators for more
information.

https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators
https://numpy.org/devdocs/reference/random/extending.html#new-bit-generators

Working with Randomness and Probability Chapter 4

[112]

Generating normally distributed random
numbers
In the Generating random data recipe, we generated random floating-point numbers
following a uniform distribution between 0 and 1, but not including 1. However, in most
cases where we require random data, we need to instead follow one of several
different distributions. Roughly speaking, a distribution function is a function f(x)
that describes the probability that a random variable has a value that is below x. In practical
terms, the distribution describes the spread of the random data over a range. In particular,
if we create a histogram of data that follows a particular distribution, then it should
roughly resemble the graph of the distribution function. This is best seen by example.

One of the most common distributions is normal distribution, which appears frequently in
statistics and forms the basis for many statistical methods that we will see in Chapter
6, Working with Data and Statistics. In this recipe, we will demonstrate how to generate data
following the normal distribution, and plot a histogram of this data to see the shape of the
distribution.

Getting ready
As in the Generating random data recipe, we import the default_rng routine from the
NumPy random module and create a Generator instance with a seeded generator for
demonstration purposes:

from numpy.random import default_rng
rng = default_rng(12345)

As usual, we have the Matplotlib pyplot module imported as plt, and NumPy imported
as np.

Working with Randomness and Probability Chapter 4

[113]

How to do it...
In the following steps, we generate random data that follows a normal distribution:

We use the normal method on our Generator instance to generate the random1.
data according to the normal distribution. The normal distribution has
two parameters, location and scale. There is also an optional size argument that
specifies the shape of the generated data. (See the Generating random data recipe
for more information on the size argument.) We generate an array of 10,000
values to get a reasonably sized sample:

mu = 5.0 # mean value
sigma = 3.0 # standard deviation
rands = rng.normal(loc=mu, scale=sigma, size=10000)

Next, we plot a histogram of this data. We have increased the number of bins in2.
the histogram. This isn't strictly necessary as the default number (10) is perfectly
adequate, but it does show the distribution slightly better:

fig, ax = plt.subplots()
ax.hist(rands, bins=20)
ax.set_title("Histogram of normally distributed data")
ax.set_xlabel("Value")
ax.set_ylabel("Density")

Next, we create a function that will generate the expected density for a range of3.
values. This is given by multiplying the probability density function for normal
distribution by the number of samples (10,000):

def normal_dist_curve(x):
 return 10000*np.exp(-0.5*((x-
 mu)/sigma)**2)/(sigma*np.sqrt(2*np.pi))

Finally, we plot our expected distribution over the histogram of our data:4.

x_range = np.linspace(-5, 15)
y = normal_dist_curve(x_range)
ax.plot(x_range, y, "k--")

Working with Randomness and Probability Chapter 4

[114]

The result is shown in Figure 4.2. We can see here that the distribution of our sampled data
closely follows the expected distribution from the normal distribution curve:

Figure 4.2: Histogram of data drawn from a normal distribution centered at 5 with a scale of 3, with the expected density overlaid

How it works...
Normal distribution has a probability density function defined by the following formula:

This is related to the normal distribution function F(x) according to the following formula:

Working with Randomness and Probability Chapter 4

[115]

This probability density function peaks at the mean value, which coincides with the
location parameter, and the width of the "bell shape" is determined by the scale parameter.
We can see in Figure 4.2 that the histogram of the data generated by the normal method on
the Generator object fits the expected distribution very closely.

The Generator class uses a 256-step Ziggurat method to generate normally distributed
random data, which is fast compared to the Box-Muller or inverse CDF implementations
that are also available in NumPy.

There's more...
The normal distribution is one example of a continuous probability distribution, in that it is
defined for real numbers and the distribution function is defined by an integral (rather than
a sum). An interesting feature of normal distribution (and other continuous probability
distributions) is that the probability of selecting any given real number is 0. This is
reasonable, because it only makes sense to measure the probability that a value selected in
this distribution lies within a given range. (It shouldn't make sense that the probability of
selecting a specific value should be not zero.)

The normal distribution is important in statistics, mostly due to the central limit
theorem. Roughly speaking, this theorem states that sums of independent and identically
distributed (IID) random variables, with a common mean and variance, are eventually like
normal distribution with the common mean and variance. This holds, regardless of the
actual distribution of these random variables. This allows us to use statistical tests based on
normal distribution in many cases even if the actual distribution of the variables is not
necessarily normal. (We do, however, need to be extremely cautious when appealing to the
central limit theorem.)

There are many other continuous probability distributions aside from normal distribution.
We have already encountered uniform distribution over the range 0 to 1. More generally,
uniform distribution over the range a ≤ x ≤ b has a probability density function given by the
following equation:

Working with Randomness and Probability Chapter 4

[116]

Other common examples of continuous probability density functions include exponential
distribution, beta distribution, and gamma distribution. Each of these distributions has a
corresponding method on the Generator class that generates random data from that
distribution. These are typically named according to the name of the distribution, all in
lowercase letters. So, for the aforementioned distributions, the corresponding methods
are exponential, beta, and gamma. These distributions each have one or more parameters,
like location and scale for normal distribution, that determine the final shape of the
distribution. You may need to consult the NumPy documentation (https:/ ​/​numpy. ​org/
doc/​1.​18/​reference/ ​random/ ​generator. ​html#numpy. ​random. ​Generator) or other sources
to see what parameters are required for each distribution. The NumPy documentation also
lists the probability distributions from which random data can be generated.

Working with random processes
Random processes exist everywhere. Roughly speaking, a random process is a system of
related random variables, usually indexed with respect to time t ≥ 0, for a continuous
random process, or by natural numbers n = 1, 2, …, for a discrete random process. Many
(discrete) random processes satisfy the Markov property, which makes them a Markov
chain. The Markov property is the statement that the process is memoryless, in that only the
current value is important for the probabilities of the next value.

In this recipe, we will examine a simple example of a random process that models the
number of bus arrivals at a stop over time. This process is called a Poisson process. A
Poisson process N(t) has a single parameter, λ, which is usually called the intensity or rate,
and the probability that N(t) takes the value n at a given time t is given by the following
formula:

This equation describes the probability that n buses have arrived by time t. Mathematically,
this equation means that N(t) has a Poisson distribution with the parameter λt. There is,
however, an easy way to construct a Poisson process by taking sums of inter-arrival times
that follow an exponential distribution. For instance, let Xi be the time between the (i-1)-
st arrival and the i-th arrival, which are exponentially distributed with parameter λ. Now,
we take the following equation:

https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/1.18/reference/random/generator.html#numpy.random.Generator

Working with Randomness and Probability Chapter 4

[117]

Here, the number N(t) is the maximum n such that T_n <= t. This is the construction that we
will work through in this recipe. We will also estimate the intensity of the process by taking
the mean of the inter-arrival times.

Getting ready
Before we start, we import the default_rng routine from NumPy's random module and
create a new random number generator with a seed for the purpose of demonstration:

from numpy.random import default_rng
rng = default_rng(12345)

In addition to the random number generator, we also import NumPy as np and the
Matplotlib pyplot module as plt. We also need to have the SciPy package available.

How to do it...
The following steps show how to model the arrival of buses using a Poisson process:

Our first task is to create the sample inter-arrival times by sampling data from an1.
exponential distribution. The exponential method on the NumPy Generator
class requires a scale parameter, which is 1/λ, where λ is the rate. We choose a
rate of 4, and create 50 sample inter-arrival times:

rate = 4.0
inter_arrival_times = rng.exponential(scale=1./rate, size=50)

Next, we compute the actual arrival times by using the accumulate method of2.
the NumPy add universal function. We also create an array containing the
integers 0 to 49, representing the number of arrivals at each point:

arrivals = np.add.accumulate(inter_arrival_times)
count = np.arange(50)

Next, we plot the arrivals over time using the step plotting method: 3.

fig1, ax1 = plt.subplots()
ax1.step(arrivals, count, where="post")
ax1.set_xlabel("Time")
ax1.set_ylabel("Number of arrivals")
ax1.set_title("Arrivals over time")

Working with Randomness and Probability Chapter 4

[118]

The result is shown in Figure 4.3, where the length of each horizontal line
represents the inter-arrival times:

Figure 4.3: Arrivals over time, where inter-arrival times are exponentially distributed, which makes the number of arrivals at a time a Poisson process

Next, we define a function that will evaluate the probability distribution of the4.
counts at a time, which we will take as 1 here. This uses the formula for the
Poisson distribution that we gave in the introduction to this recipe:

from scipy.special import factorial
N = np.arange(15)
def probability(events, time=1, param=rate):
 return ((param*time)**events/factorial(events))*np.exp(-
 param*time)

Now, we plot the probability distribution over the count per unit of time, since5.
we chose time=1 in the previous step. We will add to this plot later:

fig2, ax2 = plt.subplots()
ax2.plot(N, probability(N), "k", label="True distribution")
ax2.set_xlabel("Number of arrivals in 1 time unit")
ax2.set_ylabel("Probability")
ax2.set_title("Probability distribution")

Working with Randomness and Probability Chapter 4

[119]

Now, we move on to estimate the rate from our sample data. We do this by6.
computing the mean of the inter-arrival times, which, for exponential
distribution, is an estimator of the scale 1/λ:

estimated_scale = np.mean(inter_arrival_times)
estimated_rate = 1.0/estimated_scale

Finally, we plot the probability distribution with this estimated rate for the7.
counts per unit of time. We plot this on top of the true probability distribution
that we produced in Step 5:

ax2.plot(N, probability(N, param=estimated_rate), "k--",
label="Estimated distribution")
ax2.legend()

The resulting plot is given in Figure 4.4, where we can see that, apart from a small
discrepancy, the estimated distribution is very close to the true distribution:

Figure 4.4: Poisson distribution of the number of arrivals per time unit, the true distribution, and the distribution estimated from the sampled data

Working with Randomness and Probability Chapter 4

[120]

How it works...
A Poisson process is a counting process that counts the number of events (bus arrivals) that
occur in an amount of time if the events are randomly spaced (in time) with an exponential
distribution with a fixed parameter. We constructed the Poisson process by sampling inter-
arrival times from exponential distribution, following the construction we described in the
introduction. However, it turns out that this fact (that the inter-arrival times are
exponentially distributed) is a property of all Poisson processes when they are given their
formal definition in terms of probabilities.

In this recipe, we sampled 50 points from an exponential distribution with a given rate
parameter. We had to do a small conversion because the NumPy Generator method for
sampling from an exponential distribution uses a related scale parameter, which is 1 over
the rate. Once we have these points, we create an array that contains cumulative sums of
these exponentially distributed numbers. This creates our arrival times. The actual Poisson
process is that displayed in Figure 4.3, and is a combination of the arrival times with the
corresponding number of events that had occurred at that time.

The mean (expected value) of an exponential distribution coincides with the scale
parameter, so the mean of a sample drawn from an exponential distribution is one way to
estimate the scale (rate) parameter. This estimate will not be perfect, since our sample is
relatively small. This is why there is a small discrepancy between the two plots in Figure
4.4.

There's more...
There are many types of random processes describing a wide variety of real-world
scenarios. In this recipe, we modeled arrival times using a Poisson process. A Poisson
process is a continuous random process, meaning that it is parameterized by a continuous
variable, t ≥ 0, rather than a discrete variable, n=1,2,…. Poisson processes are actually
Markov chains, under a suitably generalized definition of a Markov chain, and also an
example of a renewal process. A renewal process is a process that describes the number of
events that occur within a period of time. The Poisson process described here is an example
of a renewal process.

Many Markov chains also satisfy some properties in addition to their defining Markov
property. For example, a Markov chain is homogeneous if the following equality holds for
all n, i, and j values:

Working with Randomness and Probability Chapter 4

[121]

In simple terms, this means that the probabilities of moving from one state to another over
a single step does not change as we increase the number of steps. This is extremely useful
for examining the long-term behavior of a Markov chain.

It is very easy to construct simple examples of homogeneous Markov chains. Suppose that
we have two states, A and B. At any given step, we could be either at state A or at
state B. We move between states according to a probability. For instance, let's say that
the probability of transitioning from state A to state A is 0.4, and that the probability of
transitioning from A to B is 0.6. Similarly, let's say that the probability of transitioning
from B to B is 0.2, and transitioning from B to A is 0.8. Notice that both the probability of
switching plus the probability of staying the same sum to 1 in both cases. We can represent
the probability of transitioning from each state in matrix form given, in this case, by the
following equation:

This matrix is called the transition matrix. The idea here is that the probability of being in a
particular state after a step is given by multiplying the vector containing the probability of
being in state A and B (position 0 and 1, respectively). For example, if we start in state A
then the probability vector will contain a 1 at index 0 and 0 at index 1. Then, the probability
of being in state A after 1 step is given by 0.4, and the probability of being in state B is 0.6.
This is what we expect, given the probabilities we outlined previously. However, we could
also write this calculation using the matrix formula:

To get the probability of being in either state after two steps, we multiply the right-hand
side vector again by the transition matrix, T, to obtain the following:

We can continue this process ad infinitum to obtain a sequence of state vectors, which
constitute our Markov chain. This construction can be applied, with more states if
necessary, to model many simple, real-world problems.

Working with Randomness and Probability Chapter 4

[122]

Analyzing conversion rates with Bayesian
techniques
Bayesian probability allows us to systematically update our understanding (in a
probabilistic sense) of a situation by considering data. In more technical language, we
update the prior distribution (our current understanding) using data to obtain a posterior
distribution. This is particularly useful, for example, when examining the proportion of
users who go on to buy a product after viewing a website. We start with our prior belief
distribution. For this we will use the beta distribution, which models the probability of
success given numbers of successes (completed purchases) against failures (no
purchases). For this recipe, we will assume that our prior belief is that we expect 25
successes from 100 views (75 fails). This means that our prior belief follows a beta (25, 75)
distribution. Let's say that we wish to calculate the probability that the true rate of success
is at least 33%.

Our method is roughly divided into three steps. We first need to understand our prior
belief for the conversion rate, which we have decided follows a beta (25, 75) distribution.
We compute the probability that the conversion rate is at least 33% by integrating
(numerically) the probability density function for the prior distribution from 0.33 to 1. The
next step is to apply the Bayesian reasoning to update our prior belief with new
information. Then, we can perform the same integration with the posterior belief to
examine the probability that the conversion rate is at least 33% given this new information.

In this recipe, we will see how to use Bayesian techniques to update a prior belief based on
new information for our hypothetical website.

Getting ready
As usual, we will need the NumPy and Matplotlib packages imported as np and plt,
respectively. We will also require the SciPy package, imported as sp.

Working with Randomness and Probability Chapter 4

[123]

How to do it...
The following steps show how to estimate and update conversion rate estimations using
Bayesian reasoning:

The first step is to set up the prior distribution. For this we use the beta1.
distribution object from the SciPy stats module, which has various methods for
working with the beta distribution. We import the beta distribution from
the stats module under the alias beta_dist and then create a convenience
function for the probability density function:

from scipy.stats import beta as beta_dist
beta_pdf = beta_dist.pdf

Next, we need to compute the probability, under the prior belief distribution,2.
that the success rate is at least 33%. To do this, we use the quad routine from the
SciPy integrate module, which performs numerical integration of a function.
We use this to integrate the probability density function for the beta distribution,
imported in Step 1, with our prior parameters. We print the probability according
to our prior distribution to the console:

prior_alpha = 25
prior_beta = 75
args = (prior_alpha, prior_beta)
prior_over_33, err = sp.integrate.quad(beta_pdf, 0.33, 1,
args=args)
print("Prior probability", prior_over_33)
0.037830787030165056

Now, suppose we have received some information about successes and failures3.
over a new period of time. For example, we observed 122 successes and 257
failures over this period. We create new variables to reflect these values:

observed_successes = 122
observed_failures = 257

Working with Randomness and Probability Chapter 4

[124]

To obtain the parameter values for the posterior distribution with a beta4.
distribution, we simply add the observed successes and failures to the
prior_alpha and prior_beta parameters, respectively:

posterior_alpha = prior_alpha + observed_successes
posterior_beta = prior_beta + observed_failures

Now, we repeat our numerical integration to compute the probability that the5.
success rate is now above 33% using the posterior distribution (with our new
parameters computed earlier). Again, we print this probability in the terminal:

args = (posterior_alpha, posterior_beta)
posterior_over_33, err2 = sp.integrate.quad(beta_pdf, 0.33, 1,
 args=args)
print("Posterior probability", posterior_over_33)
0.13686193416281017

We can see here that the new probability, given the updated posterior6.
distribution, is 13% as opposed to the prior 3%. This is a significant difference,
although we are still not confident that the conversion rate is above 33% given
these values. Now, we plot the prior and posterior distribution to visualize this
increase in probability. To start with, we create an array of values and evaluate
our probability density function based on these values:

p = np.linspace(0, 1, 500)
prior_dist = beta_pdf(p, prior_alpha, prior_beta)
posterior_dist = beta_pdf(p, posterior_alpha, posterior_beta)

Finally, we plot the two probability density functions computed in Step 6 onto a7.
new plot:

fig, ax = plt.subplots()
ax.plot(p, prior_dist, "k--", label="Prior")
ax.plot(p, posterior_dist, "k", label="Posterior")
ax.legend()
ax.set_xlabel("Success rate")
ax.set_ylabel("Density")
ax.set_title("Prior and posterior distributions for success rate")

Working with Randomness and Probability Chapter 4

[125]

The resulting plot is shown in Figure 4.5, where we can see that the posterior distribution is
much more narrow and centered to the right of the prior:

Figure 4.5: Prior and posterior distributions of a success rate following a beta distribution

How it works...
Bayesian techniques work by taking a prior belief (probability distribution) and
using Bayes' theorem to combine the prior belief with the likelihood of our data given this
prior belief to form a posterior belief. This is actually similar to how we might understand
things in real life. For example, when you wake up on a given day, you might have the
belief (from a forecast or otherwise) that there is a 40% chance of rain outside. Upon
opening the blinds, you see that it is very cloudy outside, which might indicate that rain is
more likely, so we update our belief according to this new data, to say a 70% chance of rain.

Working with Randomness and Probability Chapter 4

[126]

To understand how this works, we need to understand conditional probability. Conditional
probability deals with the probability that one event will occur given that another event has
already occurred. In symbols, the probability of event A given that event B has occurred is
written as follows:

Bayes' theorem is a powerful tool that can be written (symbolically) as follows:

The probability P(A) represents our prior belief. The event B represents the data that we
have gathered, so that P(B | A) is the likelihood that our data arose given our prior belief.
The probability P(B) represents the probability that our data arose, and P(A | B) represents
our posterior belief given the data. In practice, the probability P(B) can be difficult to
calculate or otherwise estimate, so it is quite common to replace the strong equality above
with a proportional version of Bayes' theorem:

In the recipe, we assumed that our prior was beta distributed. The beta distribution has a
probability density function given by the following equation:

Here, Γ(α) is the gamma function. The likelihood is binomially distributed, which has a
probability density function given by the following equation:

Here, k is the number of observations, and j is one of those that was successful. In the
recipe, we observed m = 122 successes and n = 257 failures, which gives k = m + n = 379 and j
= m = 122. To calculate the posterior distribution, we can use the fact that the beta
distribution is a conjugate prior for the binomial distribution to see that the right-hand side
of the proportional form of Bayes' theorem is beta distributed with parameters α + m and β
+ n. This is what we used in the recipe. The fact that the beta distribution is a conjugate
prior for binomial random variables makes them useful in Bayesian statistics.

Working with Randomness and Probability Chapter 4

[127]

The method we demonstrated in this recipe is a rather basic example of using a Bayesian
method, but it is still useful for updating our prior beliefs given new data in a systematic
way.

There's more...
Bayesian methods can be used for a wide variety of tasks, making it a powerful tool. In this
recipe, we used a Bayesian approach to model the success rate of a website based on our
prior belief of how it performs and additional data gathered from users. This is a rather
complex example since we modeled our prior belief on a beta distribution. Here is another
example of using Bayes' theorem to examine two competing hypotheses using only simple
probabilities (numbers between 0 and 1).

Suppose you place your keys in the same place every day when you return home, but one
morning you wake up to find that they are not in this place. After searching for a short
time, you cannot find them and so conclude that they must have vanished from existence.
Let's call this hypothesis H1. Now, H1 certainly explains the data, D, that you cannot find
your keys, hence the likelihood P(D | H1) = 1. (If your keys vanished from existence, then
you could not possibly find them.) An alternative hypothesis is that you simply placed
them somewhere else when you got home the night before. Let's call this hypothesis H2.
Now this hypothesis also explains the data, so P(D | H2) = 1, but in reality, H2 is far more
plausible than H1. Let's say that the probability that your keys completely vanished from
existence is 1 in 1 million – this is a huge overestimation, but we need to keep the numbers
reasonable – while you estimate that the probability that you placed them elsewhere the
night before is 1 in 100. Computing the posterior probabilities, we have the following:

This highlights the reality that it is 10,000 times more likely that you simply misplaced your
keys as opposed to the fact that they simply vanished. Sure enough, you soon find your
keys already in your pocket, because you had picked them up earlier that morning.

Working with Randomness and Probability Chapter 4

[128]

Estimating parameters with Monte Carlo
simulations
Monte Carlo methods broadly describe techniques that use random sampling to solve
problems. These techniques are especially powerful when the underlying problem involves
some kind of uncertainty. The general method involves performing large numbers of
simulations, each sampling different inputs according to a given probability distribution,
and then aggregating the results to give a better approximation of the true solution than
any individual sample solution.

Markov Chain Monte Carlo (MCMC) is a specific kind of Monte Carlo simulation in which
we construct a Markov chain of successively better approximations of the true distribution
that we seek. This works by accepting or rejecting a proposed state, sampled at random,
based on carefully selected acceptance probabilities at each stage, with the aim of constructing
a Markov chain whose unique stationary distribution is precisely the unknown distribution
that we wish to find.

In this recipe, we will use the PyMC3 package and MCMC methods to estimate the
parameters of a simple model. The package will deal with most of the technical details of
running simulations, so we don't need to go any further into the details of how the different
MCMC algorithms actually work.

Getting ready
As usual, we import the NumPy package and Matplotlib pyplot module as np and plt,
respectively. We also import and create a default random number generator, with a seed
for the purpose of demonstration, as follows:

from numpy.random import default_rng
rng = default_rng(12345)

We will also need a module from the SciPy package for this recipe as well as the PyMC3
package, which is a package for probabilistic programming.

Working with Randomness and Probability Chapter 4

[129]

How to do it...
Perform the following steps to use Markov chain Monte Carlo simulations to estimate the
parameters of a simple model using sample data:

Our first task is to create a function that represents the underlying structure that1.
we wish to identify. In this case, we will be estimating the coefficients of a
quadratic (a polynomial of degree 2). This function takes two arguments, which
are the points in the range, which is fixed, and the variable parameters that we
wish to estimate:

def underlying(x, params):
 return params[0]*x**2 + params[1]*x + params[2]

Next, we set up the true parameters and a size parameter that will determine2.
how many points are in the sample that we generate:

size = 100
true_params = [2, -7, 6]

We generate the sample that we will use to estimate the parameters. This will3.
consist of the underlying data, generated by the underlying function we
defined in Step 1, plus some random noise that follows a normal distribution. We
first generate a range of x values, which will stay constant throughout the recipe,
and then use the underlying function and the normal method on our random
number generator to generate the sample data:

x_vals = np.linspace(-5, 5, size)
raw_model = underlying(x_vals, true_params)
noise = rng.normal(loc=0.0, scale=10.0, size=size)
sample = raw_model + noise

Working with Randomness and Probability Chapter 4

[130]

It is a good idea to plot the sample data, with the underlying data overlaid,4.
before we begin the analysis. We use the scatter plotting method to plot only
the data points (without connecting lines), and then plot the underlying
quadratic structure using a dashed line:

fig1, ax1 = plt.subplots()
ax1.scatter(x_vals, sample, label="Sampled data")
ax1.plot(x_vals, raw_model, "k--", label="Underlying model")
ax1.set_title("Sampled data")
ax1.set_xlabel("x")
ax1.set_ylabel("y")

The result is Figure 4.6, where we can see that the shape of the underlying model
is still visible even with the noise, although the exact parameters of this model are
no longer obvious:

Figure 4.6: Sampled data with the underlying model overlaid

We are ready to start our analysis, so we now import the PyMC3 package under5.
the alias pm as follows:

import pymc3 as pm

Working with Randomness and Probability Chapter 4

[131]

The basic object of PyMC3 programming is the Model class, which is usually6.
created using the context manager interface. We also create our prior
distributions for the parameters. In this case, we will assume that our prior
parameters are normally distributed with a mean of 1 and a standard deviation
of 1. We need 3 parameters, so we provide the shape argument. The Normal
class creates random variables that will be used in the Monte Carlo simulations:

with pm.Model() as model:
 params = pm.Normal("params", mu=1, sigma=1, shape=3)

We create a model for the underlying data, which can be done by passing the7.
random variable, param, that we created in Step 6 into the underlying function
that we defined in Step 1. We also create a variable that handles our observations.
For this we use the Normal class, since we know that our noise is normally
distributed around the underlying data, y. We set a standard deviation of 2, and
pass our observed sample data into the observed keyword argument (this is
also inside the Model context):

y = underlying(x_vals, params)
y_obs = pm.Normal("y_obs", mu=y, sigma=2, observed=sample)

To run the simulations, we need only call the sample routine inside the Model8.
context. We pass the cores argument to speed up the calculations, but leave all
of the other arguments at the default values:

trace = pm.sample(cores=4)

These simulations should take a short time to execute.

Next, we plot the posterior distributions that use the plot_posterior routine9.
from PyMC3. This routine takes the trace result from the sampling step that
performed the simulations. We create our own figure and axes using
the plt.subplots routine in advance, but this isn't strictly necessary. We are
using three subplots on a single figure, and we pass the axs2 tuple of Axes to the
plotting routing under the ax keyword argument:

fig2, axs2 = plt.subplots(1, 3, tight_layout=True)
pm.plot_posterior(trace, ax=axs2)

Working with Randomness and Probability Chapter 4

[132]

The resulting plot is shown in Figure 4.7, where you can see that each of these
distributions is approximately normal, with a mean that is similar to the true
parameter values:

Figure 4.7: Posterior distributions of estimated parameters

Now retrieve the mean of each of the estimated parameters from the trace by10.
using the mean method on the params item from the trace, which is simply a
NumPy array. We pass the axis=0 argument because we want the mean of each
of the rows of the matrix of parameter estimates. We print these estimated
parameters in the terminal:

estimated_params = trace["params"].mean(axis=0)
print("Estimated parameters", estimated_params)
Estimated parameters [2.03213559 -7.0957161 5.27045299]

Finally, we use our estimated parameters to generate our estimated underlying11.
data by passing the x values and the estimated parameters to the underlying
function defined in Step 1. We then plot this estimated underlying data together
with the true underlying data on the same axes:

estimated = underlying(x_vals, estimated_params)
fig3, ax3 = plt.subplots()
ax3.plot(x_vals, raw_model, "k", label="True model")
ax3.plot(x_vals, estimated, "k--", label="Estimated model")
ax3.set_title("Plot of true and estimated models")
ax3.set_xlabel("x")
ax3.set_ylabel("y")
ax3.legend()

Working with Randomness and Probability Chapter 4

[133]

The resulting plot is in Figure 4.8, where there is only a small difference between these two
models on this range:

Figure 4.8: True model and estimated model plotted on the same axes. There is a small discrepancy between the estimated parameters and the true parameters

How it works...
The interesting part of the code in this recipe can be found in the Model context manager.
This object keeps track of the random variables, orchestrates the simulations, and keeps
track of the state. The context manager gives us a convenient way to separate the
probabilistic variables from the surrounding code.

Working with Randomness and Probability Chapter 4

[134]

We start by proposing a prior distribution for the distribution of the random variables
representing our parameters, of which there are three. We proposed a normal distribution
since we know that the parameters cannot stray too far from the value 1. (We can tell this
by looking at the plot that we generated in Step 4, for example.) Using a normal distribution
will give a higher probability to the values that are close to the current values. Next, we add
the details relating to the observed data, which is used to calculate the acceptance
probabilities that are used to either accept or reject a state. Finally, we start the sampler
using the sample routine. This constructs the Markov chain and generates all of the step
data.

The sample routine sets up the sampler based on the types of variables that will be
simulated. Since the normal distribution is a continuous variable, the sample routine
selected the No U-turn sampler (NUTS). This is a reasonable general-purpose sampler for
continuous variables. A common alternative to NUTS is the Metropolis sampler, which is
less reliable but faster than NUTS in some cases. The PyMC3 documentation recommends
using NUTS whenever possible.

Once the sampling is complete, we plotted the posterior distribution of the trace (the states
given by the Markov chain) to see the final shape of the approximations we generated. We
can see here that all three of our random variables (parameters) are normally distributed
around approximately the correct value.

Under the hood, PyMC3 uses Theano to speed up its calculations. This makes it possible for
PyMC3 to perform computations on a Graphics Processing Unit (GPU) rather than on the
Central Processing Unit (CPU) for a considerable boost to computation speed. Theano also
supports the dynamic generation of C code to improve computation speeds further.

There's more...
The Monte Carlo method is very flexible, and the example we gave here is one particular
case where it can be used. A more typical basic example of where the Monte Carlo method
is applied is in estimating the value of integrals, commonly, Monte Carlo integration. A
really interesting case of Monte Carlo integration is estimating the value of π ≈ 3.1415. Let's
briefly look at how this works.

Working with Randomness and Probability Chapter 4

[135]

First, we take the unit disk, whose radius is 1 and therefore has an area, π. We can enclose
this disk inside a square with vertices at the points (1, 1), (-1, 1), (1, -1), and (-1, -1). This
square has an area 4, since the edge length is 2. Now we can generate random points
uniformly over this square. When we do this, the probability that any one of these random
points lies inside a given region is proportional to the area of that region. Thus, the area of a
region can be estimated by multiplying the proportion of randomly generated points that
lie within the region by the total area of the square. In particular, we can estimate the area
of the disk by simply multiplying the number of randomly generate points that lie within
the disk by 4, and dividing by the total number of points we generated.

We can easily write a function in Python that performs this calculation, which might be the
following:

import numpy as np
from numpy.random import default_rng

def estimate_pi(n_points=10000):
 rng = default_rng()
 points = rng.uniform(-1, 1, size=(2, n_points))
 inside = np.less(points[0, :]**2 + points[1, :]**2, 1)
 return 4.0*inside.sum() / n_points

Running this function just once will give a reasonable approximation of π:

estimate_pi() # 3.14224

We can improve the accuracy of our estimation by using more points, but we could also run
this a number of times and average the results. Let's run this simulation 100 times and
average the results (we'll use concurrent futures to parallelize this so that we can run larger
numbers of samples if we want):

from concurrent.futures import ProcessPoolExecutor, as_completed
from statistics import mean

with ProcessPoolExecutor() as pool:
 fts = [pool.submit(estimate_pi) for _ in range(100)]
 results = list(ft.result() for ft in as_completed(fts))

print(mean(results))

Running this code once prints the estimated value of π as 3.1415752, which is an even better
estimate of the true value.

Working with Randomness and Probability Chapter 4

[136]

See also
The PyMC3 package has many features that are documented by numerous examples
(https:/​/​docs.​pymc. ​io/ ​). There is also another probabilistic programming library based
on TensorFlow (https:/ ​/​www. ​tensorflow. ​org/ ​probability).

Further reading
A good, comprehensive reference for probability and random processes is the following
book:

Grimmett, G. and Stirzaker, D. (2009). Probability and random processes. 3rd ed.
Oxford: Oxford Univ. Press.

An easy introduction to Bayes' theorem and Bayesian statistics is the following:

Kurt, W. (2019). Bayesian statistics the fun way. San Francisco, CA: No Starch Press,
Inc.

https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://docs.pymc.io/
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability

5
Working with Trees and

Networks
Networks are objects that contain nodes and edges between pairs of nodes. They can be used
to represent a wide variety of real-world situations, such as distribution and scheduling.
Mathematically, networks are useful for visualizing combinatorial problems and make for a
rich and fascinating theory.

There are, of course, several different kinds of networks. We will mostly deal with simple
networks, where edges connect two distinct nodes (so there are no self-loops), there is, at
most, one edge between any two nodes, and all the edges are bidirectional. A tree is a
special kind of network in which there are no cycles; that is, there are no lists of nodes in
which each node is connected to the following node by an edge, and the final node is
connected to the first. Trees are especially simple in terms of their theory because they
connect a number of nodes with the fewest possible edges. A complete network is a network
in which every node is connected to every other node by an edge.

Networks can be directed, where each edge has a source and a destination node or can
carry additional attributes such as weights. Weighted networks are especially useful in
certain applications. There are also networks in which we allow multiple edges between
two given nodes.

In this chapter, we will learn how to create, manipulate, and analyze networks, and then
apply network algorithms to solve various problems.

In the literature, especially in mathematical texts, networks are more
commonly called graphs. Nodes are sometimes called vertices. We favor the
term network to avoid confusion with the more common usage of graph
to mean a plot of a function.

Working with Trees and Networks Chapter 5

[138]

We will cover the following recipes in this chapter:

Creating networks in Python
Visualizing networks
Getting the basic characteristics of networks
Generating the adjacency matrix for a network
Creating directed and weighted networks
Finding the shortest paths in a network
Quantifying clustering in a network
Coloring a network
Finding minimal spanning trees and dominating sets

Let's get started!

Technical requirements
In this chapter, we will primarily use the NetworkX package for working with trees and
networks. This package can be installed using your favorite package manager, such as pip:

python3.8 -m pip install networkx

We usually import this under the alias nx, following the conventions established in the
official NetworkX documentation, using the following import statement:

import networkx as nx

The code for this chapter can be found in the Chapter 05 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2005.

Check out the following video to see the Code in Action: https://bit.ly/2WJQt4p.

Creating networks in Python
In order to solve the multitude of problems that can be expressed as network problems, we
first need a way of creating networks in Python. For this, we will make use of the
NetworkX package and the routines and classes it provides to create, manipulate, and
analyze networks.

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2005
https://bit.ly/2WJQt4p

Working with Trees and Networks Chapter 5

[139]

In this recipe, we'll create an object in Python that represents a network and add nodes and
edges to this object.

Getting ready
As we mentioned in the Technical requirements section, we need the NetworkX package to be
imported under the alias nx by using the following import statement:

import networkx as nx

How to do it...
Follow these steps to create a Python representation of a simple graph:

We need to create a new Graph object that will store the nodes and edges that1.
constitute the graph:

G = nx.Graph()

Next, we need to add the nodes for the network using the add_node method: 2.

G.add_node(1)
G.add_node(2)

To avoid calling this method repetitively, we can use the add_nodes_from3.
method to add nodes from an iterable such as a list:

G.add_nodes_from([3, 4, 5, 6])

Next, we need to add edges between the nodes that we've added using either4.
the add_edge method or the add_edges_from method, which add either a
single edge or a list of edges (as tuples), respectively:

G.add_edge(1, 2) # edge from 1 to 2
G.add_edges_from([(2, 3), (3, 4), (3, 5), (3, 6), (4, 5), (5, 6)])

Finally, we retrieve a view of the current nodes and edges in a graph by5.
accessing the nodes and edges attributes, respectively:

print(G.nodes)
print(G.edges)
[1, 2, 3, 4, 5, 6]
[(1, 2), (2, 3), (3, 4), (3, 5), (3, 6), (4, 5), (5, 6)]

Working with Trees and Networks Chapter 5

[140]

How it works...
The NetworkX package adds several classes and routines for creating, manipulating, and
analyzing networks using Python. The Graph class is the most basic class for representing
networks that do not contain multiple edges between any given nodes and where their
edges are undirected (bidirectional).

Once a blank Graph object has been created, we can add new nodes and edges using the
methods described in this recipe. In this recipe, we created nodes that hold integer values.
However, a node can hold any hashable Python object except None. Moreover, associated
data can be added to a node via keyword arguments passed to the add_node method.
Attributes can also be added when using the add_nodes_from method by supplying a list
of tuples containing the node object and a dictionary of attributes. The add_nodes_from
method is useful for adding nodes in bulk, while add_node is useful for attaching
individual nodes to an existing network.

An edge in a network is a tuple containing two (distinct) nodes. In a simple network, such
as the one represented by the basic Graph class, there can be, at most, one edge between
any two given nodes. The edges are added via the add_edge or add_edges_from
methods, which add either a single edge or a list of edges to the network, respectively. As
for the nodes, edges can hold arbitrary associated data via an attributes dictionary. In
particular, weights can be added by supplying the weight attribute when adding edges.
We will provide more details about weighted graphs in the Creating directed and weighted
networks recipe.

The nodes and edges attributes hold the nodes and edges that constitute the network,
respectively. The nodes attribute returns a NodesView object, which is a dictionary-like
interface to the nodes and their associated data. Similarly, the edges attribute returns
an EdgeView object. This can be used to inspect individual edges and their associated data.

There's more...
The Graph class represents simple networks, which are networks in which nodes are joined
by, at most, one edge, and the edges are not directed. We will discuss directed networks in
the Creating directed and weighted networks recipe. There is a separate class for representing
networks in which there can be multiple edges between a pair of nodes called MultiGraph.
All of the network types allow self-loops, which are sometimes not allowed in a "simple
network" in the literature, where a simple network typically refers to an undirected
network with no self-loops.

Working with Trees and Networks Chapter 5

[141]

All network types offer various methods for adding nodes and edges, as well as inspecting
the current nodes and edges. There are also methods for copying networks into some other
kind of network or extracting subnetworks. There are also several utility routines in the
NetworkX package for generating standard networks and adding subnetworks to an
existing network.

NetworkX also provides various routines for reading and writing networks to different file
formats, such as GraphML, JSON, and YAML. For example, we can write a network to a
GraphML file using the nx.write_graphml routine and read it using
the nx.read_graphml routine.

Visualizing networks
A common first step in analyzing a network is to draw the network, which can help us
identify some of the prominent features of a network. (Of course, drawings can be
misleading, so we should not rely on them too heavily in our analysis.)

In this recipe, we'll describe how to use the network drawing facilities in the NetworkX
package to visualize a network.

Getting ready
For this recipe, we will need to import the NetworkX package under the name nx, as
described in the Technical requirements section. We will also need the Matplotlib package.
For this, as usual, we import the pyplot module as plt using the following import
statement:

import matplotlib.pyplot as plt

How to do it...
The following steps outline how to draw a simple network object using the drawing
routines from NetworkX:

First, we create a simple example network to draw:1.

G = nx.Graph()

G.add_nodes_from(range(1, 7))
G.add_edges_from([

Working with Trees and Networks Chapter 5

[142]

 (1, 2), (2, 3), (3, 4), (3, 5),
 (3, 6), (4, 5), (5, 6)
])

Next, we create new Matplotlib Figure and Axes objects for it, ready to plot the2.
network using the subplots routine from plt:

fig, ax = plt.subplots()

Now, we can create a layout that will be used to position the nodes on the figure.3.
For this figure, we shall use a shell layout using the shell_layout routine:

layout = nx.shell_layout(G)

We can use the draw routine to draw the network on the figure. Since we have4.
already created a Matplotlib Figure and Axes, we will supply the ax keyword
argument. We will also add labels to the nodes using the with_labels keyword
argument and specify the layout that we just created using the pos argument:

nx.draw(G, ax=ax, pos=layout, with_labels=True)
ax.set_title("Simple network drawing")

The resulting drawing can be seen in the following figure:

Figure 5.1: A drawing of a simple network arranged using a shell layout

Working with Trees and Networks Chapter 5

[143]

How it works...
The draw routine is a specialized plotting routine specifically for drawing networks. The
layout we created specifies the coordinates at which each of the nodes will be placed. We
used a shell layout, which arranges the nodes in a concentric circle arrangement, which is
determined by the nodes and edges of the network. By default, the draw routine creates a
randomized layout.

The draw routine has numerous keyword arguments for customizing the appearance of the
plotted network. In this recipe, we added the with_labels keyword argument to label the
nodes in the figure according to the objects they hold. The nodes hold integers, which is
why the nodes in the preceding figure are labeled by integers.

We also created a set of axes separately using the plt.subplots routine. This isn't strictly
necessary since the draw routine will automatically create a new figure and axes if they're
not provided.

There's more...
The NetworkX package provides several layout-generating routines, similar to
the shell_layout routine that we used in this recipe. The layout is simply a dictionary,
indexed by the nodes, whose elements are the x and y coordinates of the position where the
node should be plotted. The NetworkX routines for creating layouts represent common
arrangements that will be useful for most cases, but you can also create custom layouts,
should you need them. A full list of the different layout creation routines is provided in the
NetworkX documentation. There are also shortcut drawing routines that will use a specific
layout with the need to create the layout separately; for example, the draw_shell routine
will draw the network with the shell layout that is equivalent to the draw call given in this
recipe.

The draw routine takes a number of keyword arguments to customize the appearance of
the figure. For example, there are keyword arguments to control the node's size, color,
shape, and transparency. We can also add arrows (for directed edges) and/or only draw a
specific set of nodes and edges from the network.

Working with Trees and Networks Chapter 5

[144]

Getting the basic characteristics of
networks
Networks have various basic characteristics beyond the number of nodes and edges that
are useful for analyzing a graph. For example, the degree of a node is the number of edges
that start (or end) at that node. A higher degree indicates that the node is better connected
to the rest of the network.

In this recipe, we will learn how to access the basic attributes and compute various basic
measures associated with a network.

Getting ready
As usual, we need to import the NetworkX package under the name nx. We also need to
import the Matplotlib pyplot module under the name plt.

How to do it...
Follow these steps to access the various basic characteristics of a network:

Create a sample network that we will analyze in this recipe, like so:1.

G = nx.Graph()
G.add_nodes_from(range(10))
G.add_edges_from([
 (0, 1), (1, 2), (2, 3), (2, 4),
 (2, 5), (3, 4), (4, 5), (6, 7),
 (6, 8), (6, 9), (7, 8), (8, 9)
])

Next, it is good practice to draw the network and arrange the nodes in a circular2.
layout:

fig, ax = plt.subplots()
nx.draw_circular(G, ax=ax, with_labels=True)
ax.set_title("Simple network")

Working with Trees and Networks Chapter 5

[145]

The resulting plot can be seen in the following figure. As we can see, the network
is split into two distinct parts:

Figure 5.2: Simple network drawn in a circular arrangement. There are two distinct components visible in this network

Next, we use the nx.info routine to display some basic information about the3.
network:

print(nx.info(G))
Name:
Type: Graph
Number of nodes: 10
Number of edges: 12
Average degree: 2.4000

Now, we use the degree property of the Graph object to retrieve the degree of a4.
specific node:

for i in [0, 2, 7]:
 degree = G.degree[i]
 print(f"Degree of {i}: {degree}")
Degree of 0: 1
Degree of 2: 4
Degree of 7: 2

Working with Trees and Networks Chapter 5

[146]

We can get the connected components of the network using5.
the connected_components routine, which returns a generator that we make
into a list:

components = list(nx.connected_components(G))
print(components)
[{0, 1, 2, 3, 4, 5}, {8, 9, 6, 7}]

We compute the density of a network using the density routine, which returns a6.
float between 0 and 1. This represents the proportion of edges meeting the node
to the total number of possible edges at the node:

density = nx.density(G)
print("Density", density)
Density 0.26666666666666666

Finally, we can determine whether a network is planar – meaning that no two7.
edges need to be drawn crossing one another – by using the check_planarity
routine:

is_planar, _ = nx.check_planarity(G)
print("Is planar", is_planar)
Is planar True

How it works...
The info routine generates a small summary of the network, including the type of the
network (which is a simple Graph type in this recipe), the number of nodes and edges, and
the average degrees of the nodes in the network. The actual degree of a node in the network
can be accessed using the degree property, which offers a dictionary-like interface for
finding the degree of each node.

A set of nodes is said to be connected if every node in the set is joined to the others by an
edge or sequence of edges. The connected components of a network are the largest sets of
nodes that are connected. Any two distinct connected components are obviously
disjointed. Every network can be decomposed into one or more connected components. The
network we defined in this recipe has two connected components, {0, 1, 2, 3, 4, 5}
and {8, 9, 6, 7}. These are clearly visible in the preceding figure, where the first
connected component is drawn above the second connected component. In this figure, we
can trace a path along the edges of the network from any node in a component to any other;
for example, from 0 to 5.

Working with Trees and Networks Chapter 5

[147]

The density of a network measures the ratio of the number of edges in the network to the
total possible number of edges given by the number of nodes in a network. The density of a
complete network is 1, but in general, the density will be less than 1.

A network is planar if it can be drawn on a flat surface without crossing edges. The easiest
example of a non-planar network is a complete network with five nodes. Complete
networks with, at most, four nodes are planar. A little experimentation with the way you
draw these networks on paper will reveal a drawing that doesn't contain crossing edges. In
addition, any network that contains a complete graph with at least five nodes is not planar.
Planar networks are important in theory due to their relative simplicity, but they are less
common in networks that arise in applications.

There's more...
In addition to the methods on the network classes, there are a number of other routines in
the NetworkX package that can be used to access the attributes of the nodes and edges in a
network. For example, nx.get_node_attributes gets a named attribute from each node
in the network.

Generating the adjacency matrix for a
network
One potent tool in the analysis of graphs is the adjacency matrix, which has entries aij = 1 if
there is an edge from node i to node j, and 0 otherwise. For most networks, the adjacency
matrix will be sparse (most of the entries are 0). For networks that are not directed, the
matrix will also be symmetric (aij = aji). There are numerous other matrices that can be
associated with a network. We will briefly discuss these in the There's more... section of this
recipe.

In this recipe, we will generate the adjacency matrix for a network and learn how to get
some basic properties of the network from this matrix.

Getting ready
For this recipe, we will need the NetworkX package imported under the name nx, and the
NumPy module imported under the name np.

Working with Trees and Networks Chapter 5

[148]

How to do it...
The following steps outline how to generate the adjacency matrix for a network and derive
some simple properties of the network from this matrix:

First, we will generate a network to work with throughout this recipe. We'll1.
generate a random network with five nodes and five edges while using a seed for
reproducibility:

G = nx.dense_gnm_random_graph(5, 5, seed=12345)

To generate the adjacency matrix, we use the adjacency_matrix routine from2.
NetworkX. This returns a sparse matrix by default, so we will also convert this
into a full NumPy array for this demonstration using the todense method:

matrix = nx.adjacency_matrix(G).todense()
print(matrix)
[[0 0 1 0 0]
[0 0 1 1 0]
[1 1 0 0 1]
[0 1 0 0 1]
[0 0 1 1 0]]

Taking the nth power of the adjacency matrix gives us the number of paths of3.
length n from one node to another:

paths_len_4 = np.linalg.matrix_power(matrix, 4)
print(paths_len_4)
[[3 5 0 0 5]
[5 9 0 0 9]
[0 0 13 10 0]
[0 0 10 8 0]
[5 9 0 0 9]]

How it works...
The dense_gnm_random_graph routine generates a (dense) random network, chosen
uniformly from the family of all networks with n nodes and m edges. In the recipe, n=5
and m=5. The dense prefix indicates that this routine uses an algorithm that should be faster
than the alternative gnm_random_graph for dense networks with a relatively large number
of edges compared to nodes.

Working with Trees and Networks Chapter 5

[149]

The adjacency matrix of a network is easy to generate, especially in sparse form, when the
graph is relatively small. For larger networks, this can be an expensive operation, so it
might not be practical, particularly if you convert it into a full matrix, as we saw in this
recipe. You don't need to do this in general, since we can simply use the sparse matrix
generated by the adjacency_matrix routine and the sparse linear algebra tools in the
SciPy sparse module instead.

The matrix powers provide information about the number of paths of a given length. This
can easily be seen by tracing through the definitions of matrix multiplication. Remember
that the entries of the adjacency matrix are 1 when there is an edge (path of length 1)
between two given nodes.

There's more...
The Eigenvalues of the adjacency matrix for a network provide some additional
information about the structure of the network, such as the bounds for the chromatic
number of the network. (See the Coloring a network recipe for more information about
coloring a network.) There is a separate routine for computing the Eigenvalues of the
adjacency matrix. For example, we can use the adjacency_spectrum routine to generate
the Eigenvalues of the adjacency matrix of a network. Methods involving the Eigenvalues
of a matrix associated with a network are usually called spectral methods.

There are other matrices associated with networks, such as the incidence matrix and
the Laplacian matrix. The incidence matrix of a network is an M × N matrix, where M is the
number of nodes and N is the number of edges. This has an i-jth entry of 1 if node i appears
in edge j and 0 otherwise. The Laplacian matrix of a network is defined to be the L = D -
A matrix, where D is the diagonal matrix containing the degrees of the nodes in the
network and A is the adjacency matrix of the network. Both of these matrices are useful for
analyzing networks.

Creating directed and weighted networks
Simple networks, such as those described in the previous recipes, are useful for describing
networks where the direction of an edge is unimportant and where the edges carry equal
weight. In practice, most networks carry additional information, such as weights or
direction.

In this recipe, we will create a directed and weighted network and explore some of the
basic properties of such networks.

Working with Trees and Networks Chapter 5

[150]

Getting ready
For this recipe, we will need the NetworkX package, imported under the name nx (as
usual), the Matplotlib pyplot module imported as plt, and the NumPy package imported
as np.

How to do it...
The following steps outline how to create a directed network with weights, as well as how
to explore some of the properties and techniques we discussed in the previous recipes:

To create a directed network, we use the DiGraph class from NetworkX rather1.
than the simple Graph class:

G = nx.DiGraph()

As usual, we add nodes to the network using the add_node or add_nodes_from2.
methods:

G.add_nodes_from(range(5))

To add weighted edges, we can use either the add_edge method and provide3.
the weight keyword argument, or use the add_weighted_edges_from method:

G.add_edge(0, 1, weight=1.0)
G.add_weighted_edges_from([
 (1, 2, 0.5), (1, 3, 2.0), (2, 3, 0.3), (3, 2, 0.3),
 (2, 4, 1.2), (3, 4, 0.8)
])

Next, we draw the network with arrows to indicate the direction of each edge.4.
We also provide our own positions for this plot:

fig, ax = plt.subplots()
pos = {0: (-1, 0), 1: (0, 0), 2: (1, 1), 3: (1, -1), 4: (2, 0)}
nx.draw(G, ax=ax, pos=pos, with_labels=True)
ax.set_title("Weighted, directed network")

Working with Trees and Networks Chapter 5

[151]

The resulting plot can be seen in the following figure:

Figure 5.3: A weighted, directed network

The adjacency matrix of a directed matrix is created in the same way as a simple5.
network, but the resulting matrix will not be symmetric:

adj_mat = nx.adjacency_matrix(G).todense()
print(adj_mat)
[[0. 1. 0. 0. 0.]
[0. 0. 0.5 2. 0.]
[0. 0. 0. 0.3 1.2]
[0. 0. 0.3 0. 0.8]
[0. 0. 0. 0. 0.]]

How it works...
The DiGraph class represents a directed network, where the order of the nodes when
adding an edge is important. In this recipe, we added two edges for connecting nodes 2 and
3, one in each direction. In a simple network (the Graph class), the addition of the second
edge would not add an additional edge. However, for a directed network (the DiGraph
class), the order that the nodes are given in when adding the edge determines the direction.

Working with Trees and Networks Chapter 5

[152]

There is nothing special about weighted edges except for the addition of the weight
attribute that's attached to the edge. (Arbitrary data can be attached to an edge or node in a
network via keyword arguments.) The add_weighted_edges_from method simply adds
the corresponding weight value (the third value in the tuple) to the edge in question.
Weights can be added to any edge in any network, not just the directed networks shown in
this recipe.

The draw routine automatically adds arrows to edges when drawing a directed network.
This behavior can be turned off by passing the arrows=False keyword argument. The
adjacency matrix for a directed or weighted network also differs from that of a simple
network. In a directed network, the matrix is not generally symmetrical, because edges may
exist in one direction but not the other. For a weighted network, the entries can be different
from 1 or 0, and will instead be the weight of the corresponding edge.

There's more...
Weighted networks appear in lots of applications, such as when describing transportation
networks with distances or speeds. You can also use networks to examine flow through a
network by providing a "capacity" for edges in the network (as a weight or as another
attribute). NetworkX has several tools for analyzing flow through a network, such as
finding the maximum flow through a network via the nx.maximum_flow routine.

Directed networks add directional information to a network. Many real-world applications
give rise to networks that have unidirectional edges, such as those in industrial processes or
supply chain networks. This additional directional information has consequences for many
of the algorithms for working with networks, as we'll see throughout this chapter.

Finding the shortest paths in a network
A common problem where networks make an appearance is in the problem of finding the
shortest – or perhaps more precisely, the highest reward – route between two nodes in a
network. For instance, this could be the shortest distance between two cities, where the
nodes represent the cities and the edges are roads connecting pairs of cities. In this case, the
weights of the edges would be their lengths.

In this recipe, we will find the shortest path between two nodes in a network with weights.

Working with Trees and Networks Chapter 5

[153]

Getting ready
For this recipe, we will need the NetworkX package imported, as usual, under the name nx,
the Matplotlib pyplot module imported as plt, and a random number generator object
from NumPy:

from numpy.random import default_rng
rng = default_rng(12345) # seed for reproducibility

How to do it...
Follow these steps to find the shortest path between two nodes in a network:

First, we will create a random network using gnm_random_graph and a seed for1.
this demonstration:

G = nx.gnm_random_graph(10, 17, seed=12345)

Next, we'll draw the network with a circular arrangement to see how the nodes2.
connect to each other:

fig, ax = plt.subplots()
nx.draw_circular(G, ax=ax, with_labels=True)
ax.set_title("Random network for shortest path finding")

The resulting plot can be seen in the following image. Here, we can see that there
is no direct edge from node 7 to node 9:

Figure 5.4: A randomly generated network with 10 nodes and 17 edges

Working with Trees and Networks Chapter 5

[154]

Now, we need to add a weight to each of the edges so that some routes are3.
preferable to others in terms of the shortest path:

for u, v in G.edges:
 G.edges[u, v]["weight"] = rng.integers(5, 15)

Next, we will compute the shortest path from node 7 to node 9 using the4.
nx.shortest_path routine:

path = nx.shortest_path(G, 7, 9, weight="weight")
print(path)
[7, 5, 2, 9]

We can find the length of this shortest path using the nx.shortest_path_5.
length routine:

length = nx.shortest_path_length(G, 7, 9, weight="weight")
print("Length", length)
Length 32

How it works...
The shortest_path routine computes the shortest path between each pair of nodes.
Alternatively, when supplied with the source and destination node, which is what we did
in this recipe, it computes the shortest path between the two specified nodes. We supplied
the optional weight keyword argument, which makes the algorithm find the shortest path
according to the "weight" attribute of the edge. This argument changes the meaning of
"shortest", with the default being "fewest edges".

The default algorithm for finding the shortest path between two nodes is Dijkstra's
algorithm, which is a staple of computer science and mathematics courses. It is a good
general-purpose algorithm but is not particularly efficient. Other route-finding algorithms
include the A* algorithm. Greater efficiency can be obtained by using the A* algorithm with
additional heuristic information to guide node selection.

There's more...
There are many algorithms for finding the shortest path between two nodes in a network.
There are also variants for finding the maximum weighted path.

Working with Trees and Networks Chapter 5

[155]

There are several related problems regarding finding the paths in a network, such as the
traveling salesperson problem and the route inspection problem. In the traveling salesperson
problem, we find a cycle (a path starting and ending at the same node) that visits every
node in the network, with the smallest (or largest) total weight. In the route inspection
problem, we seek the shortest cycle (by weight) that traverses every edge in the network
and returns to the starting point. The traveling salesperson problem is known to be NP-
hard, but the route inspection problem can be solved in polynomial time.

A famous problem in graph theory is the bridges at Königsberg, which asks to find a path
in a network that traverses every edge in the network exactly once. It turns out, as proved
by Euler, that finding such a path in the Königsberg bridges problem is impossible. A path
that traverses every edge exactly once is called an Eulerian circuit. A network that admits an
Eulerian circuit is called Eulerian. In fact, a network is Eulerian if and only if every node has
an even degree. The network representation of the Königsberg bridge problem can be seen
in the following image. The edges in this represent the different bridges over the rivers,
while the nodes represent the different landmasses. We can see that all four of the nodes
have an odd degree, which means that there cannot be a path that crosses every edge
exactly once:

Figure 5.5: A network representing the Königsberg bridge problem

The edges represent the bridges between the different landmasses represented by the
nodes.

Working with Trees and Networks Chapter 5

[156]

Quantifying clustering in a network
There are various quantities associated with networks that measure the characteristics of
the network. For example, the clustering coefficient of a node measures the
interconnectivity between the nodes nearby (here, nearby means connected by an edge). In
effect, it measures how close the neighboring nodes are to forming a complete network
or clique.

The clustering coefficient of a node measures the proportion of the adjacent nodes that are
connected by an edge; that is, two adjacent nodes form a triangle with the given node. We
count the number of triangles and divide this by the total number of possible triangles that
could be formed, given the degree of the node. Numerically, the clustering coefficient at a
node, u, in a simple unweighted network is given by the following equation:

Here, Tu is the number of triangles at u and the denominator is the total possible number of
triangles at u. If the degree of u (the number of edges from u) is 0 or 1, then we set cu to 0.

In this recipe, we will learn how to compute the clustering coefficient of a node in a
network.

Getting ready
For this recipe, we will need the NetworkX package imported as nx and the
Matplotlib pyplot module imported as plt.

Working with Trees and Networks Chapter 5

[157]

How to do it...
The following steps show you how to compute the clustering coefficient of a node in a
network:

First, we need to create a sample network to work with:1.

G = nx.Graph()
complete_part = nx.complete_graph(4)
cycle_part = nx.cycle_graph(range(4, 9))
G.update(complete_part)
G.update(cycle_part)
G.add_edges_from([(0, 8), (3, 4)])

Next, we will draw the network so that we can compare the clustering2.
coefficients that we'll be calculating. This will allow us to see how these nodes
appear in the network:

fig, ax = plt.subplots()
nx.draw_circular(G, ax=ax, with_labels=True)
ax.set_title("Network with different clustering behavior")

The resulting plot can be seen in the following figure:

Figure 5.6: Sample network for testing clustering

Working with Trees and Networks Chapter 5

[158]

Now, we can compute the clustering coefficients of the nodes in the network3.
using the nx.clustering routine:

cluster_coeffs = nx.clustering(G)

The output of the nx.clustering routine is a dictionary over the nodes in the4.
network. So, we can print some selected nodes as follows:

for i in [0, 2, 6]:
 print(f"Node {i}, clustering {cluster_coeffs[i]}")
Node 0, clustering 0.5
Node 2, clustering 1.0
Node 6, clustering 0

The average clustering coefficient for all the nodes in the network can be5.
computed using the nx.average_clustering routine:

av_clustering = nx.average_clustering(G)
print(av_clustering)
0.3333333333333333

How it works...
The clustering coefficient of a node measures how close the neighborhood of that node is to
being a complete network (all the nodes are connected to one another). In this recipe, we
can see that we have three different computed values: 0 has a clustering coefficient of 0.5, 2
has a clustering coefficient of 1.0, and 6 has a clustering coefficient of 0. This means that the
nodes connected to node 2 form a complete network, which is because we designed our
network in this way. (Nodes 0-4 form a complete network by design.) The neighborhood of
node 6 is very far from being complete since there are no interconnecting edges between
either of its neighbors.

The average clustering value is a simple average of the clustering coefficients over all the
nodes in the network. It is not quite the same as the global clustering coefficient (computed
using the nx.transitivity routine in NetworkX), but it does give us an idea of how close
the network as a whole is to being a complete network. The global clustering coefficient
measures the ratio of the number of triangles to the number of triplets – a collection of three
nodes that are connected by at least two edges – over the whole network.

Working with Trees and Networks Chapter 5

[159]

The difference between average clustering is quite subtle. The global clustering coefficient
measures the clustering of the network as a whole, but the average clustering coefficient
measures how much, on average, the network is locally clustered. The difference is best
seen in a windmill network, which consists of a single node surrounded by a circle of an
even number of nodes. All the nodes are connected to the center, but the nodes on the circle
are only connected in an alternating pattern. The outer nodes have a local clustering
coefficient of 1, while the center node has a local clustering coefficient of 1/(2N -
1), where N denotes the number of triangles joining to the center node. However, the global
clustering coefficient is 3/(2N - 1).

There's more...
Clustering coefficients are related to cliques in a network. A clique is a subnetwork that is
complete (all the nodes are connected by an edge). An important problem in network
theory is finding the maximal cliques in a network, which is a very difficult problem in
general (here, maximal means "cannot be made larger").

Coloring a network
Networks are also useful in scheduling problems, where you need to arrange activities into
different slots so that there are no conflicts. For example, we could use networks to
schedule classes to make sure that students who are taking different options do not have to
be in two classes at once. In this scenario, the nodes will represent the different classes and
the edges will indicate that there are students taking both classes. The process we use to
solve these kinds of problems is called network coloring. This process involves assigning the
fewest possible colors to the nodes in a network so that no two adjacent nodes have the
same color.

In this recipe, we will learn how to color a network to solve a simple scheduling problem.

Getting ready
For this recipe, we need the NetworkX package imported as nx and the Matplotlib pyplot
module imported as plt.

Working with Trees and Networks Chapter 5

[160]

How to do it...
Follow these steps to solve a network coloring problem:

First, we will create a sample network to use in this recipe:1.

G = nx.complete_graph(3)
G.add_nodes_from(range(3, 7))
G.add_edges_from([
 (2, 3), (2, 4), (2, 6), (0, 3), (0, 6), (1, 6),
 (1, 5), (2, 5), (4, 5)
])

Next, we will draw the network so that we can understand the coloring when it2.
is generated. For this, we will use the draw_circular routine:

fig, ax = plt.subplots()
nx.draw_circular(G, ax=ax, with_labels=True)
ax.set_title("Scheduling network")

The resulting plot can be seen in the following figure:

Figure 5.7: Example network for a simple scheduling problem

Working with Trees and Networks Chapter 5

[161]

We will generate the coloring using the nx.greedy_color routine:3.

coloring = nx.greedy_color(G)
print("Coloring", coloring)
Coloring {2: 0, 0: 1, 1: 2, 5: 1, 6: 3, 3: 2, 4: 2}

To see the actual colors that were used in this coloring, we will generate a set of4.
values from the coloring dictionary:

different_colors = set(coloring.values())
print("Different colors", different_colors)
Different colors {0, 1, 2, 3}

How it works...
The nx.greedy_color routine colors the network using one of a number of possible
strategies. By default, it works in order of degree from largest to smallest. In our case, it
started by assigning color 0 to node 2, which has a degree of 6, then color 1 to node 0, which
has a degree of 4, and so on. The first available color is chosen for each node in this
sequence. This is not necessarily the most efficient algorithm for coloring a network.

Obviously, any network can be colored by assigning every node a different color, but in
most cases, fewer colors are necessary. In the recipe, the network has seven nodes, but only
four colors are required. The smallest number of colors necessary is called the chromatic
number of the network.

There's more...
There are several variations of the coloring problem for networks. One such variation is
the list coloring problem, in which we seek a coloring for a network where each node is given
a color from a predefined list of possible colors. This problem is obviously more difficult
than the general coloring problem.

The general coloring problem has surprising results. For example, every planar network
can be colored by, at most, four different colors. This is a famous theorem from graph
theory called the four-color theorem, and was proved by Appel and Haken in 1977.

Working with Trees and Networks Chapter 5

[162]

Finding minimal spanning trees and
dominating sets
Networks have applications for a wide variety of problems. Two obvious areas that see
many applications are communication and distribution. For example, we might wish to
find a way of distributing goods to a number of cities (nodes) in a road network that covers
the smallest distance from a particular point. For problems like this, we need to look at
minimal spanning trees and dominating sets.

In this recipe, we will find a minimal spanning tree and a dominating set in a network.

Getting ready
For this recipe, we need to import the NetworkX package under the name nx and the
Matplotlib pyplot module as plt.

How to do it...
Follow these steps to find a minimum spanning tree and dominating set for a network:

First, we will create a sample network to analyze:1.

G = nx.gnm_random_graph(15, 22, seed=12345)

Next, as usual, we will draw the network before doing any analysis:2.

fig, ax = plt.subplots()
pos = nx.circular_layout(G)
nx.draw(G, pos=pos, ax=ax, with_labels=True)
ax.set_title("Network with minimum spanning tree overlaid")

The minimum spanning tree can be computed using the nx.minimum_3.
spanning_tree routine:

min_span_tree = nx.minimum_spanning_tree(G)
print(list(min_span_tree.edges))
[(0, 13), (0, 7), (0, 5), (1, 13), (1, 11),
(2, 5), (2, 9), (2, 8), (2, 3), (2, 12),
(3, 4), (4, 6), (5, 14), (8, 10)]

Working with Trees and Networks Chapter 5

[163]

Next, we will overlay the edges of the minimum spanning tree onto the plot:4.

nx.draw_networkx_edges(min_span_tree, pos=pos, ax=ax, width=1.5,
 edge_color="r")

Finally, we will find a dominating set – a set where every node in the network is5.
adjacent to at least one node from the set – for the network using
the nx.dominating_set routine:

dominating_set = nx.dominating_set(G)
print("Dominating set", dominating_set)
Dominating set {0, 1, 2, 4, 10, 14}

A plot of the network with the minimum spanning tree overlaid can be seen in
the following figure:

Figure 5.8: The network drawn with the minimum spanning tree overlaid

How it works...
A spanning tree of a network is a tree contained in the network that contains all the nodes.
A minimum spanning tree is a spanning tree that contains the fewest edges possible – or,
alternatively, has the lowest total weight. Minimum spanning trees are useful for
distribution problems over a network. A simple algorithm for finding minimum spanning
trees is to simply select edges (of smallest weight first, if the network is weighted) in such a
way that it does not create cycles until this is no longer possible.

Working with Trees and Networks Chapter 5

[164]

A dominating set for a network is a set of vertices where every node in the network is
adjacent to at least one node in the dominating set. Dominating sets have applications in
communication networks. We are often interested in finding minimal dominating sets, but
this is computationally difficult. In fact, testing whether there is a dominating set that's
smaller than a given size is NP-complete. However, there are some efficient algorithms for
finding the smallest dominating sets for certain classes of graphs. Informally speaking, the
problem is that once you've identified a candidate for a minimum size dominating set, you
have to verify that there are no dominating sets that are smaller in size. This is obviously
very difficult if you do not know all the possible dominating sets in advance.

Further reading
There are several classical texts on graph theory, including books by Bollobás and Diestel:

Diestel, R., 2010. Graph Theory. 3rd ed. Berlin: Springer.
Bollobás, B., 2010. Modern Graph Theory. New York, NY: Springer.

6
Working with Data and

Statistics
One of the most attractive features of Python for people who need to analyze data is the
huge ecosystem of data manipulation and analysis packages, as well as the active
community of data scientists working with Python. Python is easy to use, while also
offering very powerful, fast libraries, which enables even relatively novice programmers to
quickly and easily process vast sets of data. At the heart of many data science packages and
tools is the pandas library. Pandas provides two data container types that build on top of
NumPy arrays and have good support for labels (other than simple integers). They also
make working with large sets of data extremely easy.

Statistics is the systematic study of data using mathematical—specifically,
probability—theory. There are two aspects to statistics. The first is to find numerical values
that describe a set of data, including characteristics such as the center (mean or median) and
spread (standard deviation or variance) of the data. The second aspect of statistics is
inference, describing a much larger set of data (a population) using a relatively small
sample dataset.

In this chapter, we will see how to leverage Python and pandas to work with large sets of
data and perform statistical tests.

This chapter contains the following recipes:

Creating Series and DataFrame objects
Loading and storing data from a DataFrame
Manipulating data in DataFrames
Plotting data from a DataFrame
Getting descriptive statistics from a DataFrame
Understanding a population using sampling
Testing hypotheses using t-tests

Working with Data and Statistics Chapter 6

[166]

Testing hypotheses using ANOVA
Testing hypotheses for non-parametric data
Creating interactive plots with Bokeh

Technical requirements
For this chapter, we will mostly make use of the pandas library for data manipulation,
which provides R like data structures, such as Series and DataFrame objects, for storing,
organizing, and manipulating data. We will also use the Bokeh data visualization library in
the final recipe of this chapter. These libraries can be installed using your favorite package
manager, such as pip:

python3.8 -m pip install pandas bokeh

We will also make use of the NumPy and SciPy packages.

The code for this chapter can be found in the Chapter 06 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2006.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​2OQs6NX.

Creating Series and DataFrame objects
Most data handling in Python is done using the pandas library, which builds on NumPy to
provide R-like structures for holding data. These structures allow the easy indexing of rows
and columns, using strings or other Python objects besides just integers. Once data is
loaded into a pandas DataFrame or Series, it can be easily manipulated, just as if it were
in a spreadsheet. This makes Python when combined with pandas a powerful tool for
processing and analyzing data.

In this recipe, we will see how to create new pandas Series and DataFrame objects and
access items from Series or DataFrame.

Getting ready
For this recipe, we will import the pandas library as pd using the following command:

import pandas as pd

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2006
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX
https://bit.ly/2OQs6NX

Working with Data and Statistics Chapter 6

[167]

The NumPy package is np. We also create a (seeded) random number generator from
NumPy, as follows:

from numpy.random import default_rng
rng = default_rng(12345)

How to do it...
The following steps outline how to create a Series and DataFrame object that holds data:

 First, create the random data that we will store in the Series and DataFrame1.
objects:

diff_data = rng.normal(0, 1, size=100)
cumulative = np.add.accumulate(diff_data)

Next, create a Series object that holds diff_data. We'll print Series to2.
produce a view of the data:

data_series = pd.Series(diff_data)
print(data_series)

Now, create a DataFrame object with two columns:3.

data_frame = pd.DataFrame({
 "diffs": data_series,
 "cumulative": cumulative
})

Print the DataFrame object to produce a view of the data it holds:4.

print(data_frame)

How it works...
The pandas package provides the Series and DataFrame classes, which mirror the
function and capabilities of their R counterparts. Series is used to store one-dimensional
data, such as time-series data, and DataFrame is used to store multidimensional data; you
can think of a DataFrame object as a "spreadsheet."

Working with Data and Statistics Chapter 6

[168]

What separates Series from a simple NumPy ndarray is the way that Series indexes its
items. A NumPy array is indexed by integers, which is also the default for a Series object.
However, Series can be indexed by any hashable Python object, including strings
and datetime objects. This makes Series useful for storing time-series data. A Series
can be created in a number of ways. In this recipe, we used a NumPy array, but any Python
iterable, such as a list, can be used instead.

Each column in a DataFrame object is a series containing rows, just as in a traditional
database or spreadsheet. In this recipe, the columns are given labels when
the DataFrame object is constructed via the keys of the dictionary.

The DataFrame and Series objects create a summary of the data they contain when
printed. This includes column names, the number of rows and columns, and the first and
last five rows of the frame (series). This is useful for quickly obtaining an overview of the
object and the spread of data it contains.

There's more...
The individual rows (records) of a Series object can be accessed using the usual index
notation by providing the corresponding index. We can also access the rows by their
numerical position using the special iloc property object. This allows us to access the rows
by their numerical (integer) index, such as with Python lists or NumPy arrays.

The columns in a DataFrame object can be accessed using the usual index notation,
providing the name of the column. The result of this is a Series object that contains the
data from the selected column. DataFrames also provides two properties that can be used
to access data. The loc attribute provides access to individual rows by their index,
whatever this object may be. The iloc attribute provides access to the rows by numerical
index, just as for the Series object.

You can provide selection criteria to loc (or just using index notation for the object) to
select data. This includes a single label, a list of labels, a slice of labels, or a Boolean array
(of an appropriate size). The iloc selection method accepts similar criteria.

There are other ways to select data from a Series or DataFrame object beyond the simple
methods we describe here. For example, we can use the at attribute to access a single value
at a specified row (and column) in the object.

Working with Data and Statistics Chapter 6

[169]

See also
The pandas documentation contains a detailed description of the different ways to create
and index a DataFrame or Series object, at https:/ ​/​pandas. ​pydata. ​org/​docs/ ​user_
guide/​indexing.​html.

Loading and storing data from a DataFrame
It is fairly unusual to create a DataFrame object from the raw data in a Python session. In
practice, the data will often come from an external source, such as an existing spreadsheet
or CSV file, database, or API endpoint. For this reason, pandas provides numerous utilities
for loading and storing data to file. Out of the box, pandas supports loading and storing
data from CSV, Excel (xls or xlsx), JSON, SQL, Parquet, and Google BigQuery. This
makes it very easy to import your data into pandas and then manipulate and analyze this
data using Python.

In this recipe, we will see how to load and store data into a CSV file. The instructions will
be similar for loading and storing data to other file formats.

Getting ready
For this recipe, we will need to import the pandas package under the pd alias and the
NumPy library as np, and we create a default random number generator from NumPy
using the following commands:

from numpy.random import default_rng
rng = default_rng(12345) # seed for example

How to do it...
Follow these steps to store data to a file and then load the data back into Python:

First, we'll create a sample DataFrame object using random data. We then print1.
this DataFrame object so that we can compare it to the data that we will read
later:

diffs = rng.normal(0, 1, size=100)
cumulative = np.add.accumulate(diffs)

data_frame = pd.DataFrame({

https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html
https://pandas.pydata.org/docs/user_guide/indexing.html

Working with Data and Statistics Chapter 6

[170]

 "diffs": diffs,
 "cumulative": cumulative
})
print(data_frame)

We will store the data in this DataFrame object into the sample.csv file using2.
the to_csv method on the DataFrame object. We will use the index=False
keyword argument so that the index is not stored in the CSV file:

data_frame.to_csv("sample.csv", index=False)

Now, we can use the read_csv routine from pandas to read the sample.csv file3.
into a new DataFrame object. We will print this object to show the result:

df = pd.read_csv("sample.csv", index_col=False)
print(df)

How it works...
The core of this recipe is the read_csv routine in pandas. This routine takes path- or file-
like objects as an argument and reads the contents of the file as CSV data. We can customize
the delimiter using the sep keyword argument, which is a comma (,) by default. There are
also options to customize the column headers and customize the type of each column.

The to_csv method in a DataFrame or Series stores the contents into a CSV file. We used
the index keyword argument here so that the indices are not printed into the file. This
means that pandas will infer the index from the row number in the CSV file. This behavior
is desirable if the data is indexed by integers, but this might not be the case if the data is
indexed by times or dates, for example. We can also use this keyword argument to specify
which column in the CSV file is the indexing column.

See also
See the pandas documentation for a list of supported file formats at https:/ ​/​pandas.
pydata.​org/​docs/ ​reference/ ​io. ​html.

https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/docs/reference/io.html

Working with Data and Statistics Chapter 6

[171]

Manipulating data in DataFrames
Once we have data in a DataFrame, we often need to apply some simple transformations or
filters to the data before we can perform any analysis. This could include, for example,
filtering the rows that are missing data or applying a function to individual columns.

In this recipe, we will see how to perform some basic manipulation of DataFrame objects to
prepare the data for analysis.

Getting ready
For this recipe, we will need the pandas package imported under the pd alias, the NumPy
package imported under the np alias, and a default random number generator object from
NumPy created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)

How to do it...
The following steps illustrate how to perform some basic filtering and manipulations on a
pandas DataFrame:

We will first create a sample DataFrame using random data:1.

three = rng.uniform(-0.2, 1.0, size=100)
three[three < 0] = np.nan

data_frame = pd.DataFrame({
 "one": rng.random(size=100),
 "two": np.add.accumulate(rng.normal(0, 1, size=100)),
 "three": three
})

Next, we have to generate a new column from an existing column. This new2.
column will hold True if the corresponding entry of column "one" is greater
than 0.5, and False otherwise:

data_frame["four"] = data_frame["one"] > 0.5

Working with Data and Statistics Chapter 6

[172]

We now have to create a new function that we will apply to our DataFrame. This3.
function multiplies the row "two" value by the maximum of row "one" and 0.5
(there are more concise ways to write this function):

def transform_function(row):
 if row["four"]:
 return 0.5*row["two"]
 return row["one"]*row["two"]

We will now apply the previously defined function to each row in4.
the DataFrame to generate a new column. We will also print the updated
DataFrame for comparison later:

data_frame["five"] = data_frame.apply(transform_function, axis=1)
print(data_frame)

Finally, we have to filter out the rows in the DataFrame that contain a Not a5.
Number (NaN) value. We will print the resulting DataFrame:

df = data_frame.dropna()
print(df)

How it works...
New columns can be added to an existing DataFrame by simply assigning them to the new
column index. However, some care needs to be taken here. In some situations, pandas will
create a "view" to a DataFrame object rather than copying, and in this case, assigning to a
new column might not have the desired effect. This is discussed in the pandas
documentation (https:/ ​/​pandas. ​pydata. ​org/ ​pandas- ​docs/ ​stable/ ​user_ ​guide/
indexing.​html#returning- ​a- ​view- ​versus- ​a-​copy).

Pandas Series objects (columns in a DataFrame) support the rich comparison operators,
such as equality and less than or greater than (in this recipe, we used the greater than
operator). These comparison operators return a Series containing Boolean values
corresponding to the positions at which the comparison was true and false. This can, in
turn, be used to index the original Series and get just the rows where the comparison was
true. In this recipe, we have simply added this Series of Boolean values to the
original DataFrame.

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Working with Data and Statistics Chapter 6

[173]

The apply method takes a function (or other callable function) and applies it to each
column in the DataFrame. In this recipe, we instead wanted to apply the function to each
row, so we used the axis=1 keyword argument to apply the function to each row in
the DataFrame. In either case, the function is provided with a Series object indexed by the
rows (columns). We have also applied a function to each row, which returned a value
computed using the data from each row. In practice, this application would be quite slow if
the DataFrame contains a large number of rows. If possible, you should operate on the
columns as a whole, using functions designed to operate on NumPy arrays, for better
efficiency. This is especially true for performing simple arithmetic on values in columns of
a DataFrame. Just like NumPy arrays, Series objects implement standard arithmetic
operations, which can greatly improve the operation time for large DataFrames.

In the final step of this recipe, we used the dropna method to quickly select only the rows
from the DataFrames that do not contain a NaN value. Pandas uses NaN to represent
missing data in a DataFrame, so this method selects the rows that don't contain a missing
value. This method returns a view to the original DataFrame object, but it can also modify
the original DataFrame by passing the inplace=True keyword argument. As used in this
recipe, this is roughly equivalent to using the indexing notation to select rows using an
indexing array containing Boolean values.

You should always be cautious when modifying original data directly
since it might not be possible to return to this data to repeat your analysis
later. If you do need to modify the data directly, you should make sure
that it is either backed up or that the modifications do not remove data
that you might later need.

There's more...
Most pandas routines deal with missing data (NaN) in a sensible way. However, if you do
need to remove or replace missing data in a DataFrame, then there are several ways to do
this. In this recipe, we have used the dropna method to simply drop the rows from the
DataFrames that are missing data. We could instead fill all the missing values with a
specific value using the fillna method, or interpolate missing values using the
surrounding values using the interpolate method.

Working with Data and Statistics Chapter 6

[174]

More generally, we can use the replace method to replace specific (non-NaN) values with
other values. This method can work with both numeric values or string values, including
pattern-matching with regex.

The DataFrame class has many useful methods. We've only covered the very basic
methods here, but there are two other methods that we should also mention. These are
the agg method and the merge method.

The agg method aggregates the results of one or more operations over a given axis of
the DataFrame. This allows us to quickly produce summary information for each column
(or row) by applying an aggregating function. The output is a DataFrame that has the
names of the functions applied as the rows, and the labels for the chosen axis (column
labels, for instance) for the columns.

The merge method performs a SQL-like join over two DataFrames. This will produce a
new DataFrame that contains the result of the join. There are various parameters that can be
passed to the how keyword argument to specify the type of merge to be performed, with the
default being inner. The name of the column or index over which to perform the join
should be passed to either the on keyword argument—if both DataFrame objects contain
the same key—or to left_on and right_on.

Plotting data from a DataFrame
As with many mathematical problems, one of the first steps to find some way to visualize
the problem and all the information is to formulate a strategy. For data-based problems,
this usually means producing a plot of the data and visually inspecting it for trends,
patterns, and the underlying structure. Since this is such a common operation, pandas
provides a quick and simple interface for plotting data in various forms, using Matplotlib
under the hood by default, directly from a Series or DataFrame.

In this recipe, we will see how to plot data directly from a DataFrame or Series to
understand the underlying trends and structure.

Working with Data and Statistics Chapter 6

[175]

Getting ready
For this recipe, we will need the pandas library import as pd, the NumPy library import
as np, the matplotlib pyplot module imported as plt, and a default random number
generator instance created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)

How to do it...
Follow these steps to create a simple DataFrame using random data and produce plots of
the data it contains:

Create a sample DataFrame using random data:1.

diffs = rng.standard_normal(size=100)
walk = np.add.accumulate(diffs)
df = pd.DataFrame({
 "diffs": diffs,
 "walk": walk
})

Next, we have to create a blank figure with two subplots ready for plotting:2.

fig, (ax1, ax2) = plt.subplots(1, 2, tight_layout=True)

We have to plot the walk column as a standard line graph. This is done by using3.
the plot method on the Series (column) object without additional arguments.
We will force the plotting on ax1 by passing the ax=ax1 keyword argument:

df["walk"].plot(ax=ax1, title="Random walk")
ax1.set_xlabel("Index")
ax1.set_ylabel("Value")

Now, we have to plot a histogram of the diffs column by passing4.
the kind="hist" keyword argument to the plot method:

df["diffs"].plot(kind="hist", ax=ax2, title="Histogram of diffs")
ax2.set_xlabel("Difference")

Working with Data and Statistics Chapter 6

[176]

The resulting plots are shown here:

Figure 6.1 – Plot of the walk value and a histogram of differences from a DataFrame

How it works...
The plot method on a Series (or a DataFrame) is a quick way to plot the data it contains
against the row index. The kind keyword argument is used to control the type of plot that
is produced, with a line plot being the default. There are lots of options for the plotting
type, including bar for a vertical bar chart, barh for a horizontal bar chart, hist for a
histogram (also seen in this recipe), box for a box plot, and scatter for a scatter plot. There
are several other keyword arguments to customize the plot that it produces. In this recipe,
we also provided the title keyword argument to add a title to each subplot.

Since we wanted to put both plots on the same figure side by side using subplots that we
had already created, we used the ax keyword argument to pass in the respective axes
handles to the plotting routine. Even if you let the plot method construct its own figure,
you may still need to use the plt.show routine in order to display the figure with certain
settings.

Working with Data and Statistics Chapter 6

[177]

There's more...
We can produce several common types of plots using the pandas interface. This includes, in
addition to those mentioned in this recipe, scatter plots, bar plots (horizontal bars and
vertical bars), area plots, pie charts, and box plots. The plot method also accepts various
keyword arguments to customize the appearance of the plot.

Getting descriptive statistics from a
DataFrame
Descriptive statistics, or summary statistics, are simple values associated with a set of data,
such as the mean, median, standard deviation, minimum, maximum, and quartile values.
These values describe the location and spread of a dataset in various ways. The mean and
median are measures of the center (location) of the data, and the other values measure the
spread of the data from the mean and median. These statistics are vital in understanding a
dataset and form the basis for many techniques for analysis.

In this recipe, we will see how to generate descriptive statistics for each column in a
DataFrame.

Getting ready
For this recipe, we need the pandas package imported as pd, the NumPy package imported
as np, the matplotlib pyplot module imported as plt, and a default random number
generator created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)

Working with Data and Statistics Chapter 6

[178]

How to do it...
The following steps show how to generate descriptive statistics for each column in
a DataFrame:

We will first create some sample data that we can analyze:1.

uniform = rng.uniform(1, 5, size=100)
normal = rng.normal(1, 2.5, size=100)
bimodal = np.concatenate([rng.normal(0, 1, size=50),
 rng.normal(6, 1, size=50)])
df = pd.DataFrame({
 "uniform": uniform,
 "normal": normal,
 "bimodal": bimodal
})

Next, we plot histograms of the data so that we can understand the distribution2.
of the data in the DataFrame:

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, tight_layout=True)

df["uniform"].plot(kind="hist", title="Uniform", ax=ax1)
df["normal"].plot(kind="hist", title="Normal", ax=ax2)
df["bimodal"].plot(kind="hist", title="Bimodal", ax=ax3, bins=20)

Pandas DataFrame objects have a method for getting several common 3.
descriptive statistics for each column. The describe method creates a
new DataFrame, where the column headers are the same as from the original
object and each row contains a different descriptive statistic:

descriptive = df.describe()

We also compute the kurtosis and add this to the new DataFrame we just4.
obtained. We also print the descriptive statistics to the console to see what the
values are:

descriptive.loc["kurtosis"] = df.kurtosis()
print(descriptive)
uniform normal bimodal
count 100.000000 100.000000 100.000000
mean 2.813878 1.087146 2.977682
std 1.093795 2.435806 3.102760
min 1.020089 -5.806040 -2.298388
25% 1.966120 -0.498995 0.069838
50% 2.599687 1.162897 3.100215
75% 3.674468 2.904759 5.877905

Working with Data and Statistics Chapter 6

[179]

max 4.891319 6.375775 8.471313
kurtosis -1.055983 0.061679 -1.604305

Finally, we add vertical lines to the histograms to illustrate the value of the mean5.
in each case:

uniform_mean = descriptive.loc["mean", "uniform"]
normal_mean = descriptive.loc["mean", "normal"]
bimodal_mean = descriptive.loc["mean", "bimodal"]
ax1.vlines(uniform_mean, 0, 20)
ax2.vlines(uniform_mean, 0, 25)
ax3.vlines(uniform_mean, 0, 20)

The resulting histograms are shown here:

Figure 6.2 – Histograms of three sets of data with their mean values indicated

Working with Data and Statistics Chapter 6

[180]

How it works...
The describe method returns a DataFrame with rows for the following descriptive
statistics of the data: the count, mean, standard deviation, minimum value, 25% quartile,
median (50% quartile), 75% quartile, and maximum value. The count is fairly self-
explanatory, as are the minimum and maximum values. The mean and the median are two
different averages of the data, which roughly represent the central value of the data. The
mean is defined in a familiar way as the sum of all values divided by the number of values.
We can express this quantity using the following formula:

Here, the xi values represent the data values and N is the number (count) of values. Here,
we also adopt the common notation of the bar to represent the mean value. The median is
the "middle value" when all the data is sorted (taking an average of the two middle values
if there are an odd number of values). The quartile values at 25% and 75% are similarly
defined, but taking the value at 25% or 75% of the way through the ordered values. You
might also think of the minimum as the 0% quartile and the maximum as the 100% quartile.

Standard deviation is a measure of the spread of the data from the mean and is related to
another quantity that is frequently mentioned in statistics, the variance. The variance is the
square of the standard deviation and is defined as follows:

You might also see N – 1 appear in the fraction here, which is a correction for bias when
estimating population parameters from a sample. We will discuss population parameters
and their estimation in the next recipe. Standard deviation, variance, the quartiles, and the
maximum and minimum values describe the spread of the data. For example, if the
maximum value is 5, the minimum value is 0, the 25% quartile is 2, and the 75% quartile is
4, then this indicates that most (at least 50% of the values, in fact) of the data is concentrated
between 2 and 4.

Working with Data and Statistics Chapter 6

[181]

The kurtosis is a measure of how much the data is concentrated in the "tails" of the
distribution (far from the mean). This is not as common as the other quantities we have
discussed in this recipe, but it does appear in some analysis. We have included it here
mostly as a demonstration of how to compute summary statistic values that do not appear
in the DataFrame returned from the describe method using the appropriately named
method—here, kurtosis. There are, of course, separate methods for computing the mean
(mean), standard deviation (std), and the other quantities from the describe method.

When pandas computes the quantities described in this recipe, it will
automatically ignore any "missing values" represented by NaN. This will
also be reflected in the count reported in the descriptive statistics.

There's more...
The third dataset that we included in our statistics illustrates the importance of looking at
the data to make sure the values we have calculated make sense. Indeed, we compute the
mean as approximately 2.9, but looking at the histogram, it is clear that most of the data is
relatively far from this value. We should always check whether the summary statistics that
we calculate give an accurate summary of the data in our sample. Simply quoting the mean
might give an inaccurate representation of the sample.

Understanding a population using sampling
One of the central problems in statistics is to make estimations—and quantify how good
these estimations are—of the distribution of an entire population given only a small
(random) sample. A classic example is to estimate the average height of all the people in a
country when measuring the height of a randomly selected sample of people. These kinds
of problems are particularly interesting when the true population distribution, by which we
usually mean the mean of the whole population, cannot feasibly be measured. In this case,
we must rely on our knowledge of statistics and a (usually much smaller) randomly
selected sample to estimate the true population mean and standard deviation, and also
quantify how good our estimations are. It is the latter that is the source of confusion,
misunderstanding, and misrepresentation of statistics in the wider world.

In this recipe, we will see how to estimate the population mean and give a confidence
interval for these estimates.

Working with Data and Statistics Chapter 6

[182]

Getting ready
For this recipe, we need the pandas package import as pd, the math module from the
Python standard library, and the SciPy stats module, imported using the following
command:

from scipy import stats

How to do it...
In the following steps, we will give an estimation of the mean height of males in the United
Kingdom, based on a randomly selected sample of 20 people:

We have to load our sample data into a pandas Series:1.

sample_data = pd.Series(
 [172.3, 171.3, 164.7, 162.9, 172.5, 176.3, 174.8, 171.9,
 176.8, 167.8, 164.5, 179.7, 157.8, 170.6, 189.9, 185. ,
 172.7, 165.5, 174.5, 171.5]
)

Next, we will compute the sample mean and standard deviation:2.

sample_mean = sample_data.mean()
sample_std = sample_data.std()
print(f"Mean {sample_mean}, st. dev {sample_std}")
Mean 172.15, st. dev 7.473778724383846

Then, we will compute the standard error, as follows:3.

N = sample_data.count()
std_err = sample_std/math.sqrt(N)

We will compute the critical values for the confidence values we desire from the4.
student t distribution:

cv_95, cv_99 = stats.t.ppf([0.975, 0.995], df=N-1)

Now, we can compute the 95% and 99% confidence intervals for the true5.
population mean using the following code:

pm_95 = cv_95*std_err
conf_interval_95 = [sample_mean - pm_95, sample_mean + pm_95]
pm_99 = cv_99*std_err
conf_interval_99 = [sample_mean - pm_99, sample_mean + pm_99]

Working with Data and Statistics Chapter 6

[183]

print("95% confidence", conf_interval_95)
95% confidence [168.65216388659374, 175.64783611340627]
print("99% confidence", conf_interval_99)
99% confidence [167.36884119608774, 176.93115880391227]

How it works...
The key to parameter estimation is normal distribution, which we discussed in Chapter 4,
Working with Randomness and Probability. If we find the critical value of z for which the
probability that a standard, normally distributed random number lies below this value z is
97.5%, then the probability that such a number lies between the values of -z and z is 95%
(2.5% in each tail). This critical value of z turns out to be 1.96, rounded to 2 decimal places.
That is, we can be 95% sure that the value of a standard normally distributed random
number lies between -z and z. Similarly, the critical value of 99% confidence is 2.58
(rounded to 2 decimal places).

If our sample is "large," we could invoke the central limit theorem, which tells us that even
if the population is not normally distributed itself, the means of random samples drawn
from this population will be normally distributed with the same mean as the whole
population. However, this is only valid assuming our samples are large. In this recipe, the
sample is not large—it only has 20 values, which is certainly not large compared to the
male population of the UK. This means that, rather than the normal distribution, we have to
use a student t distribution with N-1 degrees of freedom to find our critical values, where N
is the size of our sample. For this, we use the stats.t.ppf routine from the SciPy stats
module.

The student t distribution is related to the normal distribution but has a parameter—the
degree of freedom—that changes the shape of the distribution. As the number of degrees of
freedom increases, the student t distribution will look more and more like a normal
distribution. The point at which you consider the distributions to be sufficiently similar
depends on your application and your data. A general rule of thumb says that a sample
size of 30 is sufficient to invoke the central limit theorem and simply use the normal
distribution, but it is by no means a good rule. You should be very careful when making
deductions based on a sample, especially if the sample is very small compared to the total
population. (Clearly, using a sample size of 20 would be pretty descriptive if the total
population consists of 30 people, but not if the total population consists of 30 million
people.)

Working with Data and Statistics Chapter 6

[184]

Once we have the critical values, the confidence interval for the true population mean can
be computed by multiplying the critical value by the standard error of the sample and
adding and subtracting this from the sample mean. The standard error is an approximation
of the spread of the distribution of sample means of a given sample size from the true
population mean. This is why we use the standard error to give the confidence interval for
our estimation of the population mean. When we multiply the standard error by the critical
value taken from the student t distribution (in this case), we obtain an estimate of the
maximum difference between the observed sample mean and the true population mean at
the given confidence level.

In this recipe, that means that we are 95% certain that the mean height of UK males lies
between 168.7 cm and 175.6 cm, and we are 99% certain that the mean height of UK males
lies between 167.4 cm and 176.9 cm. In fact, our sample was drawn from a population with
a mean of 175.3 cm and a standard deviation of 7.2 cm. This true mean (175.3 cm) does
indeed lie within both of our confidence intervals, but only just.

See also
There is a useful package called uncertainties for doing computations involving values
with some uncertainty attached. See the Accounting for uncertainty in calculations recipe in
Chapter 10, Miscellaneous Topics.

Testing hypotheses using t-tests
One of the most common tasks in statistics is to test the validity of a hypothesis about the
mean of a normally distributed population given that you have collected sample data from
that population. For example, in quality control, we might wish to test that the thickness of
a sheet produced at a mill is 2 mm. To test this, we would randomly select sample sheets
and measure the thickness to obtain our sample data. Then, we can use a t-test to test
our null hypothesis, H0, that the mean paper thickness is 2 mm, against the alternative
hypothesis, H1, that the mean paper thickness is not 2 mm. We use the SciPy stats module
to compute a t statistic and a p value. If the p value is below 0.05, then we accept the null
hypothesis with 5% significance (95% confidence). If the p value is larger than 0.05, then we
must reject the null hypothesis in favor of our alternative hypothesis.

In this recipe, we will see how to use a t-test to test whether the assumed population mean
is valid given a sample.

Working with Data and Statistics Chapter 6

[185]

Getting ready
For this recipe we will need the pandas package imported as pd and the SciPy stats
module imported using the following command:

from scipy import stats

How to do it...
Follow these steps to use a t-test to test the validity of a proposed population mean given
some sample data:

We will first load the data into a pandas Series:1.

sample = pd.Series([
 2.4, 2.4, 2.9, 2.6, 1.8, 2.7, 2.6, 2.4, 2.8, 2.4, 2.4,
 2.4, 2.7, 2.7, 2.3, 2.4, 2.4, 3.2, 2.2, 2.5, 2.1, 1.8,
 2.9, 2.5, 2.5, 3.2, 2. , 2.3, 3. , 1.5, 3.1, 2.5, 3.1,
 2.4, 3. , 2.5, 2.7, 2.1, 2.3, 2.2, 2.5, 2.6, 2.5, 2.8,
 2.5, 2.9, 2.1, 2.8, 2.1, 2.3
])

Now, set the hypothesized population mean and the significance level that we2.
will be testing at:

mu0 = 2.0
significance = 0.05

Next, use the ttest_1samp routine from the SciPy stats module to generate3.
the t statistic and the p value:

t_statistic, p_value = stats.ttest_1samp(sample, mu0)
print(f"t stat: {t_statistic}, p value: {p_value}")
t stat: 9.752368720068665, p value: 4.596949515944238e-13

Finally, test whether the p value is smaller than the significance level we chose:4.

if p_value <= significance:
 print("Reject H0 in favour of H1: mu != 2.0")
else:
 print("Accept H0: mu = 2.0")
Reject H0 in favour of H1: mu != 2.0

Working with Data and Statistics Chapter 6

[186]

How it works...
The t statistic is computed using the following formula:

Here, μ0 is the hypothesized mean (from the null hypothesis), x bar is the sample mean, s is
the sample standard deviation, and N is the size of the sample. The t statistic is an
estimation of the difference between the observed sample mean and the hypothesized
population mean, μ0, normalized by the standard error. Assuming the population is
normally distributed, the t statistic will follow a t distribution with N-1 degrees of
freedom. Looking at where the t statistic lies within in the corresponding student t
distribution gives us an idea of how likely it is that the sample mean we observed came
from the population with the hypothesized mean. This is given in the form of a p value.

The p value is the probability of observing a more extreme value than the sample mean we
have observed, given the assumption that the population mean is equal to μ0. If the p value
is smaller than the significance value we have chosen, then we cannot expect the true
population mean to be the value, μ0, that we assumed. In this case, we have to accept the
alternative hypothesis that the true population norm is not equal to μ0.

There's more...
The test that we demonstrated in this recipe is the most basic use of a t-test. Here, we
compared the sample mean to a hypothesized population mean to decide whether it was
reasonable that the mean of the whole population is this hypothesized value. More
generally, we can use t-tests to compare two independent populations given samples taken
from each using a 2-sample t-test, or compare the populations where data is paired (in
some way) using a paired t-test. This makes the t-test an important tool for a statistician.

Significance and confidence are two concepts that occur frequently in statistics. A
statistically significant result is one that has a high probability of being correct. In many
contexts, we consider any result that has a probability of being wrong below a certain
threshold (usually either 5% or 1%) to be statistically significant. Confidence is a
quantification of how certain we are about a result. The confidence of a result is 1 minus the
significance.

Working with Data and Statistics Chapter 6

[187]

Unfortunately, the significance of a result is something that is often misused or
misunderstood. To say that a result is statistically significant at 5% is to say that there is a
5% chance that we have wrongly accepted the null hypothesis. That is, if we repeated the
same test on 20 other samples from the population, we would expect at least one of them to
give the opposite result. That, however, is not to say that one of them is guaranteed to do
so.

High significance indicates that we are more sure that the conclusion we have reached is
correct, but it is certainly not a guarantee that this is indeed the case. In fact, the results
found in this recipe are evidence for this; the sample that we used was in fact drawn from a
population with a mean of 2.5 and a standard deviation of 0.35. (Some rounding was
applied to the sample after creating, which will have altered the distribution slightly.) This
is not to say that our analysis is wrong, or that the conclusion we reached from our sample
is not the right one.

It is important to remember that t-tests are only valid when the underlying populations
follow a normal distribution, or at least approximately do so. If this is not the case, then you
might need to use a non-parametric test instead. We will discuss this in the Testing
hypotheses for non-parametric data recipe.

Testing hypotheses using ANOVA
Suppose we have designed an experiment that tests two new processes against the current
process and we want to test whether the results of these new processes are different from
the current process. In this case, we can use Analysis of Variance (ANOVA) to help us
determine whether there are any differences between the mean values of the three sets of
results (for this, we need to assume that each sample is drawn from a normal distribution
with a common variance).

In this recipe, we will see how to use ANOVA to compare multiple samples with one
another.

Getting ready
For this recipe, we need the SciPy stats module. We will also need a default random
number generator instance created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)

Working with Data and Statistics Chapter 6

[188]

How to do it...
Follow these steps to perform a (oneway) ANOVA test to test for differences between three
different processes:

First, we will create some sample data, which we will analyze:1.

current = rng.normal(4.0, 2.0, size=40)
process_a = rng.normal(6.2, 2.0, size=25)
process_b = rng.normal(4.5, 2.0, size=64)

Next, we will set the significance level for our test:2.

significance = 0.05

Then, we will use the f_oneway routine from the SciPy stats module to3.
generate the F-statistic and the p value:

F_stat, p_value = stats.f_oneway(current, process_a, process_b)
print(f"F stat: {F_stat}, p value: {p_value}")
F stat: 9.949052026027028, p value: 9.732322721019206e-05

Now, we must test whether the p value is sufficiently small to see whether we4.
should accept or reject our null hypothesis that all mean values are equal:

if p_value <= significance:
 print("Reject H0: there is a difference between means")
else:
 print("Accept H0: all means equal")
Reject H0: there is a difference between means

How it works...
ANOVA is a powerful technique for comparing multiple samples against one another
simultaneously. It works by comparing the variation in the samples relative to the overall
variation. ANOVA is especially powerful when comparing three or more samples since no
cumulative error is incurred from running multiple tests. Unfortunately, if ANOVA detects
that not all the mean values are equal, then there is no way from the test information to
determine which sample(s) are significantly different from the others. For this, you would
need to use an extra test to find the differences.

Working with Data and Statistics Chapter 6

[189]

The f_oneway SciPy stats package routine performs a one-way ANOVA test—the test
statistic generated in ANOVA follows an F-distribution. Again, the p value is the crucial
piece of information coming from the test. We accept the null hypothesis if the p value is
less than our predefined significance level (in this recipe, 5%) and reject the null hypothesis
otherwise.

There's more...
The ANOVA method is very flexible. The one-way ANOVA test that we presented here is
the most simple case as there is only a single factor to test. A two-way ANOVA test can be
used to test for differences over two different factors. This is useful in clinical trials of
medicines, for example, where we test against a control but also measure the effects of
gender (for instance) on the outcomes. Unfortunately, SciPy does not have a routine for
performing two-way ANOVA in the stats module. You will need to use an alternative
package, such as the statsmodels package. We will use this package in Chapter
7, Regression and Forecasting.

As mentioned, ANOVA can only detect whether there are differences. It cannot detect
where these differences occur if there are significant differences. For example, we can use
Durnett's test to test whether the other sample mean values differ from a control sample, or
Tukey's range test to test each group mean against every other group mean.

Testing hypotheses for non-parametric data
Both t-tests and ANOVA have a major drawback: the population that is being sampled
must follow a normal distribution. In many applications, this is not too restrictive because
many real-world population values follow a normal distribution, or some rules, such as the
central limit theorem, allow us to analyze some related data. However, it is simply not true
that all possible population values follow a normal distribution in any reasonable way. For
these (thankfully, rare) cases, we need some alternative test statistics to use as replacements
for t-tests and ANOVA.

In this recipe, we will use a Wilcoxon rank-sum test and the Kruskal-Wallis test to test for
differences between two (or more, in the latter case) populations.

Working with Data and Statistics Chapter 6

[190]

Getting ready
For this recipe, we will need the pandas package imported as pd, the SciPy stats module,
and a default random number generator instance created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)

How to do it...
Follow these steps to compare the populations of two or more populations that are not
normally distributed:

First, we will generate some sample data to use in our analysis:1.

sample_A = rng.uniform(2.5, 4.5, size=22)
sample_B = rng.uniform(3.0, 4.4, size=25)
sample_C = rng.uniform(3.0, 4.4, size=30)

Next, we set the significance level that we will use in this analysis:2.

significance = 0.05

Now, we use the stats.kruskal routine to generate the test statistic and the p3.
value for the null hypothesis that the populations have the same median value:

statistic, p_value = stats.kruskal(sample_A, sample_B, sample_C)
print(f"Statistic: {statistic}, p value: {p_value}")
Statistic: 5.09365664638392, p value: 0.07832970895845669

We will use a conditional statement to print a statement about the outcome of the4.
test:

if p_value <= significance:
 print("Accept H0: all medians equal")
else:
 print("There are differences between population medians")
There are differences between population medians

Working with Data and Statistics Chapter 6

[191]

Now, we use Wilcoxon rank-sum tests to obtain the p values for the comparisons5.
between each pair of samples:

_, p_A_B = stats.ranksums(sample_A, sample_B)
_, p_A_C = stats.ranksums(sample_A, sample_C)
_, p_B_C = stats.ranksums(sample_B, sample_C)

Next, we use conditional statements to print out messages for those comparisons6.
that indicate a significant difference:

if p_A_B > significance:
 print("Significant differences between A and B, p value",
 p_A_B)
Significant differences between A and B, p value
 0.08808151166219029

if p_A_C > significance:
 print("Significant differences between A and C, p value",
 p_A_C)
Significant differences between A and C, p value
 0.4257804790323789

if p_B_C > significance:
 print("Significant differences between B and C, p value",
 p_B_C)
else:
 print("No significant differences between B and C, p value",
 p_B_C)
No significant differences between B and C, p value
 0.037610047044153536

How it works...
We say that data is non-parametric if the population from which the data was sampled
does not follow a distribution that can be described by a small number of parameters. This
usually means that the population is not normally distributed but is broader than this. In
this recipe, we sampled from uniform distributions, but this is still a more structured
example than we would generally have when non-parametric tests are necessary. Non-
parametric tests can and should be used in any situation where we are not sure about the
underlying distribution. The cost of doing this is that the tests are slightly less powerful.

Working with Data and Statistics Chapter 6

[192]

The first step of any (real) analysis should be to plot a histogram of the data and inspect the
distribution visually. If you draw a random sample from a normally distributed
population, you might also expect the sample to be normally distributed (we have seen this
several times in this book). If your sample shows the characteristic bell curve of a normal
distribution, then it is fairly likely that the population is itself normally distributed. You
might also use a kernel density estimation plot to help determine the distribution. This is
available on the pandas plotting interface as kind="kde". If you still aren't sure whether
the population is normal, you can apply a statistical test, such as D'Agostino's K-squared
test or Pearson's Chi-squared test for normality. These two tests are combined into a single
routine to test for normality called normaltest in the SciPy stats module, along with
several other tests for normality.

The Wilcoxon rank-sum test—also called the Mann-Whitney U test—is a non-parametric
replacement for a two-sample t-test. Unlike the t-test, the rank-sum test does not compare
the sample mean values to quantify whether the populations have different distributions.
Instead, it combines the data of the samples and ranks them in order of size. The test
statistic is generated from the sum of the ranks from the sample with the fewest elements.
From here, as usual, we generate a p value for the null hypothesis that the two populations
have the same distribution.

The Kruskal-Wallis test is a non-parametric replacement for a one-way ANOVA test. Like
the rank-sum test, it uses the ranking of the sample data to generate a test statistic and p
values for the null hypothesis that all the populations have the same median value. As with
one-way ANOVA, we can only detect whether all of the populations have the same
median, and not where the differences lie. For this, we would have to use additional tests.

In this recipe, we used the Kruskal-Wallis test to determine whether there were any
significant differences between the populations corresponding to our three samples. A
difference was detected with a p value of 0.07, which is not far from being significant at
5%. We then used rank-sum tests to determine where significant differences occur between
the populations. Here, we found that sample A is significantly different from samples B
and C, and samples B and C are not significantly different. This is hardly surprising given
the way that these samples were generated.

Unfortunately, since we have used multiple tests in this recipe, our overall
confidence in our conclusions is not as high as we might expect it to be.
We performed four tests with 95% confidence, which means our overall
confidence in our conclusion is only approximately 81%. This is because
errors aggregate over multiple tests, reducing the overall confidence. To
correct for this, we would have to adjust our significance threshold for
each test, using the Bonferroni correction (or similar).

Working with Data and Statistics Chapter 6

[193]

Creating interactive plots with Bokeh
Test statistics and numerical reasoning are good for systematically analyzing sets of data.
However, they don't really give us a good picture of the whole set of data like a plot would.
Numerical values are definitive but can be difficult to understand, especially in statistics,
whereas a plot instantly illustrates differences between sets of data and trends. For this
reason, there is a large number of libraries for plotting data in ever more creative ways. One
particularly interesting package for producing plots of data is Bokeh, which allows us to
create interactive plots in the browser by leveraging JavaScript libraries.

In this recipe, we will see how to use Bokeh to create an interactive plot that can be
displayed in the browser.

Getting ready
For this recipe, we will need the pandas package imported as pd, the NumPy package
imported as np, an instance of the default random number generator constructed with the
following code, and the plotting module from Bokeh, which we have imported under
the bk alias:

from bokeh import plotting as bk
from numpy.random import default_rng
rng = default_rng(12345)

How to do it...
These steps show how to create an interactive plot in the browser using Bokeh:

We first need to create some sample data to plot:1.

date_range = pd.date_range("2020-01-01", periods=50)
data = np.add.accumulate(rng.normal(0, 3, size=50))
series = pd.Series(data, index=date_range)

Next, we specify the output file where the HTML code for the plot will be stored2.
by using the output_file routine:

bk.output_file("sample.html")

Working with Data and Statistics Chapter 6

[194]

Now, we create a new figure and set the title and axes labels, and set the x-3.
axis type to datetime so that our date index will be correctly displayed:

fig = bk.figure(title="Time series data",
 x_axis_label="date",
 x_axis_type="datetime",
 y_axis_label="value")

We add the data to the figure as a line:4.

fig.line(date_range, series)

Finally, we use either the show routine or the save routine to save or update the5.
HTML in the specified output file. We use show here to cause the plot to open in
the browser:

bk.show(fig)

Bokeh plots are not static objects and are supposed to be interactive via the browser. The
data as it will appear in the Bokeh plot has been recreated here, using matplotlib for
comparison:

Figure 6.3 – Plot of Time series data created using Matplotlib

Working with Data and Statistics Chapter 6

[195]

How it works...
Bokeh uses a JavaScript library to render a plot in a browser, using data provided by the
Python backend. The advantage of this is that it can generate plots that a user can inspect
for themselves. For instance, we can zoom in to see detail in the plot that might otherwise
be hidden, or pan through the data in a natural way. The example given in this recipe is just
a taster of what is possible using Bokeh.

The figure routine creates an object representing the plot, which we add elements
to—such as a line through the data points—in the same way that we would add plots to a
matplotlib Axes object. In this recipe, we created a simple HTML file that contains
JavaScript code to render the data. This HTML code is dumped to the specified file
whenever we save or, as is in the recipe, call the show routine. In practice, the smaller the p
value, the more confident we can be that the hypothesized population mean is correct.

There's more...
The capabilities of Bokeh go far beyond what is described here. Bokeh plots can be
embedded in files such as Jupyter notebooks, which are also rendered in the browser, or
into existing websites. If you are using a Jupyter notebook, you should use the
output_notebook routine instead of the output_file routine to print the plot directly
into the notebook. It has a wide array of different plotting styles, supports the sharing of
data between plots (data can be selected in one plot and highlighted in the other(s), for
example), and supports streaming data.

Working with Data and Statistics Chapter 6

[196]

Further reading
There are a large number of textbooks on statistics and statistical theory. The following
book was used as reference for this chapter:

Mendenhall, W., Beaver, R., and Beaver, B., (2006), Introduction To Probability And
Statistics, 12th ed., (Belmont, Calif.: Thomson Brooks/Cole)

The pandas documentation (https:/ ​/​pandas. ​pydata. ​org/ ​docs/ ​index. ​html) and the
following pandas book serve as good references for working with pandas:

McKinney, W., (2017), Python for Data Analysis, 2nd ed., (Sebastopol: O'Reilly Media,
Inc, US)

The SciPy documentation (https:/ ​/​docs. ​scipy. ​org/ ​doc/ ​scipy/ ​reference/ ​tutorial/
stats.​html) also contains detailed information about the statistics module that was used
several times in this chapter.

https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html

7
Regression and Forecasting

One of the most important tasks that a statistician or data scientist has is to generate a
systematic understanding of the relationship between two sets of data. This can mean a
"continuous" relationship between two sets of data, where one value depends directly on
the value of another variable. Alternatively, it can mean a categorical relationship, where
one value is categorized according to another. The tool for working with these kinds of
problems is regression. In its most basic form, regression involves fitting a straight line
through a scatter plot of the two sets of data and performing some analysis to see how well
this line "fits" the data. Of course, we often need something more sophisticated to model
more complex relationships that exist in the real world.

Time series represent a specialized class of these regression type problems, where we have
a value that is evolving over a period of time. Unlike more simple problems, time series
data usually has complex dependencies between consecutive values; for instance, a value
may depend on both of the previous values, and perhaps even on the previous "noise".
Time series modeling is important across science and economics, and there are a variety of
tools for modeling time series data. The basic technique for working with time series data is
called ARIMA, which stands for autoregressive integrated moving average. This model
incorporates two underlying components, an autoregressive (AR) component and a
moving average (MA) component, to construct a model for the observed data.

In this chapter, we will learn how to model the relationship between two sets of data,
quantify how strong this relationship is, and generate forecasts about other values (the
future). Then, we will learn how to use logistic regression, which is a variation of a simple
linear model, in classification problems. Finally, we will build models for time series data
using ARIMA and build on these models for different kinds of data. We will finish this
chapter by using a library called Prophet to automatically generate a model for time series
data.

Regression and Forecasting Chapter 7

[198]

In this chapter, we will cover the following recipes:

Using basic linear regression
Using multilinear regression
Classifying using logarithmic regression
Modeling time series data with ARMA
Forecasting from time series data using ARIMA
Forecasting seasonal data using ARIMA
Using Prophet to model time series

Let's get started!

Technical requirements
In this chapter, as usual, we will need the NumPy package imported under the alias np, the
Matplotlib pyplot module imported as plt, and the Pandas package imported as pd. We
can do this using the following commands:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

We will also need some new packages in this chapter. The statsmodels package is used for
regression and time series analysis, the scikit-learn package (sklearn) provides
general data science and machine learning tools, and the Prophet package (fbprophet) is
used for automatically modeling time series data. These packages can be installed using
your favorite package manager, such as pip:

python3.8 -m pip install statsmodels sklearn fbprophet

The Prophet package can prove difficult to install on some operating systems because of its
dependencies. If installing fbprophet causes a problem, you might want to try using the
Anaconda distribution of Python and its package manager, conda, which handles the
dependencies more rigorously:

conda install fbprophet

Finally, we also need a small module called tsdata that is contained in the repository for
this chapter. This module contains a series of utilities for producing sample time series
data.

Regression and Forecasting Chapter 7

[199]

The code for this chapter can be found in the Chapter 07 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2007.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​2Ct8m0B.

Using basic linear regression
Linear regression is a tool for modeling the dependence between two sets of data so that we
can eventually use this model to make predictions. The name comes from the fact that we
form a linear model (straight line) of one set of data based on a second. In the literature, the
variable that we wish to model is frequently called the response variable, and the variable
that we are using in this model is the predictor variable.

In this recipe, we'll learn how to use the statsmodels package to perform simple linear
regression to model the relationship between two sets of data.

Getting ready
For this recipe, we will need the statsmodels api module imported under the alias sm, the
NumPy package imported as np, the Matplotlib pyplot module imported as plt, and an
instance of a NumPy default random number generator. All this can be achieved with the
following commands:

import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
from numpy.random import default_rng
rng = default_rng(12345)

How to do it...
The following steps outline how to use the statsmodels package to perform a simple linear
regression on two sets of data:

First, we generate some example data that we can analyze. We'll generate two1.
sets of data that will illustrate a good fit and a less good fit:

x = np.linspace(0, 5, 25)
rng.shuffle(x)

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2007
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B
https://bit.ly/2Ct8m0B

Regression and Forecasting Chapter 7

[200]

trend = 2.0
shift = 5.0
y1 = trend*x + shift + rng.normal(0, 0.5, size=25)
y2 = trend*x + shift + rng.normal(0, 5, size=25)

A good first step in performing regression analysis is to create a scatter plot of2.
the datasets. We'll do this on the same set of axes:

fig, ax = plt.subplots()
ax.scatter(x, y1, c="b", label="Good correlation")
ax.scatter(x, y2, c="r", label="Bad correlation")
ax.legend()
ax.set_xlabel("X"),
ax.set_ylabel("Y")
ax.set_title("Scatter plot of data with best fit lines")

We need to use the sm.add_constant utility routine so that the modeling step3.
will include a constant value:

pred_x = sm.add_constant(x)

Now, we can create an OLS model for our first set of data and use the fit4.
method to fit the model. We then print a summary of the data using the summary
method:

model1 = sm.OLS(y1, pred_x).fit()
print(model1.summary())

We repeat the model fitting for the second set of data and print the summary:5.

model2 = sm.OLS(y2, pred_x).fit()
print(model2.summary())

Now, we create a new range of x values using linspace that we can use to plot6.
the trend lines on our scatter plot. We need to add the constant column to
interact with the models that we have created:

model_x = sm.add_constant(np.linspace(0, 5))

Next, we use the predict method on the model objects so that we can use the7.
model to predict the response value at each of the x values we generated in the
previous step:

model_y1 = model1.predict(model_x)
model_y2 = model2.predict(model_x)

Regression and Forecasting Chapter 7

[201]

Finally, we plot the model data computed in the previous two steps on top of the8.
scatter plot:

ax.plot(model_x[:, 1], model_y1, 'b')
ax.plot(model_x[:, 1], model_y2, 'r')

The scatter plot, along with the best fit lines (the models) we added, can be seen in the
following figure:

Figure 7.1: Scatter plot of data with lines of best fit computed using least squares regression

How it works...
Elementary mathematics tells us that the equation of a straight line is given by the
following:

Regression and Forecasting Chapter 7

[202]

Here, c is the value at which the line meets the y axis, usually called the y intercept, and m is
the gradient of the line. In the linear regression context, we are trying to find a relationship
between the response variable, Y, and the predictor variable, X, that has the form of a
straight line so that the following occurs:

Here, c and m are now parameters that are to be found. We can write this in a different way,
as follows:

Here, E is an error term, which, in general, depends on X. To find the "best" model, we need
to find values for the c and m parameters, for which the error term, E, is minimized (in an
appropriate sense). The basic method for finding the values of the parameters such that this
error is minimized is the method of least squares, which gives its name to the type of
regression used here: ordinary least squares. Once we have used this method to establish
some relationship between a response variable and a predictor variable, our next task is to
assess how well this model actually represents this relationship. For this, we form
the residuals given by the following equation:

We do this for each of the data points, Xi and Yi. In order to provide a rigorous statistical
analysis of how well we have modeled the relationship between the data, we need the
residuals to satisfy certain assumptions. First, we need them to be independent in the sense
of probability. Second, we need them to be normally distributed about 0 with a common
variance. (In practice, we can relax these slightly and still make reasonable comments about
the accuracy of the model.)

In this recipe, we generated response data from the predictor data using a linear
relationship. The difference between the two response datasets we created is the "size" of
the error at each value. For the first dataset, y1, the residuals were normally distributed
with a standard deviation of 0.5, whereas for the second dataset, y2, the residuals have a
standard deviation of 5.0. We can see this variability in the scatter plot shown in the Figure
7.1, where the data for y1 is generally very close to the best fit line – which closely matches
the actual relationship that was used to generate the data – whereas the y2 data is much
further from the best fit line.

Regression and Forecasting Chapter 7

[203]

The OLS object from the statsmodels package is the main interface for ordinary least squares
regression. We provide the response data and the predictor data as arrays. In order to have
a constant term in the model, we need to add a column of ones in the predictor data.
The sm.add_constant routine is a simple utility for adding this constant column. The fit
method of the OLS class computes the parameters for the model and returns a results object
(model1 and model2) that contains the parameters for the best fit model. The summary
method creates a string containing information about the model and various statistics about
the goodness of fit. The predict method applies the model to new data. As the name
suggests, it can be be used to make predictions using the model.

There are two statistics reported in the summary besides the parameter values themselves.
The first is the R2 value, or the adjusted version, which measures the variability explained
by the model against the total variability. This value will be between 0 and 1. A higher
value indicates a better fit. The second is the F statistic p value, which indicates the overall
significance of the model. As with ANOVA testing, a small F statistic indicates that the
model is significant, meaning that the model is more likely to accurately model the data.

In this recipe, the first model, model1, has an adjusted R2 value of 0.986, indicating that the
model very closely fits the data, and a p value of 6.43e-19, indicating high significance. The
second model has an adjusted R2 value of 0.361, which indicates that the model less closely
fits the data, and a p value of 0.000893, which also indicates high significance. Even though
the second model less closely fits the data, in terms of statistics, that is not to say that it is
not useful. The model is still significant, though less so than the first model, but it doesn't
account for all of the variability (or at least a significant portion of it) in the data. This could
be indicative of additional (non-linear) structures in the data, or that the data is less
correlated, which means there is a weaker relationship between the response and predictor
data (due to the way we constructed the data, we know that the latter is true).

There's more...
Simple linear regression is a good general-purpose tool in a statistician's toolkit. It is
excellent for finding the nature of the relationship between two sets of data that are known
(or suspected) to be connected in some way. The statistical measurement of how much one
set of data depends on another is called correlation. We can measure correlation using a
correlation coefficient, such as Spearman's rank correlation coefficient. A high positive
correlation coefficient indicates a strong positive relationship between the data, such as that
seen in this recipe, while a high negative correlation coefficient indicates a strong negative
relationship, where the slope of the best fit line through the data is negative. A correlation
coefficient of 0 means that the data is not correlated: there is no relationship between the
data.

Regression and Forecasting Chapter 7

[204]

If the sets of data are clearly related but not in a linear (straight line) relationship, then it
might follow a polynomial relationship where, for example, one value is related to the other
squared. Sometimes, you can apply a transformation, such as a logarithm, to one set of data
and then use linear regression to fit the transformed data. Logarithms are especially useful
when there is a power-law relationship between the two sets of data.

Using multilinear regression
Simple linear regression, as seen in the previous recipe, is excellent for producing simple
models of a relationship between one response variable and one predictor variable.
Unfortunately, it is far more common to have a single response variable that depends on
many predictor variables. Moreover, we might not know which variables from a collection
make good predictor variables. For this task, we need multilinear regression.

In this recipe, we will learn how to use multilinear regression to explore the relationship
between a response variable and several predictor variables.

Getting ready
For this recipe, we will need the NumPy package imported as np, the Matplotlib pyplot
module imported as plt, the Pandas package imported as pd, and an instance of the
NumPy default random number generator created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)

We will also need the statsmodels api module imported as sm, which can be imported
using the following command:

import statsmodels.api as sm

Regression and Forecasting Chapter 7

[205]

How to do it...
The following steps show you how to use multilinear regression to explore the relationship
between several predictors and a response variable:

First, we need to create the predictor data to analyze. This will take the form of a1.
Pandas DataFrame with four terms. We will add the constant term at this stage
by adding a column of ones:

p_vars = pd.DataFrame({
 "const": np.ones((100,)),
 "X1": rng.uniform(0, 15, size=100),
 "X2": rng.uniform(0, 25, size=100),
 "X3": rng.uniform(5, 25, size=100)
})

Next, we will generate the response data using only the first two variables:2.

residuals = rng.normal(0.0, 12.0, size=100)
Y = -10.0 + 5.0*p_vars["X1"] - 2.0*p_vars["X2"] + residuals

Now, we'll produce scatter plots of the response data against each of the3.
predictor variables:

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True,
 tight_layout=True)
ax1.scatter(p_vars["X1"], Y)
ax2.scatter(p_vars["X2"], Y)
ax3.scatter(p_vars["X3"], Y)

Then, we'll add axis labels and titles to each scatter plot since this is good4.
practice:

ax1.set_title("Y against X1")
ax1.set_xlabel("X1")
ax1.set_ylabel("Y")
ax2.set_title("Y against X2")
ax2.set_xlabel("X2")
ax3.set_title("Y against X3")
ax3.set_xlabel("X3")

Regression and Forecasting Chapter 7

[206]

The resulting plots can be seen in the following figure:

Figure 7.2: Scatter plots of the response data against each of the predictor variables

As we can see, there appears to be some correlation between the response data
and the first two predictor columns, X1 and X2. This is what we expect, given
how we generated the data.

We use the same OLS class to perform multilinear regression; that is, providing5.
the response array and the predictor DataFrame:

model = sm.OLS(Y, p_vars).fit()
print(model.summary())

The output of the print statement is as follows:

 OLS Regression Results
==
Dep. Variable: y R-squared: 0.770
Model: OLS Adj. R-squared: 0.762
Method: Least Squares F-statistic: 106.8
Date: Thu, 23 Apr 2020 Prob (F-statistic): 1.77e-30
Time: 12:47:30 Log-Likelihood: -389.38
No. Observations: 100 AIC: 786.8

Regression and Forecasting Chapter 7

[207]

Df Residuals: 96 BIC: 797.2
Df Model: 3
Covariance Type: nonrobust
===
 coef std err t P>|t| [0.025 0.975]

const -9.8676 4.028 -2.450 0.016 -17.863 -1.872
X1 4.7234 0.303 15.602 0.000 4.122 5.324
X2 -1.8945 0.166 -11.413 0.000 -2.224 -1.565
X3 -0.0910 0.206 -0.441 0.660 -0.500 0.318
===
Omnibus: 0.296 Durbin-Watson: 1.881
Prob(Omnibus): 0.862 Jarque-Bera (JB): 0.292
Skew: 0.123 Prob(JB): 0.864
Kurtosis: 2.904 Cond. No. 72.9
===

In the summary data, we can see that the X3 variable is not significant since it has
a p value of 0.66.

Since the third predictor variable is not significant, we eliminate this column and6.
perform the regression again:

second_model = sm.OLS(Y, p_vars.loc[:, "const":"X2"]).fit()
print(second_model.summary())

This results in a small increase in the goodness of fit statistics.

How it works...
Multilinear regression works in much the same way as simple linear regression. We follow
the same procedure here as in the previous recipe, where we use the statsmodels package
to fit a multilinear model to our data. Of course, there are some differences behind the
scenes. The model we produce using multilinear regression is very similar in form to the
simple linear model from the previous recipe. It has the following form:

Regression and Forecasting Chapter 7

[208]

Here, Y is the response variable, Xi represents the predictor variables, E is the error term,
and βi is the parameters to be computed. The same requirements are also necessary for this
context: residuals must be independent and normally distributed with a mean of 0 and a
common standard deviation.

In this recipe, we provided our predictor data as a Pandas DataFrame rather than a plain
NumPy array. Notice that the names of the columns have been adopted in the summary
data that we printed. Unlike the first recipe, Using basic linear regression, we included the
constant column in this DataFrame, rather than using the add_constant utility from
statsmodels.

In the output of the first regression, we can see that the model is a reasonably good fit with
an adjusted R2 value of 0.762, and is highly significant (we can see this by looking at the
regression F statistic p value). However, looking closer at the individual parameters, we can
see that both of the first two predictor values are significant, but the constant and the third
predictor are less so. In particular, the third predictor parameter, X3, is not significantly
different from 0 and has a p value of 0.66. Given that our response data was constructed
without using this variable, this shouldn't come as a surprise. In the final step of the
analysis, we repeat the regression without the predictor variable, X3, which is a mild
improvement to the fit.

Classifying using logarithmic regression
Logarithmic regression solves a different problem to ordinary linear regression. It is
commonly used for classification problems where, typically, we wish to classify data into
two distinct groups, according to a number of predictor variables. Underlying this
technique is a transformation that's performed using logarithms. The original classification
problem is transformed into a problem of constructing a model for the log-odds. This
model can be completed with simple linear regression. We apply the inverse
transformation to the linear model, which leaves us with a model of the probability that the
desired outcome will occur, given the predictor data. The transform we apply here is called
the logistic function, which gives its name to the method. The probability we obtain can
then be used in the classification problem we originally aimed to solve.

In this recipe, we will learn how to perform logistic regression and use this technique in
classification problems.

Regression and Forecasting Chapter 7

[209]

Getting ready
For this recipe, we will need the NumPy package imported as np, the
Matplotlib pyplot module imported as plt, the Pandas package imported as pd, and an
instance of the NumPy default random number generator to be created using the following
commands:

from numpy.random import default_rng
rng = default_rng(12345)

We also need several components from the scikit-learn package to perform logistic
regression. These can be imported as follows:

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

How to do it...
Follow these steps to use logistic regression to solve a simple classification problem:

First, we need to create some sample data that we can use to demonstrate how to1.
use logistic regression. We start by creating the predictor variables:

df = pd.DataFrame({
 "var1": np.concatenate([rng.normal(3.0, 1.5, size=50),
 rng.normal(-4.0, 2.0, size=50)]),
 "var2": rng.uniform(size=100),
 "var3": np.concatenate([rng.normal(-2.0, 2.0, size=50),
 rng.normal(1.5, 0.8, size=50)])
})

Now, we use two of our three predictor variables to create our response variable2.
as a series of Boolean values:

score = 4.0 + df["var1"] - df["var3"]
Y = score >= 0

Next, we scatter plot the points, styled according to the response variable, of3.
the var3 data against the var1 data, which are the variables used to construct
the response variable:

fig1, ax1 = plt.subplots()
ax1.plot(df.loc[Y, "var1"], df.loc[Y, "var3"], "bo", label="True
 data")
ax1.plot(df.loc[~Y, "var1"], df.loc[~Y, "var3"], "rx", label="False

Regression and Forecasting Chapter 7

[210]

 data")
ax1.legend()
ax1.set_xlabel("var1")
ax1.set_ylabel("var3")
ax1.set_title("Scatter plot of var3 against var1")

The resulting plot can be seen in the following figure:

Figure 7.3: Scatter plot of the var3 data against var1, with classification marked

Next, we create a LogisticRegression object from the scikit-learn package4.
and fit the model to our data:

model = LogisticRegression()
model.fit(df, Y)

Next, we prepare some extra data, different from what we used to fit the model,5.
to test the accuracy of our model:

test_df = pd.DataFrame({
 "var1": np.concatenate([rng.normal(3.0, 1.5, size=50),
 rng.normal(-4.0, 2.0, size=50)]),
 "var2": rng.uniform(size=100),
 "var3": np.concatenate([rng.normal(-2.0, 2.0, size=50),

Regression and Forecasting Chapter 7

[211]

 rng.normal(1.5, 0.8, size=50)])
})
test_scores = 4.0 + test_df["var1"] - test_df["var3"]
test_Y = test_scores >= 0

Then, we generate predicted results based on our logistic regression model:6.

test_predicts = model.predict(test_df)

Finally, we use the classification_report utility from scikit-learn to7.
print a summary of predicted classification against known response values to test
the accuracy of the model. We print this summary to the Terminal:

print(classification_report(test_Y, test_predicts))

The report that's generated by this routine looks as follows:

 precision recall f1-score support

 False 1.00 1.00 1.00 18
 True 1.00 1.00 1.00 32

 accuracy 1.00 50
 macro avg 1.00 1.00 1.00 50
weighted avg 1.00 1.00 1.00 50

How it works...
Logistic regression works by forming a linear model of the log odds ratio (or logit), which,
for a single predictor variable, x, has the following form:

Here, p(x) represents the probability of a true outcome in response to the given the
predictor, x. Rearranging this gives a variation of the logistic function for the probability:

The parameters for the log odds are estimated using a maximum likelihood method.

Regression and Forecasting Chapter 7

[212]

The LogisticRegression class from the linear_model module in scikit-learn is an
implementation of logistic regression that is very easy to use. First, we create a new model
instance of this class, with any custom parameters that we need, and then use the fit
method on this object to fit (or train) the model to the sample data. Once this fitting is done,
we can access the parameters that have been estimated using the get_params method.

The predict method on the fitted model allows us to pass in new (unseen) data and make
predictions about the classification of each sample. We could also get the probability
estimates that are actually given by the logistic function using the predict_proba method.

Once we have built a model for predicting the classification of data, we need to validate the
model. This means we have to test the model with some previously unseen data and check
whether it correctly classifies the new data. For this, we can use classification_report,
which takes a new set of data and the predictions generated by the model and computes the
proportion of the data that was correctly predicted by the model. This is the precision of the
model.

The classification report we generated using the scikit-learn utility performs a
comparison between the predicted results and the known response values. This is a
common method for validating a model before using it to make actual predictions. In this
recipe, we saw that the reported precision for each of the categories (True and False) was
1.00, indicating that the model performed perfectly in predicting the classification with this
data. In practice, it is unlikely that the precision of a model will be 100%.

There's more...
There are lots of packages that offer tools for using logistic regression for classification
problems. The statsmodels package has the Logit class for creating logistic regression
models. We used the scikit-learn package in this recipe, which has a similar interface.
Scikit-learn is a general-purpose machine learning library and has a variety of other
tools for classification problems.

Regression and Forecasting Chapter 7

[213]

Modeling time series data with ARMA
Time series, as the name suggests, tracks a value over a sequence of distinct time intervals.
They are particularly important in the finance industry, where stock values are tracked over
time and used to make predictions – known as forecasting – of the value at some future
time. Good predictions coming from such data can be used to make better investments.
Time series also appear in many other common situations, such as weather monitoring,
medicine, and any places where data is derived from sensors over time.

Time series, unlike other types of data, do not usually have independent data points. This
means that the methods that we use for modeling independent data will not be particularly
effective. Thus, we need to use alternative techniques to model data with this property.
There are two ways in which a value in a time series can depend on previous values. The
first is where there is a direct relationship between the value and one or more previous
values. This is the autocorrelation property and is modeled by an autoregressive model. The
second is where the noise that's added to the value depends on one or more previous noise
terms. This is modeled by a moving average model. The number of terms involved in either
of these models is called the order of the model.

In this recipe, we will learn how to create a model for stationary time series data with
ARMA terms.

Getting ready
For this recipe, we need the Matplotlib pyplot module imported as plt and the
statsmodels package api module imported as sm. We also need to import the
generate_sample_data routine from the tsdata package from this book's repository,
which uses NumPy and Pandas to generate sample data for analysis:

from tsdata import generate_sample_data

How to do it...
Follow these steps to create an autoregressive moving average model for stationary time
series data:

First, we need to generate the sample data that we will analyze:1.

sample_ts, _ = generate_sample_data()

Regression and Forecasting Chapter 7

[214]

As always, the first step in the analysis is to produce a plot of the data so that we2.
can visually identify any structure:

ts_fig, ts_ax = plt.subplots()
sample_ts.plot(ax=ts_ax, label="Observed")
ts_ax.set_title("Time series data")
ts_ax.set_xlabel("Date")
ts_ax.set_ylabel("Value")

The resulting plot can be seen in the following figure. Here, we can see that there
doesn't appear to be an underlying trend, which means that the data is likely to be
stationary:

Figure 7.4: Plot of the time series data that we will analyze. There doesn't appear to be a trend in this data

Next, we compute the augmented Dickey-Fuller test. The null hypothesis is that3.
the time series is not stationary:

adf_results = sm.tsa.adfuller(sample_ts)
adf_pvalue = adf_results[1]
print("Augmented Dickey-Fuller test:\nP-value:", adf_pvalue)

Regression and Forecasting Chapter 7

[215]

The reported p value is 0.000376 in this case, so we reject the null hypothesis and
conclude that the series is stationary.

Next, we need to determine the order of the model that we should fit. For this,4.
we'll plot the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) for the time series:

ap_fig, (acf_ax, pacf_ax) = plt.subplots(2, 1, sharex=True,
 tight_layout=True)
sm.graphics.tsa.plot_acf(sample_ts, ax=acf_ax,
 title="Observed autocorrelation")
sm.graphics.tsa.plot_pacf(sample_ts, ax=pacf_ax,
 title="Observed partial autocorrelation")
pacf_ax.set_xlabel("Lags")
pacf_ax.set_ylabel("Value")
acf_ax.set_ylabel("Value")

The plots of the ACF and PACF for our time series can be seen in the following
figure. These plots suggest the existence of both autoregressive and moving
average processes:

Figure 7.5: ACF and PACF for the sample time series data

Regression and Forecasting Chapter 7

[216]

Next, we create an ARMA model for the data, using the ARMA class from5.
statsmodels, tsa module. This model will have an order 1 AR and an order 1
MA:

​arma_model = sm.tsa.ARMA(sample_ts, order=(1, 1))

Now, we fit the model to the data and get the resulting model. We print a 6.
summary of these results to the Terminal:

arma_results = arma_model.fit()
print(arma_results.summary())

The summary data given for the fitted model is as follows:

 ARMA Model Results
===
Dep. Variable: y No. Observations: 366
Model: ARMA(1, 1) Log Likelihood -513.038
Method: css-mle S.D. of innovations 0.982
Date: Fri, 01 May 2020 AIC 1034.077
Time: 12:40:00 BIC 1049.687
Sample: 01-01-2020 HQIC 1040.280
 - 12-31-2020
===
 coef std err z P>|z| [0.025 0.975]

const -0.0242 0.143 -0.169 0.866 -0.305 0.256
ar.L1.y 0.8292 0.057 14.562 0.000 0.718 0.941
ma.L1.y -0.5189 0.090 -5.792 0.000 -0.695 -0.343
 Roots
===
 Real Imaginary Modulus Frequency

AR.1 1.2059 +0.0000j 1.2059 0.0000
MA.1 1.9271 +0.0000j 1.9271 0.0000

Here, we can see that both of the estimated parameters for the AR and MA
components are significantly different from 0. This is because the value in the P
>|z| column is 0 to 3 decimal places.

Regression and Forecasting Chapter 7

[217]

Next, we need to verify that there is no additional structure remaining in the7.
residuals (error) of the predictions from our model. For this, we plot the ACF and
PACF of the residuals:

residuals = arma_results.resid
rap_fig, (racf_ax, rpacf_ax) = plt.subplots(2, 1,
 sharex=True, tight_layout=True)
sm.graphics.tsa.plot_acf(residuals, ax=racf_ax,
 title="Residual autocorrelation")
sm.graphics.tsa.plot_pacf(residuals, ax=rpacf_ax,
 title="Residual partial autocorrelation")
rpacf_ax.set_xlabel("Lags")
rpacf_ax.set_ylabel("Value")
racf_ax.set_ylabel("Value")

The ACF and PACF of the residuals can be seen in the following figure. Here, we
can see that there are no significant spikes at lags other than 0, so we conclude
that there is no structure remaining in the residuals:

Figure 7.6: ACF and PACF for the residuals from our model

Regression and Forecasting Chapter 7

[218]

Now that we have verified that our model is not missing any structure, we plot8.
the values that are fitted to each data point on top of the actual time series data to
see whether the model is a good fit for the data. We plot this model in the plot we
created in step 2:

fitted = arma_results.fittedvalues
fitted.plot(c="r", ax=ts_ax, label="Fitted")
ts_ax.legend()

The updated plot can be seen in the following figure:

Figure 7.7: Plot of the fitted time series data over the observed time series data

The fitted values give a reasonable approximation of the behavior of the time
series, but reduce the noise from the underlying structure.

Regression and Forecasting Chapter 7

[219]

How it works...
A time series is stationary if it does not have a trend. They usually have a tendency to move
in one direction rather than another. Stationary processes are important because we can
usually remove the trend from an arbitrary time series and model the underlying stationary
series. The ARMA model that we used in this recipe is a basic means of modeling the
behavior of stationary time series. The two parts of an ARMA model are the autoregressive
and moving average parts, which model the dependence of the terms and noise,
respectively, on previous terms and noise.

An order 1 autoregressive model has the following form:

Here, φi represents the parameters and εt is the noise at a given step. The noise is usually
assumed to be normally distributed with a mean of 0 and a standard deviation that is
constant across all the time steps. The Yt value represents the value of the time series at the
time step, t. In this model, each value depends on the previous value, though it can also
depend on some constants and some noise. The model will give rise to a stationary time
series precisely when the φ1 parameter lies strictly between -1 and 1.

An order 1 moving average model is very similar to an autoregressive model and is given
by the following equation:

Here, the variants of θi are parameters. Putting these two models together gives us an
ARMA(1, 1) model, which has the following form:

In general, we can have an ARMA(p, q) model that has an order p AR component and an
order q MA component. We usually refer to the quantities, p and q, as the orders of the
model.

Regression and Forecasting Chapter 7

[220]

Determining the orders of the AR and MA components is the most tricky aspect of
constructing an ARMA model. The ACF and PACF give some information toward this, but
even then, it can be quite difficult. For example, an autoregressive process will show some
kind of decay or oscillating pattern on the ACF as lag increases, and a small number of
peaks on the PACF and values that are not significantly different from 0 beyond that. The
number of peaks that appear on the PAF plot can be taken as the order of the process. For a
moving average process, the reverse is true. There are usually a small number of significant
peaks on the ACF plot, and a decay or oscillating pattern on the PACF plot. Of course,
sometimes, this isn't obvious.

In this recipe, we plotted the ACF and PACF for our sample time series data. In the
autocorrelation plot in Figure 7.5 (top), we can see that the peaks decay rapidly until they lie
within the confidence interval of zero (meaning they are not significant). This suggests the
presence of an autoregressive component. On the partial autocorrelation plot in Figure 7.5
(bottom), we can see that there are only two peaks that can be considered not zero, which
suggests an autoregressive process of order 1 or 2. You should try to keep the order of the
model as small as possible. Due to this, we chose an order 1 autoregressive component.
With this assumption, the second peak on the partial autocorrelation plot is indicative of
decay (rather than an isolated peak), which suggests the presence of a moving average
process. To keep the model simple, we try an order 1 moving average process. This is how
the model that we used in this recipe was decided on. Notice that this is not an exact
process, and you might have decided differently.

We use the augmented Dickey-Fuller test to test the likelihood that the time series that we
have observed is stationary. This is a statistical test, such as those seen in Chapter 6,
Working with Data and Statistics, that generates a test statistic from the data. This test
statistic, in turn, determines a p-value that is used to determine whether to accept or reject
the null hypothesis. For this test, the null hypothesis is that a unit root is present in the time
series that's been sampled. The alternative hypothesis – the one we are really interested in –
is that the observed time series is (trend) stationary. If the p-value is sufficiently small, then
we can conclude with the specified confidence that the observed time series is stationary. In
this recipe, the p-value was 0.000 to 3 decimal places, which indicates a strong likelihood
that the series is stationary. Stationarity is an essential assumption for using the ARMA
model for the data.

Once we have determined that the series is stationary, and also decided on the orders of the
model, we have to fit the model to the sample data that we have. The parameters of the
model are estimated using a maximum likelihood estimator. In this recipe, the learning of
the parameters is done using the fit method, in step 6.

Regression and Forecasting Chapter 7

[221]

The statsmodels package provides various tools for working with time series, including
utilities for calculating – and plotting – ACF and PACF of time series data, various test
statistics, and creating ARMA models for time series. There are also some tools for
automatically estimating the order of the model.

We can use the Akaike information criterion (AIC), Bayesian information criterion (BIC),
and Hannan-Quinn Information Criterion (HQIC) quantities to compare this model to
other models to see which model best describes the data. A smaller value is better in each
case.

When using ARMA to model time series data, as in all kinds of
mathematical modeling tasks, it is best to pick the simplest model that
describes the data to the extent that is needed. For ARMA models, this
usually means picking the smallest order model that describes the
structure of the observed data.

There's more...
Finding the best combination of orders for an ARMA model can be quite difficult. Often,
the best way to fit a model is to test multiple different configurations and pick the order
that produces the best fit. For example, we could have tried ARMA(0, 1) or ARMA(1, 0) in
this recipe, and compared it to the ARMA(1, 1) model we used to see which produced the
best fit by considering the Akaike Information Criteria (AIC) statistic reported in the
summary. In fact, if we build these models, we will see that the AIC value for ARMA(1, 1) –
the model we used in this recipe – is the "best" of these three models.

Forecasting from time series data using
ARIMA
In the previous recipe, we generated a model for a stationary time series using an ARMA
model, which consists of an autoregressive (AR) component and an moving average (MA)
component. Unfortunately, this model cannot accommodate time series that have some
underlying trend; that is, they are not stationary time series. We can often get around this
by differencing the observed time series one or more times until we obtain a stationary time
series that can be modeled using ARMA. The incorporation of differencing into an ARMA
model is called an ARIMA model, which stands for Autoregressive (AR) Integrated (I)
Moving Average (MA).

Regression and Forecasting Chapter 7

[222]

Differencing is the process of computing the difference of consecutive terms in a sequence
of data. So, applying first-order differencing amounts to subtracting the value at the current
step from the value at the next step (ti+1 - ti). This has the effect of removing the underlying
upward or downward linear trend from the data. This helps to reduce an arbitrary time
series to a stationary time series that can be modeled using ARMA. Higher-order
differencing can remove higher-order trends to achieve similar effects.

An ARIMA model has three parameters, usually labeled p, d, and q. The p and q order
parameters are the order of the autoregressive component and the moving average
component, respectively, just as they are for the ARMA model. The third order
parameter, d, is the order of differencing to be applied. An ARIMA model with these orders
is usually written as ARIMA (p, d, q). Of course, we will need to determine what order
differencing should be included before we start fitting the model.

In this recipe, we will learn how to fit an ARIMA model to a non-stationary time series and
use this model to make forecasts about future values.

Getting ready
For this recipe, we will need the NumPy package imported as np, the Pandas package
imported as pd, the Matplotlib pyplot module as plt, and the statsmodels api module
imported as sm. We will also need the utility for creating sample time series data from
the tsdata module, which is included in this book's repository:

from tsdata import generate_sample_data

How to do it...
The following steps show you how to construct an ARIMA model for time series data and
use this model to make forecasts:

First, we load the sample data using the generate_sample_data routine:1.

sample_ts, test_ts = generate_sample_data(trend=0.2, undiff=True)

Regression and Forecasting Chapter 7

[223]

As usual, the next step is to plot the time series so that we can visually identify2.
the trend of the data:

ts_fig, ts_ax = plt.subplots(tight_layout=True)
sample_ts.plot(ax=ts_ax, c="b", label="Observed")
ts_ax.set_title("Training time series data")
ts_ax.set_xlabel("Date")
ts_ax.set_ylabel("Value")

The resulting plot can be seen in the following figure. As we can see, there is a
clear upward trend in the data, so the time series is certainly not stationary:

Figure 7.8: Plot of the sample time series. There is an obvious positive trend in the data.

Next, we difference the series to see if one level of differencing is sufficient to3.
remove the trend:

diffs = sample_ts.diff().dropna()

Regression and Forecasting Chapter 7

[224]

Now, we plot the ACF and PACF for the differenced time series: 4.

ap_fig, (acf_ax, pacf_ax) = plt.subplots(1, 2,
 tight_layout=True, sharex=True)
sm.graphics.tsa.plot_acf(diffs, ax=acf_ax)
sm.graphics.tsa.plot_pacf(diffs, ax=pacf_ax)
acf_ax.set_ylabel("Value")
pacf_ax.set_xlabel("Lag")
pacf_ax.set_ylabel("Value")

The ACF and PACF can be seen in the following figure. We can see that there
does not appear to be any trends left in the data and that there appears to be both
an autoregressive component and a moving average component:

Figure 7.9: ACF and PACF for the differenced time series

Now, we construct the ARIMA model with order 1 differencing, an5.
autoregressive component, and a moving average component. We fit this to the
observed time series and print a summary of the model:

model = sm.tsa.ARIMA(sample_ts, order=(1,1,1))
fitted = model.fit(trend="c")
print(fitted.summary())

Regression and Forecasting Chapter 7

[225]

The summary information that's printed looks as follows:

 ARIMA Model Results
==
Dep. Variable: D.y No. Observations: 365
Model: ARIMA(1, 1, 1) Log Likelihood -512.905
Method: css-mle S.D. of innovations 0.986
Date: Sat, 02 May 2020 AIC 1033.810
Time: 14:47:25 BIC 1049.409
Sample: 01-02-2020 HQIC 1040.009
 - 12-31-2020
==
 coef std err z P>|z| [0.025 0.975]
--
const 0.9548 0.148 6.464 0.000 0.665 1.244
ar.L1.D.y 0.8342 0.056 14.992 0.000 0.725 0.943
ma.L1.D.y -0.5204 0.088 -5.903 0.000 -0.693 -0.348
 Roots
==
 Real Imaginary Modulus Frequency
--
AR.1 1.1987 +0.0000j 1.1987 0.0000
MA.1 1.9216 +0.0000j 1.9216 0.0000
--

Here, we can see that all three of our estimated coefficients are significantly
different from 0 due to the fact that all three have 0 to 3 decimal places in
the P>|z| column.

Now, we can use the forecast method to generate predictions of future values.6.
This also returns the standard error and confidence intervals for predictions:

forecast, std_err, fc_ci = fitted.forecast(steps=50)
forecast_dates = pd.date_range("2021-01-01", periods=50)
forecast = pd.Series(forecast, index=forecast_dates)

Next, we plot the forecast values and their confidence intervals on the figure 7.
containing the time series data:

forecast.plot(ax=ts_ax, c="g", label="Forecast")
ts_ax.fill_between(forecast_dates, fc_ci[:, 0], fc_ci[:, 1],
 color="r", alpha=0.4)

Regression and Forecasting Chapter 7

[226]

Finally, we add the actual future values to generate, along with the sample in step8.
1, to the plot (it might be easier if you repeat the plot commands from step 1 to
regenerate the whole plot here):

test_ts.plot(ax=ts_ax, c="k", label="Actual")
ts_ax.legend()

The final plot containing the time series with the forecast and the actual future
values can be seen in the following figure:

Figure 7.10: Plot of the sample time series with forecast values and actual future values for comparison

Here, we can see that the actual future values are within the confidence interval
for the forecast values.

Regression and Forecasting Chapter 7

[227]

How it works...
The ARIMA model – with orders p, d, and q – is simply an ARMA (p, q) model that's
applied to a time series. This is obtained by applying differencing of order d to the original
time series data. It is a fairly simple way to generate a model for time series data. The
statsmodels ARIMA class handles the creation of a model, while the fit method fits this
model to the data. We passed the trend="c" keyword argument because we know, from
Figure 7.9, that the time series has a constant trend.

The model is fit to the data using a maximum likelihood method and the final estimates for
the parameters – in this case, one parameter for the autoregressive component, one for the
moving average component, the constant trend parameter, and the variance of the noise.
These parameters are reported in the summary. From this output, we can see that the
estimates for the AR coefficient (0.8342) and the MA constant (-0.5204) are very good
approximations of the true estimates that were used to generate the data, which were 0.8
for the AR coefficient and -0.5 for the MA coefficient. These parameters are set in
the generate_sample_data routine from the tsdata.py file in the code repository for
this chapter. This generates the sample data in step 1. You might have noticed that the
constant parameter (0.9548) is not 0.2, as specified in the generate_sample_data call in
step 1. In fact, it is not so far from the actual drift of the time series.

The forecast method on the fitted model (the output of the fit method) uses the model
to make predictions about the value after a given number of steps. In this recipe, we
forecast for up to 50 time steps beyond the range of the sample time series. The output of
the forecast method is a tuple containing the forecast values, the standard error for the
forecasts, and the confidence interval (by default, 95% confidence) for the forecasts. Since
we provided the time series as a Pandas series, these are returned as Series objects (the
confidence interval is a DataFrame).

When you construct an ARIMA model for time series data, you need to make sure you use
the smallest order differencing that removes the underlying trend. Applying more
differencing than is necessary is called overdifferencing and can lead to problems with the
model.

Regression and Forecasting Chapter 7

[228]

Forecasting seasonal data using ARIMA
Time series often display periodic behavior so that peaks or dips in the value appear at
regular intervals. This behavior is called seasonality in the analysis of time series. The
methods we have used to far in this chapter to model time series data obviously do not
account for seasonality. Fortunately, it is relatively easy to adapt the standard ARIMA
model to incorporate seasonality, resulting in what is sometimes called a SARIMA model.

In this recipe, we will learn how to model time series data that includes seasonal behavior
and use this model to produce forecasts.

Getting ready
For this recipe, we will need the NumPy package imported as np, the Pandas package
imported as pd, the Matplotlib pyplot module as plt, and the statsmodels api module
imported as sm. We will also need the utility for creating sample time series data from
the tsdata module, which is included in this book's repository:

from tsdata import generate_sample_data

How to do it...
Follow these steps to produce a seasonal ARIMA model for sample time series data and use
this model to produce forecasts:

First, we use the generate_sample_data routine to generate a sample time1.
series to analyze:

sample_ts, test_ts = generate_sample_data(undiff=True,
 seasonal=True)

As usual, our first step is to visually inspect the data by producing a plot of the2.
sample time series:

ts_fig, ts_ax = plt.subplots(tight_layout=True)
sample_ts.plot(ax=ts_ax, title="Time series", label="Observed")
ts_ax.set_xlabel("Date")
ts_ax.set_ylabel("Value")

Regression and Forecasting Chapter 7

[229]

The plot of the sample time series data can be seen in the following figure. Here,
we can see that there seem to be periodic peaks in the data:

Figure 7.11: Plot of the sample time series data

Next, we plot the ACF and PACF for the sample time series:3.

ap_fig, (acf_ax, pacf_ax) = plt.subplots(2, 1,
 sharex=True, tight_layout=True)
sm.graphics.tsa.plot_acf(sample_ts, ax=acf_ax)
sm.graphics.tsa.plot_pacf(sample_ts, ax=pacf_ax)
pacf_ax.set_xlabel("Lag")
acf_ax.set_ylabel("Value")
pacf_ax.set_ylabel("Value")

Regression and Forecasting Chapter 7

[230]

The ACF and PACF for the sample time series can be seen in the following figure:

Figure 7.12: ACF and PACF for the sample time series

These plots possibly indicate the existence of autoregressive components, but also
a significant spike on the PACF with lag 7.

Next, we difference the time series and produce plots of the ACF and PACF for4.
the differenced series. This should make the order of the model clearer:

diffs = sample_ts.diff().dropna()
dap_fig, (dacf_ax, dpacf_ax) = plt.subplots(2, 1, sharex=True,
 tight_layout=True)
sm.graphics.tsa.plot_acf(diffs, ax=dacf_ax,
 title="Differenced ACF")
sm.graphics.tsa.plot_pacf(diffs, ax=dpacf_ax,
 title="Differenced PACF")
dpacf_ax.set_xlabel("Lag")
dacf_ax.set_ylabel("Value")
dpacf_ax.set_ylabel("Value")

The ACF and PACF for the differenced time series can be seen in the following
figure. We can see that there is definitely a seasonal component with lag 7:

Regression and Forecasting Chapter 7

[231]

Figure 7.13: Plot of the ACF and PACF for the differenced time series

Now, we need to create a SARIMAX object that holds the model, with ARIMA5.
order (1, 1, 1) and seasonal ARIMA order (1, 0, 0, 7). We fit this model
to the sample time series and print summary statistics. We plot the predicted
values on top of the time series data:

model = sm.tsa.SARIMAX(sample_ts, order=(1, 1, 1),
 seasonal_order=(1, 0, 0, 7))
fitted_seasonal = model.fit()
print(fitted_seasonal.summary())
fitted_seasonal.fittedvalues.plot(ax=ts_ax, c="r",
 label="Predicted")

The summary statistics that are printed to the Terminal look as follows:

 SARIMAX Results
===
Dep. Variable: y No. Observations: 366
Model: SARIMAX(1, 1, 1)x(1, 0, [], 7) Log Likelihood -509.941
Date: Mon, 04 May 2020 AIC 1027.881
Time: 18:03:27 BIC 1043.481
Sample: 01-01-2020 HQIC 1034.081
 - 12-31-2020
Covariance Type: opg
===

Regression and Forecasting Chapter 7

[232]

 coef std err z P>|z| [0.025 0.975]

ar.L1 0.7939 0.065 12.136 0.000 0.666 0.922
ma.L1 -0.4544 0.095 -4.793 0.000 -0.640 -0.269
ar.S.L7 0.7764 0.034 22.951 0.000 0.710 0.843
sigma2 0.9388 0.073 12.783 0.000 0.795 1.083
===
Ljung-Box (Q): 31.89 Jarque-Bera (JB): 0.47
Prob(Q): 0.82 Prob(JB): 0.79
Heteroskedasticity (H): 1.15 Skew: -0.03
Prob(H) (two-sided): 0.43 Kurtosis: 2.84
===

Warnings:
[1] Covariance matrix calculated using the outer product
 of gradients (complex-step).

This model appears to be a reasonable fit, so we move ahead and forecast 50 time6.
steps into the future:

forecast_result = fitted_seasonal.get_forecast(steps=50)
forecast_index = pd.date_range("2021-01-01", periods=50)
forecast = forecast_result.predicted_mean

Finally, we add the forecast values to the plot of the sample time series, along7.
with the confidence interval for these forecasts:

forecast.plot(ax=ts_ax, c="g", label="Forecasts")
conf = forecast_result.conf_int()
ts_ax.fill_between(forecast_index, conf["lower y"],
 conf["upper y"], color="r", alpha=0.4)
test_ts.plot(ax=ts_ax, color="k", label="Actual future")
ts_ax.legend()

The final plot of the time series, along with the predictions and the confidence
interval for the forecasts, can be seen in the following figure:

Regression and Forecasting Chapter 7

[233]

Figure 7.14: Plot of the sample time series, along with the forecasts and confidence interval

How it works...
Adjusting an ARIMA model to incorporate seasonality is a relatively simple task. A
seasonal component is similar to an autoregressive component, where the lag starts at some
number larger than 1. In this recipe, the time series exhibits seasonality with period 7
(weekly), which means that the model is approximately given by the following equation:

Here φ1 and Φ1 are the parameters and εt is the noise at time step t. The standard ARIMA
model is easily adapted to include this additional lag term.

The SARIMA model incorporates this additional seasonality into the ARIMA model. It has
four additional order terms on top of the three for the underlying ARIMA model. These
four additional parameters are the seasonal AR, differencing, and MA components, along
with the period of the seasonality. In this recipe, we took the seasonal AR to be order 1,
with no seasonal differencing or MA components (order 0), and a seasonal period of 7. This
gives us the additional parameters (1, 0, 0, 7) that we used in step 5 of this recipe.

Regression and Forecasting Chapter 7

[234]

Seasonality is clearly important in modeling time series data that is measured over a period
of time covering days, months, or years. It usually incorporates some kind of seasonal
component based on the time frame that they occupy. For example, a time series of national
power consumption measured hourly over several days would probably have a 24-hour
seasonal component since power consumption will likely fall during the night hours.

Long-term seasonal patterns might be hidden if the time series data that you are analyzing
does not cover a sufficiently large time period for the pattern to emerge. The same is true
for trends in the data. This can lead to some interesting problems when trying to produce
long-term forecasts from a relatively short period represented by observed data.

The SARIMAX class from the statsmodels package provides the means of modeling time
series data using a seasonal ARIMA model. In fact, it can also model external factors that
have an additional effect on the model, sometimes called exogenous regressors. (We will not
cover these here.) This class works much like the ARMA and ARIMA classes that we used in
the previous recipes. First, we create the model object by providing the data and orders for
both the ARIMA process and the seasonal process, and then use the fit method on this
object to create a fitted model object. We use the get_forecasts method to generate an
object holding the forecasts and confidence interval data that we can then plot, thus
producing the Figure 7.14.

There's more...
There is a small difference in the interface between the SARIMAX class used in this recipe
and the ARIMA class used in the previous recipe. At the time of writing, the statsmodels
package (v0.11) includes a second ARIMA class that builds on top of the SARIMAX class, thus
providing the same interface. However, at the time of writing, this new ARIMA class does
not offer the same functionality as that used in this recipe.

Using Prophet to model time series data
The tools we have seen so far for modeling time series data are very general and flexible
methods, but they require some knowledge of time series analysis in order to be set up. The
analysis needed to construct a good model that can be used to make reasonable predictions
into the future can be intensive and time-consuming, and may not be viable for your
application. The Prophet library is designed to automatically model time series data
quickly, without the need for input from the user, and make predictions into the future.

Regression and Forecasting Chapter 7

[235]

In this recipe, we will learn how to use Prophet to produce forecasts from a sample time
series.

Getting ready
For this recipe, we will need the Pandas package imported as pd, the
Matplotlib pyplot package imported as plt, and the Prophet object from the Prophet
library, which can be imported using the following command:

from fbprophet import Prophet

We also need to import the generate_sample_data routine from the tsdata module,
which is included in the code repository for this book:

from tsdata import generate_sample_data

How to do it...
The following steps show you how to use the Prophet package to generate forecasts for a
sample time series:

First, we use generate_sample_data to generate the sample time series data:1.

sample_ts, test_ts = generate_sample_data(undiff=True, trend=0.2)

We need to convert the sample data into a DataFrame that Prophet expects:2.

df_for_prophet = pd.DataFrame({
 "ds": sample_ts.index, # dates
 "y": sample_ts.values # values
})

Next, we make a model using the Prophet class and fit it to the sample time3.
series:

model = Prophet()
model.fit(df_for_prophet)

Now, we create a new DataFrame that contains the time intervals for the original4.
time series, plus the additional periods for the forecasts:

forecast_df = model.make_future_dataframe(periods=50)

Regression and Forecasting Chapter 7

[236]

Then, we use the predict method to produce the forecasts along the time5.
periods we just created:

forecast = model.predict(forecast_df)

Finally, we plot the predictions on top of the sample time series data, along with6.
the confidence interval and the true future values:

fig, ax = plt.subplots(tight_layout=True)
sample_ts.plot(ax=ax, label="Observed", title="Forecasts")
forecast.plot(x="ds", y="yhat", ax=ax, c="r",
 label="Predicted")
ax.fill_between(forecast["ds"].values,
forecast["yhat_lower"].values,
 forecast["yhat_upper"].values, color="r", alpha=0.4)
test_ts.plot(ax=ax, c="k", label="Future")
ax.legend()
ax.set_xlabel("Date")
ax.set_ylabel("Value")

The plot of the time series, along with forecasts, can be seen in the following
figure:

Figure 7.15: Plot of sample time series data, along with forecasts and a confidence interval

Regression and Forecasting Chapter 7

[237]

How it works...
Prophet is a package that's used to automatically produce models for time series data based
on sample data, with little extra input needed from the user. In practice, it is very easy to
use; we just need to create an instance of the Prophet class, call the fit method, and then
we are ready to produce forecasts and understand our data using the model.

The Prophet class expects the data in a specific format: a DataFrame with columns
named ds for the date/time index, and y for the response data (the time series values).
This DataFrame should have integer indices. Once the model has been fit, we use
make_future_dataframe to create a DataFrame in the correct format, with appropriate
date intervals, and with additional rows for future time intervals. The predict method
then takes this DataFrame and produces values using the model to populate these time
intervals with predicted values. We also get other information, such as the confidence
intervals, in this forecast's DataFrame.

There's more...
Prophet does a fairly good job of modeling time series data without any input from the
user. However, the model can be customized using various methods from the Prophet
class. For example, we could provide information about the seasonality of the data using
the add_seasonality method of the Prophet class, prior to fitting the model.

There are alternative packages for automatically generating models for time series data. For
example, popular machine learning libraries such as TensorFlow can be used to model time
series data.

Regression and Forecasting Chapter 7

[238]

Further reading
A good textbook on regression in statistics is the book Probability and Statistics by
Mendenhall, Beaver, and Beaver, as mentioned in Chapter 6, Working with Data and
Statistics. The following books provide a good introduction to classification and regression
in modern data science:

James, G. and Witten, D., 2013. An Introduction To Statistical Learning: With
Applications In R. New York: Springer.
Müller, A. and Guido, S., 2016. Introduction To Machine Learning With Python.
Sebastopol: O'Reilly Media.

A good introduction to time series analysis can be found in the following book:

Cryer, J. and Chan, K., 2008. Time Series Analysis. New York: Springer.

8
Geometric Problems

This chapter describes solutions to several problems concerning two-dimensional
geometry. Geometry is a branch of mathematics concerned with the characteristics of
points, lines, and other figures (shapes), the interaction between such figures, and the
transformation of such figures. In this chapter, we'll focus on the characteristics of two-
dimensional figures and the interactions between these objects.

There are several problems we must overcome when working with geometric objects in
Python. The biggest hurdle is the problem of representation. Most geometric objects occupy
a region in the two-dimensional plane, and as such, it is impossible to store every point that
lies within the region. Instead, we have to find a more compact way to represent the region
that can be stored as a relatively small number of points. For example, we might store a
selection of points along the boundary of an object that we can reconstruct the boundary
and the object itself from. Moreover, we reformulate geometric problems into questions
that can be answered using the representative data.

The second biggest problem is converting purely geometric questions into a form that can
be understood and solved using software. This can be relatively simple – for example,
finding the point at which two straight lines intersect is a matter of solving a matrix
equation – or it can be extremely complex, depending on the type of question being asked.
A common technique that's used to solve these problems is to represent the figure in
question using more simple objects and solve the (hopefully) easier problem using each of
the simple objects. This should then give us an idea of the solution to the original problem.

We will start by showing you how to visualize two-dimensional shapes, and then learn
how to determine whether a point is contained within another figure. Then, we'll move on
and look at edge detection, triangulation, and finding convex hulls. We'll conclude this
chapter by constructing Bezier curves.

Geometric Problems Chapter 8

[240]

This chapter covers the following recipes:

Visualizing two-dimensional geometric shapes
Finding interior points
Finding edges in an image
Triangulating planar figures
Computing convex hulls
Constructing Bezier curves

Let's get started!

Technical requirements
For this chapter, we will need the numpy package and the matplotlib package, as usual.
We will also need the Shapely package and the scikit-image package, which can be
installed using your favorite package manager, such as pip:

python3.8 -m pip install numpy matplotlib shapely scikit-image

The code for this chapter can be found in the Chapter 08 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2008.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​3hpeKEF.

Visualizing two-dimensional geometric
shapes
The focus of this chapter is on two-dimensional geometry, so our first task is to learn how
to visualize two-dimensional geometric figures. Some of the techniques and tools
mentioned here might be applicable to three-dimensional geometric figures, but generally,
this will require more specialized packages and tools.

A geometric figure, at least in the context of this book, is any point, line, curve, or closed
region (including the boundary) whose boundary is a collection of lines and curves. Simple
examples include points and lines (obviously), rectangles, polygons, and circles.

In this recipe, we will learn how to visualize geometric figures using Matplotlib.

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2008
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF
https://bit.ly/3hpeKEF

Geometric Problems Chapter 8

[241]

Getting ready
For this recipe, we need the NumPy package imported as np, and the Matplotlib pyplot
module imported as plt. We also need to import the Circle class from the
Matplotlib patches module and the PatchCollection class from the
Matplotlib collections module. This can be done with the following commands:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from matplotlib.collections import PatchCollection

We will also need the swisscheese-grid-10411.csv data file from the code repository
for this chapter.

How to do it...
The following steps show you to visualize a two-dimensional geometric figure:

First, we load the data from the swisscheese-grid-10411.csv file from this1.
book's code repository:

data = np.loadtxt("swisscheese-grid-10411.csv")

We create a new patch object that represents a region on a plot. This is going to2.
be a circle (disk) with the center at the origin and a radius of 1. We create a new
set of axes and add this patch to them:

fig, ax = plt.subplots()
outer = Circle((0.0, 0.0), 1.0, zorder=0, fc="k")
ax.add_patch(outer)

Next, we create a PatchCollection object from the data we loaded in step 1,3.
which contains centers and radii for a number of other circles. We then add
this PatchCollection to the axes we created in step 2:

col = PatchCollection(
 (Circle((x, y), r) for x, y, r in data),
 facecolor="white", zorder=1, linewidth=0.2,
 ls="-", ec="k"
)
ax.add_collection(col)

Geometric Problems Chapter 8

[242]

Finally, we set the x- and y-axis ranges so that the whole image is displayed and4.
then turns the axes off:

ax.set_xlim((-1.1, 1.1))
ax.set_ylim((-1.1, 1.1))
ax.set_axis_off()

The resulting image is of a Swiss Cheese, as shown here:

Figure 8.1: Plot of a Swiss cheese

How it works...
The keys to this recipe are the Circle and PatchCollection objects, which represent the
regions of the plot area on Matplotlib Axes. In this case, we are creating one large circular
patch, centered at the origin and with a radius of 1, that has a black face color and
uses zorder=0 to place it behind other patches. This patch is added to the Axes object
using the add_patch method.

Geometric Problems Chapter 8

[243]

The next step is to create an object that will render the circles represented by the data that
we loaded from the CSV file in step 1. This data consisted of x, y, and r values for the center
(x, y) and the radius, r, of the individual circles (10,411 in total). The PatchCollection
object combines a sequence of patches into a single object that can be added to an Axes
object. Here, we add one Circle for each row in our data, which is then added to
the Axes object using the add_collection method. Notice that we have applied the face
color to the whole collection, rather than to each individual Circle constituent. We set the
face color to white (using the facecolor="w" argument), the edge color to black (using
ec="k"), the line width (of the edge lines) to 0.2 (using linewidth=0.2), and the edge
style to a continuous line. All of this, when put together, results in our image.

The image that we have created here is called a "Swiss Cheese". These were first used in
rational approximation theory in 1938 by Alice Roth; they were subsequently rediscovered,
and similar constructions have been used many times since. We used this example because
it consists of one large individual part, plus a large collection of smaller individual parts.
Roth's Swiss Cheese is an example of a set in the plane that has a positive area but no
topological interior. (It is fairly amazing that such a set can even exist!) More importantly,
there are continuous functions defined on this Swiss Cheese that cannot be approximated
by rational functions. This property has made similar constructions useful in the theory
of uniform algebra.

The Circle class is a subclass of the more general Patch class. There are numerous
other Patch classes that represent different planar figures, such as Polygon
and PathPatch, which represent the region bounded by a path (curve or collection of
curves). These can be used to generate complex patches that can be rendered in a
Matplotlib figure. Collections can be used to apply settings to a number of patch objects
simultaneously, which can be especially useful if, as in this recipe, you have a large number
of objects that will all be rendered in the same style.

There's more...
There are many different patch types available in Matplotlib. In this recipe, we used
the Circle patch class, which represents a circular region on the axes. There is also
the Polygon patch class, which represents a polygon (regular or otherwise). There are
also PatchPath objects, which are regions that are surrounded by a curve that does not
necessarily consist of straight-line segments. This is similar to the way a shaded region can
be constructed in many vector graphics software packages.

Geometric Problems Chapter 8

[244]

In addition to the single patch types in Matplotlib, there are a number of collection types
that gather a number of patches together to be used as a single object. In this recipe, we
used the PatchCollection class to gather a large number of Circle patches. There are
more specialized patch collections that can be used to generate these internal patches
automatically, rather than us generating them ourselves.

See also
A more detailed history of Swiss Cheeses in mathematics can be found in the following
biographical article: Daepp, U., Gauthier, P., Gorkin, P. and Schmieder, G., 2005. Alice in
Switzerland: The life and mathematics of Alice Roth. The Mathematical Intelligencer, 27(1),
pp.41-54.

Finding interior points
One problem with working with two-dimensional figures in a programming environment
is that you can't possibly store all the points that lie within the figure. Instead, we usually
store far fewer points that represent the figure in some way. In most cases, this will be a
number of points (connected by lines) that describe the boundary of the figure. This is
efficient in terms of memory and makes it easy to visualize them on screen using
Matplotlib Patches, for example. However, this approach makes it more difficult to
determine whether a point, or another figure, lies within a given figure. This is a crucial
question in many geometric problems.

In this recipe, we will learn how to represent geometric figures and determine whether a
point lies within a figure or not.

Getting ready
For this recipe, we will need to import the matplotlib package (as a whole) as mpl and
the pyplot module as plt:

import matplotlib as mpl
import matplotlib.pyplot as plt

Geometric Problems Chapter 8

[245]

We also need to import the Point and Polygon objects from the geometry module of the
Shapely package. The Shapely package contains many routines and objects for
representing, manipulating, and analyzing two-dimensional geometric figures:

from shapely.geometry import Polygon, Point

How to do it...
The following steps show you how to create a Shapely representation of a polygon and
then test whether a point lies within this polygon:

Create a sample polygon to test:1.

polygon = Polygon(
 [(0, 2), (-1, 1), (-0.5, -1), (0.5, -1), (1, 1)],
)

Next, we plot the polygon on a new figure. First, we need to convert the polygon2.
into a Matplotlib Polygon patch that can be added to the figure:

fig, ax = plt.subplots()
poly_patch = mpl.patches.Polygon(polygon.exterior, ec="k",
 lw="1", alpha=0.5)
ax.add_patch(poly_patch)
ax.set(xlim=(-1.05, 1.05), ylim=(-1.05, 2.05))
ax.set_axis_off()

Now, we need to create two test points, one of which will be inside the polygon3.
and one of which will be outside the polygon:

p1 = Point(0.0, 0.0)
p2 = Point(-1.0, -0.75)

We plot and annotate these two points on top of the polygon to show their4.
positions:

ax.plot(0.0, 0.0, "k*")
ax.annotate("p1", (0.0, 0.0), (0.05, 0.0))
ax.plot(-0.8, -0.75, "k*")
ax.annotate("p2", (-0.8, -0.75), (-0.8 + 0.05, -0.75))

Geometric Problems Chapter 8

[246]

Finally, we test where each point lies within the polygon using the contains5.
method, and then print the result to the Terminal:

print("p1 inside polygon?", polygon.contains(p1))
print("p2 inside polygon?", polygon.contains(p2))

The results show that the first point, p1, is contained in the polygon, while the second
point, p2, is not. This can also be seen in the following figure, which clearly shows that one
point is contained within the shaded polygon, while the other point is not:

Figure 8.2: Points inside and outside a polygonal region

How it works...
The Shapely Polygon class is a representation of a polygon that stores its vertices as points.
The region enclosed by the outer boundary – the five straight lines between the stored
vertices – is obvious to us and easily identified by the eye, but the notion of being "inside"
the boundary is difficult to define in a way that can be easily understood by a computer. It
is not even straightforward to give a formal mathematical definition of what it means to lie
"within" a given curve.

Geometric Problems Chapter 8

[247]

There are two main ways to determine whether a point lies within a simple closed curve –
that is, a curve that starts and ends at the same place that does not contain any self-
intersections. The first uses a mathematical concept called the winding number, which counts
the number of times the curve "wraps around" a point, and the ray crossing
counting method, where we count the number of times a ray from the point to a point at
infinity crosses the curve. Fortunately, we don't need to compute these numbers ourselves
since we can use the tools from the Shapely package to do this computation for us. This is
what the contains method of a polygon does. (Under the hood, Shapely uses the GEOS
library to perform this calculation.)

The Shapely Polygon class can be used to compute many quantities associated with these
planar figures, including perimeter length and area. The contains method is used to
determine whether a point, or a collection of points, lies within the polygon represented by
the object. (There are some limitations regarding the kinds of polygons that can be
represented by this class.) In fact, you can use the same method to determine whether one
polygon is contained within another since, as we have seen in this recipe, a polygon is
represented by a simple collection of points.

Finding edges in an image
Finding edges in images is a good way of reducing a complex image that contains a lot of
noise and distractions to a very simple image containing the most prominent outlines. This
can be useful as our first step of the analysis process, such as in image classification, or as
the process of importing line outlines into computer graphics software packages.

In this recipe, we will learn how to use the scikit-image package and the Canny
algorithm to find the edges in a complex image.

Getting ready
For this recipe, we will need to import the Matplotlib pyplot module as plt, the imread
routine from the skimage.io module, and the canny routine from the skimage.feature
module:

import matplotlib.pyplot as plt
from skimage.io import imread
from skimage.feature import canny

Geometric Problems Chapter 8

[248]

How to do it...
Follow these steps to learn how to use the scikit-image package to find edges in an
image:

Load the image data from the source file. This can be found in the GitHub1.
repository for this chapter. Crucially, we pass in as_gray=True to load the
image in grayscale:

image = imread("mandelbrot.png", as_gray=True)

The following is the original image, for reference. The set itself is shown by the
white region and, as you can see, the boundary, indicated by the darker shades, is
very complex:

Figure 8.3: Plot of the Mandelbrot set generated using Python

Next, we use the canny routine, which needs to be imported from the features2.
module of the scikit-image package. The sigma value is set to 0.5 for this
image:

edges = canny(image, sigma=0.5)

Geometric Problems Chapter 8

[249]

Finally, we add the edges image to a new figure with a grayscale (reversed)3.
colormap:

fig, ax = plt.subplots()
ax.imshow(edges, cmap="gray_r")
ax.set_axis_off()

The edges that have been detected can be seen in the following image. The edge-finding
algorithm has identified most of the visible details of the boundary of the Mandelbrot set,
although it is not perfect (this is an estimate, after all):

Figure 8.4: The edges of the Mandelbrot set found using the scikit-image package's Canny edge detection algorithm

How it works...
The scikit-image package provides various utilities and types for manipulating and
analyzing data derived from images. As the name suggests, the canny routine uses the
Canny edge detection algorithm to find edges in an image. This algorithm uses the intensity
gradients in the image to detect edges, where the gradient is larger. It also performs some
filtering to reduce the noise in the edges it finds.

The sigma keyword value we provided is the standard deviation of the Gaussian
smoothing that's applied to the image prior to calculating the gradients for edge detection.
This helps us remove some of the noise from the image. The value we set (0.5) is smaller
than the default (1), but it does give us better resolution in this case. A large value would
obscure some of the finer details in the boundary of the Mandelbrot set.

Geometric Problems Chapter 8

[250]

Triangulating planar figures
As we saw in Chapter 3, Calculus and Differential Equations, we often need to break down a
continuous region into smaller, simpler regions. In earlier recipes, we reduced an interval of
real numbers into a collection of smaller intervals, each with a small length. This process is
usually called discretization. In this chapter, we are working with two-dimensional figures,
so we need a two-dimensional version of this process. For this, we'll break a two-
dimensional figure (in this recipe, a polygon) into a collection of smaller and simpler
polygons. The simplest of all polygons are triangles, so this is a good place to start for two-
dimensional discretization. The process of finding a collection of triangles that "tiles" a
geometric figure is called triangulation.

In this recipe, we will learn how to triangulate a polygon (with a hole) using the Shapely
package.

Getting ready
For this recipe, we will need the NumPy package imported as np, the Matplotlib package
imported as mpl, and the pyplot module imported as plt:

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

We also need the following items from the Shapely package:

from shapely.geometry import Polygon
from shapely.ops import triangulate

How to do it...
The following steps show you how to triangulate a polygon with a hole using the Shapely
package:

First, we need to create a Polygon object that represents the figure that we wish1.
to triangulate:

polygon = Polygon(
 [(2.0, 1.0), (2.0, 1.5), (-4.0, 1.5), (-4.0, 0.5),
 (-3.0, -1.5), (0.0, -1.5), (1.0, -2.0), (1.0, -0.5),
 (0.0, -1.0), (-0.5, -1.0), (-0.5, 1.0)],
 holes=[np.array([[-1.5, -0.5], [-1.5, 0.5], [-2.5, 0.5],

Geometric Problems Chapter 8

[251]

 [-2.5, -0.5]])]
)

Now, we should plot the figure so that we can understand the region that we will2.
be working within:

fig, ax = plt.subplots()
plt_poly = mpl.patches.Polygon(polygon.exterior,
 ec="k", lw="1", alpha=0.5, zorder=0)
ax.add_patch(plt_poly)
plt_hole = mpl.patches.Polygon(polygon.interiors[0],
 ec="k", fc="w")
ax.add_patch(plt_hole)
ax.set(xlim=(-4.05, 2.05), ylim=(-2.05, 1.55))
ax.set_axis_off()

This polygon can be seen in the following image. As we can see, the figure has a
"hole" in it that must be carefully considered:

Figure 8.5: Sample polygon but with a hole

We use the triangulate routine to generate a triangulation of the polygon. This3.
triangulation includes external edges, which is something we don't want in this
recipe:

triangles = triangulate(polygon)

To remove the triangles that lie outside the original polygon, we need to use the4.
built-in filter routine, along with the contains method (seen earlier in this
chapter):

filtered = filter(lambda p: polygon.contains(p), triangles)

Geometric Problems Chapter 8

[252]

To plot the triangles on top of the original polygon, we need to convert the5.
Shapely triangles into Matplotlib Patch objects, which we store in
a PatchCollection:

patches = map(lambda p: mpl.patches.Polygon(p.exterior), filtered)
col = mpl.collections.PatchCollection(patches, fc="none", ec="k")

Finally, we add the collection of triangular patches to the figure we created6.
earlier:

ax.add_collection(col)

The triangulation that's been plotted on top of the original polygon can be seen in the
following figure. Here, we can see that every vertex has been connected to two others to
form a system of triangles that cover the entire original polygon:

Figure 8.6: Triangulation of a sample polygon with a hole

How it works...
The triangulate routine uses a technique called Delaunay triangulation to connect a
collection of points to a system of triangles. In this case, the collection of points are the
vertices of the polygon. The Delaunay method finds these triangles in such a way that none
of the points are contained within the circumcircle of any of the triangles. This is a technical
condition of the method, but it means that the triangles are chosen efficiently, in the sense
that it avoids very long, thin triangles. The resulting triangulation makes use of the edges
that are present in the original polygon and also connects some of the external edges.

Geometric Problems Chapter 8

[253]

In order to remove the triangles that lie outside of the original polygon, we use the built-
in filter routine, which creates a new iterable by removing the items that the criterion
function fails under. This is used in conjunction with the contains method on
Shapely Polygon objects to determine whether each triangle lies within the original figure.
As we mentioned previously, we need to convert these Shapely items into Matplotlib
patches before they can be added to the plot.

There's more...
Triangulations are usually used to reduce a complex geometric figure into a collection of
triangles, which are much simpler, for some kind of computational task. However, they do
have other uses. One particularly interesting application of triangulations is to solve the "art
gallery problem". This problem concerns finding the maximum number of guards that are
necessary to "guard" an art gallery of a particular shape. Triangulations are an essential part
of Fisk's simple proof of the art gallery theorem, which was originally proved by Chvátal.

Suppose that the polygon from this recipe is the floor plan for an art gallery and that some
guards need to be placed on the vertices. A small amount of work will show that you'll
need three guards to be placed at the polygon's vertices for the whole museum to be
covered. In the following image, we have plotted one possible arrangement:

Figure 8.7: One possible solution to the art gallery problem where guards are placed on vertices.
The guards are indicated by the dots, and their corresponding field of vision is shaded.

Geometric Problems Chapter 8

[254]

One guard is placed at each of the vertices with a circle, and their field is vision is denoted
by the corresponding shaded area. Here, you can see that the whole polygon is covered by
at least one color. The solution to the art gallery problem – which is actually a variation of
the original problem – tells us that we need, at most, four guards.

See also
More information about the art gallery problem can be found in the classic book by
O'Rourke: ORourke, J. (1987). Art gallery theorems and algorithms. New York: Oxford University
Press.

Computing convex hulls
A geometric figure is said to be convex if every pair of points within the figure can be joined
using a straight line that is also contained within the figure. Simple examples of convex
bodies include points, straight lines, squares, circles (disks), regular polygons, and so on.
The geometric figure shown in Figure 8.5 is not convex since the points on the opposite
sides of the hole cannot be connected by a straight line that remains inside the figure.

Convex figures are simple from a certain perspective, which means they are useful in a
variety of applications. One particular problem involves finding the smallest convex set
that contains a collection of points. This smallest convex set is called the convex hull of the
set of points.

In this recipe, we'll learn how to find the convex hull of a set of points using the Shapely
package.

Getting ready
For this recipe, we will need the NumPy package imported as np, the Matplotlib package
imported as mpl, and the pyplot module imported as plt:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

Geometric Problems Chapter 8

[255]

We will also need a default random number generator from NumPy. We can import this as
follows:

from numpy.random import default_rng
rng = default_rng(12345)

Finally, we will need to import the MultiPoint class from Shapely:

from shapely.geometry import MultiPoint

How to do it...
Follow these steps to find the convex hull of a collection of randomly generated points:

First, we generate a two-dimensional array of random numbers:1.

raw_points = rng.uniform(-1.0, 1.0, size=(50, 2))

Next, we create a new figure and plot these raw sample points on this figure:2.

fig, ax = plt.subplots()
ax.plot(raw_points[:, 0], raw_points[:, 1], "k.")
ax.set_axis_off()

These randomly generated points can be seen in the following figure. The points
are roughly spread over a square region:

Figure 8.8: A collection of points in the plane

Geometric Problems Chapter 8

[256]

Next, we construct a MultiPoint object that collects all these points and put3.
them into a single object:

points = MultiPoint(raw_points)

Now, we get the convex hull of this MultiPoint object using the convex_hull4.
attribute:

convex_hull = points.convex_hull

Then, we create a Matplotlib Polygon patch that can be plotted on our figure to5.
show the result of finding the convex hull:

patch = mpl.patches.Polygon(convex_hull.exterior, alpha=0.5,
 ec="k", lw=1.2)

Finally, we add the Polygon patch to the figure to show the convex hull:6.

ax.add_patch(patch)

The convex hull of the randomly generated points can be seen in the following image:

Figure 8.9: The convex hull of a collection of points in the plane

Geometric Problems Chapter 8

[257]

How it works...
The Shapely package is a Python wrapper around the GEOS library for geometric analysis.
The convex_hull attribute of Shapely geometric objects calls the convex hull computation
routine from the GEOS library, resulting in a new Shapely object. From this recipe, we can
see that the convex hull of the collection of points is a polygon with vertices at the points
that are farthest away from the "center".

Constructing Bezier curves
Bezier curves, or B-splines, are a family of curves that are extremely useful in vector graphics
– for instance, they are commonly used in high-quality font packages. This is because they
are defined by a small number of points that can then be used to inexpensively calculate
a large number of points along the curve. This allows detail to be scaled according to the
needs of the user.

In this recipe, we'll learn how to create a simple class representing a Bezier curve and
compute a number of points along it.

Getting ready
In this recipe, we will use the NumPy package imported as np, the Matplotlib pyplot
module imported as plt, and the comb routine from the Python Standard Library math
module, imported under the alias binom:

from math import comb as binom
import matplotlib.pyplot as plt
import numpy as np

How to do it...
Follow these steps to define a class that represents a Bezier curve that can be used to
compute points along the curve:

The first step is to set up the basic class. We need to provide the control points1.
(nodes) and some associated numbers to instance attributes:

class Bezier:
 def __init__(self, *points):
 self.points = points

Geometric Problems Chapter 8

[258]

 self.nodes = n = len(points) - 1
 self.degree = l = points[0].size

Still inside the __init__ method, we generate the coefficients for the Bezier2.
curve and store them in a list on an instance attribute:

 self.coeffs = [binom(n, i)*p.reshape((l, 1)) for i,
 p in enumerate(points)]

Next, we define a __call__ method to make the class callable. We load the3.
number of nodes from the instance into a local variable for clarity:

 def __call__(self, t):
 n = self.nodes

Next, we reshape the input array so that it contains a single row:4.

 t = t.reshape((1, t.size))

Now, we generate a list of arrays of values using each of the coefficients in5.
the coeffs attribute for the instance:

 vals = [c @ (t**i)*(1-t)**(n-i) for i,
 c in enumerate(self.coeffs)]

Finally, we sum all the arrays that were constructed in step 5 and return the6.
resulting array:

 return np.sum(vals, axis=0)

Now, we will test our class by means of an example. We'll define four control7.
points for this example:

p1 = np.array([0.0, 0.0])
p2 = np.array([0.0, 1.0])
p3 = np.array([1.0, 1.0])
p4 = np.array([1.0, 3.0])

Next, we set up a new figure for plotting and plot the control points with a8.
dashed connecting line:

fig, ax = plt.subplots()
ax.plot([0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 1.0, 3.0], "*--k")
ax.set(xlabel="x", ylabel="y", title="Bezier curve with
 4 nodes, degree 3")

Geometric Problems Chapter 8

[259]

Then, we create a new instance of our Bezier class using the four points we9.
defined in step 7:

b_curve = Bezier(p1, p2, p3, p4)

We can now create an array of equally spaced points between 0 and 110.
using linspace and compute the points along the Bezier curve:

t = np.linspace(0, 1)
v = b_curve(t)

Finally, we plot this curve on top of the control points that we plotted earlier:11.

ax.plot(v[0,:], v[1, :])

The Bezier curve that we've plotted can be seen in the following diagram. As you can see,
the curve starts at the first point (0, 0) and finishes at the final point (1, 3):

Figure 8.10: Bezier curve of degree 3 constructed using four nodes

Geometric Problems Chapter 8

[260]

How it works...
A Bezier curve is described by a sequence of control points, from which we construct the
curve in a recursive manner. A Bezier curve with one point is a constant curve that stays at
that point. A Bezier curve with two control points is a line segment between those two
points:

When we add a third control point, we take the line segment between the corresponding
points on the Bezier curve of curves that are constructed with one less point. This means
that we construct the Bezier curve with three control points using the following formula:

This construction can be seen in the following diagram:

Figure 8.11: Construction of a quadratic Bezier curve using a recursive definition. The two linear Bezier curves are shown by the black dashed lines.

Geometric Problems Chapter 8

[261]

The construction continues in this manner to define the Bezier curve on any number of
control points. Fortunately, we don't need to work with this recursive definition in practice
because we can flatten the formulae into a single formula for the curve, which is given by
the following formula:

Here, the pi elements are the control points, t is a parameter, and

is the binomial coefficient. Remember that the t parameter is the quantity that is changing
to generate the points of the curve. We can isolate the terms in the previous sum that
involve t and those that do not. This defines the coefficients that we defined in step 2, each
of which are given by the following code fragment:

binom(n, i)*p.reshape((l, 1))

We reshape each of the points, p, in this step to make sure it is arranged as a column vector.
This means that each of the coefficients is a column vector (as a NumPy array) consisting of
the control points scaled by the binomial coefficients.

Now, we need to specify how to evaluate the Bezier curve at various values of t. This is
where we make use of the high-performance array operations from the NumPy package.
We reshaped our control points as column vectors when forming our coefficients. In step 4,
we reshaped the input, t, values to make a row vector. This means that we can use the
matrix multiplication operator to multiply each coefficient by the corresponding (scalar)
value, depending on the input, t. This is what happens in step 5, inside the list
comprehension. In the following line, we multiply the l × 1 array by the 1 × N array to
obtain an l × N array:

c @ (t**i)*(1-t)**(n-i)

We get one of these for each coefficient. We can then use the np.sum routine to sum each of
these l × N arrays to get the values along the Bezier curve. In the example provided in this
recipe, the top row of the output array contains the x values of the curve and the bottom
row contains the y values of the curve. We have to be careful when specifying the axis=0
keyword argument for the sum routine to make sure the sum takes over the list we created,
and not the arrays that this list contains.

Geometric Problems Chapter 8

[262]

The class we defined is initialized using the control points for the Bezier curve, which are
then used to generate the coefficients. The actual computation of the curve values is done
using NumPy, so this implementation should have relatively good performance. Once a
specific instance of this class has been created, it functions very much like a function, as you
might expect. However, no type checking is done here, so we can only call this "function"
with a NumPy array as an argument.

There's more...
Bezier curves are defined using an iterative construction, where the curve with n points is
defined using the straight line connecting the curves defined by the first and last n-1 points.
Keeping track of the coefficient of each of the control points using this construction will
quickly lead you to the equation we used to define the preceding curve. This construction
also leads to interesting – and useful – geometric properties of Bezier curves.

As we mentioned in the introduction to this recipe, Bezier curves appear in many
applications that involve vector graphics, such as fonts. They also appear in many common
vector graphics software packages. In these software packages, it is common to see quadratic
Bezier curves, which are defined by a collection of three points. However, you can also
define a quadratic Bezier curve by supplying the two endpoints, along with the gradient
lines, at those points. This is more common in graphics software packages. The resulting
Bezier curve will leave each of the endpoints along the gradient lines and connect the curve
smoothly between these points.

The implementation we constructed here will have relatively good performance for small
applications, but will not be sufficient for applications involving rendering curves with a
large number of control points at a large number of t values. For this, it is best to use a low-
level package written in a compiled language. For example, the bezier Python package
uses a compiled Fortran backend for its computations and provides a much richer interface
than the class we defined here.

Bezier curves can, of course, be extended to higher dimensions in a natural way. The result
is a Bezier surface, which makes them very useful general-purpose tools for high-quality,
scalable graphics.

Geometric Problems Chapter 8

[263]

Further reading
A description of some common algorithms from computation geometry can be
found in the following book: Press, W.H., Teukolsky, S.A., Vetterling, W.T., and
Flannery, B.P., 2007. Numerical recipes: the art of scientific computing. 3rd ed.
Cambridge: Cambridge University Press.
For a more detailed account of some problems and techniques from
computational geometry, check out the following book: O'Rourke, J.,
1994. Computational geometry in C. Cambridge: Cambridge University Press.

9
Finding Optimal Solutions

In this chapter, we'll address various methods for finding the best outcome in a given
situation. This is called optimization and usually involves either minimizing or maximizing
an objective function. An objective function is a function that takes a number of parameters
as arguments and returns a single scalar value that represents the cost or payoff for a given
choice of parameters. The problems regarding minimizing and maximizing functions are
actually equivalent to one another, so we'll only discuss minimizing object functions in this
chapter. Minimizing a function, f(x), is equivalent to maximizing the function -f(x). More
details on this will be provided when we discuss the first recipe.

The algorithms available to us for minimizing a given function depend on the nature of the
function. For instance, a simple linear function containing one or more variables has
different algorithms available compared to a non-linear function with many variables. The
minimization of linear functions falls within the category of linear programming, which is a
well-developed theory. For non-linear functions, we usually make use of the gradient
(derivative) of a function in order to find the minimum points. We will discuss several
methods for minimizing various functions of different types.

Finding the minima and maxima of the functions of a single variable is especially simple,
and can be done easily if the derivatives of the function are known. If not, then the method
described in the appropriate recipe will be applicable. The notes in the Minimizing a non-
linear function recipe give some extra details about this.

We'll also provide a very short introduction to game theory. Broadly speaking, this is a
theory surrounding decision-making and has wide-ranging implications in subjects such as
economics. In particular, we'll discuss how to represent simple two-player games as objects
in Python, compute payoffs associated with certain choices, and compute Nash equilibria
for these games.

Finding Optimal Solutions Chapter 9

[265]

We will start by looking at how to minimize linear and non-linear functions containing one
or more variables. Then, we'll move on and look at gradient descent methods and curve
fitting using least squares. We'll conclude this chapter by analyzing two-player games and
Nash equilibria.

In this chapter, we will cover the following recipes:

Minimizing a simple linear function
Minimizing a non-linear function
Using gradient descent methods in optimization
Using least squares to fit a curve to data
Analyzing simple two-player games
Computing Nash equilibria

Let's get started!

Technical requirements
In this chapter, we will need the NumPy package, the SciPy package, and the Matplotlib
package, as usual. We will also need the Nashpy package for the final two recipes. These
packages can be installed using your favorite package manager, such as pip:

python3.8 -m pip install numpy scipy matplotlib nashpy

The code for this chapter can be found in the Chapter 09 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2009.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​2BjzwGo.

https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2009
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo
https://bit.ly/2BjzwGo

Finding Optimal Solutions Chapter 9

[266]

Minimizing a simple linear function
The most basic type of problem we face in optimization is finding the parameters where a
function takes its minimum value. Usually, this problem is constrained by some bounds on
the possible values of the parameters, which increases the complexity of the problem.
Obviously, the complexity of this problem increases further if the function that we are
minimizing is also complex. For this reason, we must first consider linear functions, which
are in the following form:

To solve these kinds of problems, we need to convert the constraints into a form that can be
used by the computer. In this case, we usually convert them into a linear algebra problem
(matrices and vectors). Once this is done, we can use the tools from the linear algebra
packages in NumPy and SciPy to find the parameters we seek. Fortunately, since these
kinds of problems occur quite frequently, SciPy has routines that handle this conversion
and subsequent solving.

In this recipe, we'll solve the following constrained linear minimization problem using
routines from the SciPy optimize module:

This will be subject to the following conditions:

Getting ready
For this recipe, we need to import the NumPy package under the alias np, the
Matplotlib pyplot module under the name plt, and the SciPy optimize module. We also
need to import the Axes3D class from mpl_toolkits.mplot3d to make 3D plotting
available:

import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Finding Optimal Solutions Chapter 9

[267]

How to do it...
Follow these steps to solve a constrained linear minimization problem using SciPy:

Set up the system in a form that SciPy can recognize:1.

A = np.array([
 [2, 1], # 2*x0 + x1 <= 6
 [-1, -1] # -x0 - x1 <= -4
])
b = np.array([6, -4])
x0_bounds = (-3, 14) # -3 <= x0 <= 14
x1_bounds = (2, 12) # 2 <= x1 <= 12
c = np.array([1, 5])

Next, we need to define a routine that evaluates the linear function at a value2.
of x, which is a vector (a NumPy array):

def func(x):
 return np.tensordot(c, x, axes=1)

Then, we create a new figure and add a set of 3d axes that we can plot the3.
function on:

fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.set(xlabel="x0", ylabel="x1", zlabel="func")
ax.set_title("Values in Feasible region")

Next, we create a grid of values covering the region from the problem and plot4.
the value of the function over this region:

X0 = np.linspace(*x0_bounds)
X1 = np.linspace(*x1_bounds)
x0, x1 = np.meshgrid(X0, X1)
z = func([x0, x1])
ax.plot_surface(x0, x1, z, alpha=0.3)

Now, we plot the line in the plane of function values that corresponds to the5.
critical line, 2*x0 + x1 == 6, and plot the values that fall within the range on
top of our plot:

Y = (b[0] - A[0, 0]*X0) / A[0, 1]
I = np.logical_and(Y >= x1_bounds[0], Y <= x1_bounds[1])
ax.plot(X0[I], Y[I], func([X0[I], Y[I]]), "r", lw=1.5)

Finding Optimal Solutions Chapter 9

[268]

We repeat this plotting step for the second critical line, x0 + x1 == -4:6.

Y = (b[1] - A[1, 0]*X0) / A[1, 1]
I = np.logical_and(Y >= x1_bounds[0], Y <= x1_bounds[1])
ax.plot(X0[I], Y[I], func([X0[I], Y[I]]), "r", lw=1.5)

Next, we shade the region that lies within the two critical lines, which 7.
corresponds to the feasible region for the minimization problem:

B = np.tensordot(A, np.array([x0, x1]), axes=1)
II = np.logical_and(B[0, ...] <= b[0], B[1, ...] <= b[1])
ax.plot_trisurf(x0[II], x1[II], z[II], color="b", alpha=0.5)

The plot of the function values over the feasible region can be seen in the
following image:

Figure 9.1: Values of the linear function with the feasible region highlighted

As we can see, the minimum value that lies within this shaded region occurs at
the intersection of the two critical lines.

Next, we use linprog to solve the constrained minimization problem with the8.
bounds we created in Step 1. We print the resulting object in the terminal:

res = optimize.linprog(c, A_ub=A, b_ub=b, bounds=
 (x0_bounds, x1_bounds))
print(res)

Finding Optimal Solutions Chapter 9

[269]

Finally, we plot the minimum function value on top of the feasible region:9.

ax.plot([res.x[0]], [res.x[1]], [res.fun], "k*")

The updated plot can be seen in the following image:

Figure 9.2: Minimum value plotted on the feasible region

Here, we can see that the linprog routine has indeed found that the minimum is
at the intersection of the two critical lines.

How it works...
Constrained linear minimization problems are common in economic situations, where you
try to minimize costs while maintaining other aspects of the parameters. In fact, a lot of the
terminology from optimization theory mirrors this fact. A very simple algorithm for solving
these kinds of problems is called the simplex method, which uses a sequence of array
operations to find the minimal solution. Geometrically, these operations represent changing
to different vertices of a simplex (which we won't define here), and it is this that gives the
algorithm its name.

Before we continue, we'll provide a brief outline of the process used by the simplex method
to solve a constrained linear optimization problem. The problem, as presented to us, is not a
matrix equation problem but a matrix inequality problem. We can remedy this problem by
introducing slack variables, which turn an inequality into an equality. For example, the
first constraint inequality can be rewritten as follows by introducing the slack variable, s1:

Finding Optimal Solutions Chapter 9

[270]

This satisfies the desired inequality, provided that s1 is not negative. The second constraint
inequality is a greater than or equal to type inequality that we must first change so that it's
of the less than or equal to type. We do this by multiplying all terms by -1. This gives us the
second row of matrix A that we defined in the recipe. After introducing a second slack
variable, s2, we get the second equation:

From this, we can construct a matrix whose columns contain the coefficients of the two
parameter variables, x1 and x2, and the two slack variables, s1 and s2. The rows of this
matrix represent the two bounding equations and the objective function. This system of
equations can now be solved, using elementary row operations on this matrix, to obtain the
values of x1 and x2, which minimize the objective function. Since solving matrix equations is
easy and fast, this means that we can minimize linear functions quickly and efficiently.

Fortunately, we don't need to remember how to reduce our system of inequalities into a
system of linear equations since routines such as linprog do this for us. We can simply
provide the bounding inequalities as a matrix and vector pair, consisting of the coefficients
of each, and a separate vector that defines the objective function. The linprog routine
takes care of formulating and then solving the minimization problem.

In practice, the simplex method is not the algorithm used by the linprog routine to
minimize the function. Instead, linprog uses an interior point algorithm, which is more
efficient. (The method can actually be set to simplex or revised-simplex by providing
the method keyword argument with the appropriate method name. In the printed resulting
output, we can see that it only took five iterations to reach the solution.) The resulting
object that is returned by this routine contains the parameter values at which the minimum
occurs stored in the x attribute, the value of the function at this minimum value stored in
the fun attribute, and various other pieces of information about the solving process. If the
method had failed, then the status attribute would have contained a numerical code that
described why the method failed.

In step 2 of this recipe, we created a function that represents the objective function for this
problem. This function takes a single array as input, which contains the parameter space
values at which the function should be evaluated. Here, we used the tensordot routine
(with axes=1) from NumPy to evaluate the dot product of the coefficient vector, c, with
each input, x. We have to be quite careful here since the values that we pass into the
function will be a 2 × 50 × 50 array in a later step. The ordinary matrix multiplication
(np.dot) would not give the 50 × 50 array output that we desire in this case.

Finding Optimal Solutions Chapter 9

[271]

In steps 5 and 6, we computed the points on the critical lines as those points with the
following equation:

We then computed the corresponding z values so that we could plot the lines that lie on the
plane defined by the objective function. We also need to "trim" the values so that we only
include those that lie in the range specified in the problem.

There's more...
This recipe covered the constrained minimization problem and how to solve it using SciPy.
However, the same method can be used to solve the constrained maximization problem. This
is because maximization and minimization are dual to one another in the sense that
maximizing a function, f(x), is the same as minimizing the function -f(x), and then taking
the negative of this value. In fact, we used this fact in this recipe to change the second
constraining inequality from ≥ to ≤.

In this recipe, we solved a problem with only two parameter variables, but the same
method will work (except for the plotting steps) for a problem involving more than two
such variables. We just need to add more rows and columns to each of the arrays to account
for this increased number of variables – this includes the tuple of bounds supplied to the
routine. The routine can also be used with sparse matrices, where appropriate, for extra
efficiency when dealing with very large amounts of variables.

The linprog routine gets its name from linear programming, which is used to describe
problems of this type – finding values of x that satisfy some matrix inequalities subject to
other conditions. Since there is a very close connection to the theory of matrices and linear
algebra, there are many very fast and efficient techniques available for linear programming
problems that are not available in a non-linear context.

Finding Optimal Solutions Chapter 9

[272]

Minimizing a non-linear function
In the previous recipe, we saw how to minimize a very simple linear function.
Unfortunately, most functions are not linear and usually don't have nice properties that we
would like. For these non-linear functions, we cannot use the fast algorithms that have been
developed for linear problems, so we need to devise new methods that can be used in these
more general cases. The algorithm that we will use there is called the Nelder-Mead
algorthim, which is a robust and general-purpose method that's used to find the minimum
value of a function and does not rely on the gradient of the function.

In this recipe, we'll learn how to use the Nelder-Mead simplex method to minimize a non-
linear function containing two variables.

Getting ready
In this recipe, we will use the NumPy package imported as np, the Matplotlib pyplot
module imported as plt, the Axes3D class imported from mpl_toolkits.mplot3d to
enable 3D plotting, and the SciPy optimize module:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy import optimize

How to do it...
The following steps show you how to use the Nelder-Mead simplex method to find the
minimum of a general non-linear objective function:

Define the objective function that we will minimize:1.

def func(x):
 return ((x[0] - 0.5)**2 + (x[1] + 0.5)**2)*
 np.cos(0.5*x[0]*x[1])

Next, create a grid of values that we can plot our objective function on:2.

x_r = np.linspace(-1, 1)
y_r = np.linspace(-2, 2)
x, y = np.meshgrid(x_r, y_r)

Finding Optimal Solutions Chapter 9

[273]

Now, we evaluate the function on this grid of points:3.

z = func([x, y])

Next, we create a new figure with a 3d axes object and set the axis labels and the4.
title:

fig = plt.figure(tight_layout=True)
ax = fig.add_subplot(projection="3d")
ax.tick_params(axis="both", which="major", labelsize=9)
ax.set(xlabel="x", ylabel="y", zlabel="z")
ax.set_title("Objective function")

Now, we can plot the objective function as a surface on the axes we just created:5.

ax.plot_surface(x, y, z, alpha=0.7)

We choose an initial point that our minimization routine will start its iteration at6.
and plot this on the surface:

x0 = np.array([-0.5, 1.0])
ax.plot([x0[0]], [x0[1]], func(x0), "r*")

The plot of the objective function's surface, along with the initial point, can be
seen in the following image. Here, we can see that the minimum value appears to
occur at around 0.5 on the x-axis and -0.5 on the y-axis:

Figure 9.3: Non-linear objective function with a starting value

Finding Optimal Solutions Chapter 9

[274]

Now, we use the minimize routine from the optimize package to find the7.
minimum value and print the result object that it produces:

result = optimize.minimize(func, x0, tol=1e-6, method=
 "Nelder-Mead")
print(result)

Finally, we plot the minimum value found by the minimize routine on top of the8.
objective function surface:

ax.plot([result.x[0]], [result.x[1]], [result.fun], "r*")

The updated plot of the objective function, including the minimum point found
by the minimize routine, can be seen in the following image:

Figure 9.4: Objective function with a starting point and a minimum point

Finding Optimal Solutions Chapter 9

[275]

How it works...
The Nelder-Mead simplex method – not to be confused with the simplex method for linear
optimization problems – is a simple algorithm for finding the minimum values of a non-
linear function and works even when the objective function does not have a known
derivative. (This is not the case for the function in this recipe; the only gains from using a
gradient-based method is the speed of convergence.) The method works by comparing the
values of the objective function at the vertices of a simplex, which is a triangle in a two-
dimensional space. The vertex with the largest function value is "reflected" through the
opposite edge and performs an appropriate expansion or contraction that, in effect, moves
the simplex "downhill".

The minimize routine from the SciPy optimize module is an entry point for many non-
linear function minimization algorithms. In this recipe, we used the Nelder-Mead simplex
algorithm, but there are also a number of other algorithms available. Many of these
algorithms require knowledge of the gradient of the function, which might be computed
automatically by the algorithm. The algorithm can be used by providing the appropriate
name to the method keyword argument.

The result object that's returned by the minimize routine contains lots of information
about the solution that has been found – or not found, if an error occurred – by the solver.
In particular, the desired parameters that the calculated minimum occurs at is stored in
the x attribute of the result, while the value of the function is stored in the fun attribute.

The minimize routine requires the function and a starting value of x0. In this recipe, we
also provided a tolerance value that the minimum should be computed at using the tol
keyword argument. Changing this value will modify the accuracy that the solution is
computed with.

There's more...
The Nelder-Mead algorithm is an example of a "gradient-free" minimization algorithm
since it does not require any information about the gradient (derivative) of the objective
function. There are several such algorithms, all of which typically involve evaluating the
objective function at a number of specified points, and then using this information to move
toward the minimum value. In general, gradient-free methods tend to converge more
slowly than gradient descent models. However, they can be used for almost any objective
function, even where it is not easy to compute the gradient either exactly or by means of
approximation.

Finding Optimal Solutions Chapter 9

[276]

Optimizing the functions of a single variable is generally easier than the multi-dimensional
case and has its own special function in the SciPy optimize library.
The minimize_scalar routine performs minimization for functions of a single variable
and should be used instead of minimize in this case.

Using gradient descent methods in
optimization
In the previous recipe, we used the Nelder-Mead simplex algorithm to minimize a non-
linear function containing two variables. This is a fairly robust method that works even if
very little is known about the objective function. However, in many situations, we do know
more about the objective function, and this fact allows us to devise faster and more efficient
algorithms for minimizing the function. We can do this by making use of properties such as
the gradient of the function.

The gradient of a function of more than one variable describes the rate of change of the
function in each of its component directions. This is a vector of the partial derivatives of the
function with respect to each of the variables. From this gradient vector, we can deduce the
direction in which the function is increasing most rapidly and, conversely, the direction in
which the function is decreasing most rapidly from any given position. This gives us the
basis for gradient descent methods for minimizing a function. The algorithm is very simple:
given a starting position, x, we compute the gradient at this x and the corresponding
direction in which the gradient is most rapidly decreasing, then make a small step in that
direction. After a few iterations, this will move from the starting position to the minimum
of the function.

In this recipe, we will learn how to implement an algorithm based on the steepest descent
algorithm to minimize an objective function within a bounded region.

Getting ready
For this recipe, we will need the NumPy package imported as np, the Matplotlib pyplot
module imported as plt, and the Axes3D object imported from mpl_toolkits.mplot3d:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Finding Optimal Solutions Chapter 9

[277]

How to do it...
In the following steps, we will implement a simple gradient descent method to minimize an
objective function with a known gradient function (we're actually going to use a generator
function so that we can see the method as it works):

We will start by defining a descend routine, which will carry out our algorithm.1.
The function declaration is as follows:

def descend(func, x0, grad, bounds, tol=1e-8, max_iter=100):

Next, we need to implement this routine. We start by defining the variables that2.
will hold the iterate values while the method is running:

xn = x0
xnm1 = np.inf
grad_xn = grad(x0)

We then start our loop, which will run the iterations. We immediately check3.
whether we are making meaningful progress before continuing:

for i in range(max_iter):
 if np.linalg.norm(xn - xnm1) < tol:
 break

The direction is minus the gradient vector. We compute this once and store it in4.
the direction variable:

direction = -grad_xn

Now, we update the previous and current values, xnm1 and xn, respectively,5.
ready for the next iteration. This concludes the code for the descend routine:

xnm1 = xn
xn = xn + 0.2*direction

Now, we can compute the gradient at the current value and yield all the6.
appropriate values:

grad_xn = grad(xn)
yield i, xn, func(xn), grad_xn

This concludes the definition of the descend routine.

Finding Optimal Solutions Chapter 9

[278]

We can now define a sample objective function to minimize:7.

def func(x):
 return ((x[0] - 0.5)**2 + (x[1] +
0.5)**2)*np.cos(0.5*x[0]*x[1])

Next, we create a grid that we will evaluate and then plot the objective function8.
on:

x_r = np.linspace(-1, 1)
y_r = np.linspace(-2, 2)
x, y = np.meshgrid(x_r, y_r)

Once the grid has been created, we can evaluate our function and store the result9.
in the z variable:

z = func([x, y])

Next, we create a three-dimensional surface plot of the objective function:10.

surf_fig = plt.figure(tight_layout=True)
surf_ax = surf_fig.add_subplot(projection="3d")
surf_ax.tick_params(axis="both", which="major", labelsize=9)
surf_ax.set(xlabel="x", ylabel="y", zlabel="z")
surf_ax.set_title("Objective function")
surf_ax.plot_surface(x, y, z, alpha=0.7)

Before we can start the minimization process, we need to define an initial11.
point, x0. We plot this point on the objective function plot we created in the
previous step:

x0 = np.array([-0.8, 1.3])
surf_ax.plot([x0[0]], [x0[1]], func(x0), "r*")

Finding Optimal Solutions Chapter 9

[279]

The surface plot of the objective function, along with the initial value, can be seen
in the following image:

Figure 9.5: Surface of the objective function with the initial position

Our descend routine requires a function that evaluates the gradient of the12.
objective function, so we will define one:

def grad(x):
 c1 = x[0]**2 - x[0] + x[1]**2 + x[1] + 0.5
 cos_t = np.cos(0.5*x[0]*x[1])
 sin_t = np.sin(0.5*x[0]*x[1])
 return np.array([
 (2*x[0]-1)*cos_t - 0.5*x[1]*c1*sin_t,
 (2*x[1]+1)*cos_t - 0.5*x[0]*c1*sin_t
])

We will plot the iterations on a contour plot, so we set this up as follows:13.

cont_fig, cont_ax = plt.subplots()
cont_ax.set(xlabel="x", ylabel="y")
cont_ax.set_title("Contour plot with iterates")
cont_ax.contour(x, y, z, levels=30)

Finding Optimal Solutions Chapter 9

[280]

Now, we create a variable that holds the bounds in the x and y directions as a14.
tuple of tuples. These are the same bounds from the linspace calls in step 10:

bounds = ((-1, 1), (-2, 2))

We can now use a for loop to drive the descend generator to produce each of15.
the iterations and add the steps to the contour plot:

xnm1 = x0
for i, xn, fxn, grad_xn in descend(func, x0, grad, bounds):
 cont_ax.plot([xnm1[0], xn[0]], [xnm1[1], xn[1]], "k*--")
 xnm1, grad_xnm1 = xn, grad_xn

Once the loop is complete, we print the final values to the Terminal:16.

print(f"iterations={i}")
print(f"min val at {xn}")
print(f"min func value = {fxn}")

The output of the preceding print statements is as follows:

iterations=37
min val at [0.49999999 -0.49999999]
min func value = 2.1287163880894953e-16

Here, we can see that our routine used 37 iterations to find a minimum at approximately
(0.5, -0.5), which is correct.

The contour plot with its iterations plotted can be seen in the following image:

Figure 9.6: Contour plot of the objective function with gradient descent iterating to a minimum value

Finding Optimal Solutions Chapter 9

[281]

Here, we can see that the direction of each iteration – shown by the dashed lines – is in the
direction where the objective function is decreasing most rapidly. The final iteration lies at
the center of the "bowl" of the objective function, which is where the minimum occurs.

How it works...
The heart of this recipe is the descend routine. The process that's defined in this routine is
a very simple implementation of the gradient descent method. Computing the gradient at a
given point is handled by the grad argument, and is then used to deduce the direction of
travel for the iteration by taking direction = -grad. We multiply this direction by a
fixed scale factor (sometimes called the learning rate) with a value of 0.2 to obtain the
scaled step, and then take this step by adding 0.2*direction to the current position.

The solution in the recipe took 37 iterations to converge, which is a mild improvement on
the Nelder-Mead simplex algorithm from the Minimizing a non-linear function recipe, which
took 58 iterations. (This is not a perfect comparison since we changed the starting position
for this recipe.) This performance is heavily dependent on the step size that we choose. In
this case, we fixed the maximum step size to be 0.2 times the size of the direction vector.
This keeps the algorithm simple, but it is not particularly efficient.

In this recipe, we chose to implement the algorithm as a generator function so that we could
see the output of each step and plot this on our contour plot as we stepped through the
iteration. In practice, we probably wouldn't want to do this and instead return the
calculated minimum once the iterations have finished. To do this, we can simply remove
the yield statement and replace it with return xn at the very end of the function, at the
main function's indentation (that is, not inside the loop). If you want to guard against non-
convergence, you can use the else feature of the for loop to catch cases where the loop
finishes because it has reached the end of its iterator without hitting the break keyword.
This else block could raise an exception to indicate that the algorithm has failed to
stabilize to a solution. The condition we used to end the iteration in this recipe does not
guarantee that the method has reached a minimum, but this will usually be the case.

Finding Optimal Solutions Chapter 9

[282]

There's more...
In practice, you would not usually implement the gradient descent algorithm for yourself
and instead use a general-purpose routine from a library such as the SciPy optimize
module. We can use the same minimize routine that we used in the previous recipe to
perform minimization with a variety of different algorithms, including several gradient
descent algorithms. These implementations are likely to have much higher performance
and be more robust than a custom implementation such as this.

The gradient descent method we used in this recipe is a very naive implementation and can
be greatly improved by allowing the routine to choose the step size at each step. (Methods
that are allowed to choose their own step size are sometimes called adaptive methods.) The
difficult part of this improvement is choosing the size of the step to take in this direction.
For this, we need to consider the function of a single variable, which is given by the
following equation:

Here, xn represents the current point, dn represents the current direction, and t is a
parameter. For simplicity, we can use a minimization routine called minimize_scalar for
scalar-valued functions from the SciPy optimize module. Unfortunately, it is not quite as
simple as passing in this auxiliary function and finding the minimum value. We have to
bound the possible value of t so that the computed minimizing point, xn + tdn, lies within
the region that we are interested in.

To understand how we bound the values of t, we must first look at the construction
geometrically. The auxiliary function that we introduce evaluates the objective function
along a single line in the given direction. We can picture this as taking a single cross-section
through the surface that passes through the current xn point in the dn direction. The next
step of the algorithm is finding the step size, t, that minimizes the values of the objective
function along this line – this is a scalar function, which is much easier to minimize. The
bounds should then be the range of t values during which this line lies within the rectangle
defined by the x and y boundary values. We determine the four values at which this line
crosses those x and y boundary lines, two of which will be negative and two of which will
be positive. (This is because the current point must lie within the rectangle.) We take the
minimum of the two positive values and the maximum of the two negative values and pass
these bounds to the scalar minimization routine. This is achieved using the following code:

alphas = np.array([
 (bounds[0][0] - xn[0]) / direction[0], # x lower
 (bounds[1][0] - xn[1]) / direction[1], # y lower
 (bounds[0][1] - xn[0]) / direction[0], # x upper

Finding Optimal Solutions Chapter 9

[283]

 (bounds[1][1] - xn[1]) / direction[1] # y upper
])

alpha_max = alphas[alphas >= 0].min()
alpha_min = alphas[alphas < 0].max()
result = minimize_scalar(lambda t: func(xn + t*direction),
 method="bounded", bounds=(alpha_min, alpha_max))
amount = result.x

Once the step size has been chosen, the only remaining step is to update the current xn
value, as follows:

xn = xn + amount * direction

Using this adaptive step size increases the complexity of the routine, but the performance is
massively improved. Using this revised routine, the method converged in just three
iterations, which is far fewer than the number of iterations used by the naive code in this
recipe (37 iterations) or by the Nelder-Mead simplex algorithm in the previous recipe (58
iterations). This reduction in the number of iterations is exactly what we expected by
providing the method with more information in the form of the gradient function.

We created a function that returned the gradient of the function at a given point. We
computed this gradient by hand before we started, which will not always be easy or even
possible. Instead, it is much more common to replace the "analytic" gradient used here with
a numerically computed gradient that's been estimated using finite differences or a similar
algorithm. This has an impact on performance and accuracy, as all approximations do, but
these concerns are usually minor given the improvement in the speed of convergence
offered by gradient descent methods.

Gradient descent type algorithms are particularly popular in machine learning applications.
Most of the popular Python machine learning libraries – including PyTorch, TensorFlow,
and Theano – offer utilities for automatically computing gradients numerically for data
arrays. This allows gradient descent methods to be used in the background to improve
performance.

A popular variation of the gradient descent method is stochastic gradient descent, where
the gradient is estimated by sampling randomly rather than using the whole set of data.
This can dramatically reduce the computational burden of the method – at the cost of
slower convergence – especially for high-dimensional problems such as those that are
common in machine learning applications. Stochastic gradient descent methods are often
combined with backpropagation to form the basis for training artificial neural networks in
machine learning applications.

Finding Optimal Solutions Chapter 9

[284]

There are several extensions of the basic stochastic gradient descent algorithm. For
example, the momentum algorithm incorporates the previous increment into the
calculation of the next increment. Another example is the adaptive gradient algorithm,
which incorporates per-parameter learning rates to improve the rate of convergence for
problems that involve a large number of sparse parameters.

Using least squares to fit a curve to data
Least squares is a powerful technique for finding a function from a relatively small family
of potential functions that best describe a particular set of data. This technique is especially
common in statistics. For example, least squares is used in linear regression problems –
here, the family of potential functions is the collection of all linear functions. Usually, this
family of functions that we try to fit has relatively few parameters that can be adjusted to
solve the problem.

The idea of least squares is relatively simple. For each data point, we compute the square of
the residual – the difference between the value of the point and the expected value given a
function – and try to make the sum of these squared residuals as small as possible (hence
least squares).

In this recipe, we'll learn how to use least squares to fit a curve to a sample set of data.

Getting ready
For this recipe, we will need the NumPy package imported, as usual, as np, and the
Matplotlib pyplot module imported as plt:

import numpy as np
import matplotlib.pyplot as plt

We will also need an instance of the default random number generator from the
NumPy random module imported, as follows:

from numy.random import default_rng
rng = default_rng(12345)

Finding Optimal Solutions Chapter 9

[285]

Finally, we need the curve_fit routine form the SciPy optimize module:

from scipy.optimize import curve_fit

How to do it...
The following steps show you how to use the curve_fit routine to fit a curve to a set of
data:

The first step is to create the sample data:1.

SIZE = 100
x_data = rng.uniform(-3.0, 3.0, size=SIZE)
noise = rng.normal(0.0, 0.8, size=SIZE)
y_data = 2.0*x_data**2 - 4*x_data + noise

Next, we produce a scatter plot of the data to see if we can identify the2.
underlying trend in the data:

fig, ax = plt.subplots()
ax.scatter(x_data, y_data)
ax.set(xlabel="x", ylabel="y", title="Scatter plot of sample data")

The scatter plot that we have produced can be seen in the following image. Here,
we can see that the data certainly doesn't follow a linear trend (straight line).
Since we know the trend is a polynomial, our next guess would be a quadratic
trend. This is what we're using here:

Figure 9.7: Scatter plot of the sample data. We can see that the data does not follow a linear trend

Finding Optimal Solutions Chapter 9

[286]

Next, we create a function that represents the model that we wish to fit:3.

def func(x, a, b, c):
 return a*x**2 + b*x + c

Now, we can use the curve_fit routine to fit the model function to the sample4.
data:

coeffs, _ = curve_fit(func, x_data, y_data)
print(coeffs)
[1.99611157 -3.97522213 0.04546998]

Finally, we plot the best fit curve on top of the scatter plot to evaluate how well5.
the fitted curve describes the data:

x = np.linspace(-3.0, 3.0, SIZE)
y = func(x, coeffs[0], coeffs[1], coeffs[2])
ax.plot(x, y, "k--")

The updated scatter plot can be seen in the following image:

Figure 9.8: Scatter plot with the curve of best fit found using least-squares superimposed

Here, we can see that the curve we have found fits the data reasonably well.

Finding Optimal Solutions Chapter 9

[287]

How it works...
The curve_fit routine performs least-squares fitting to fit the model's curve to the sample
data. In practice, this amounts to minimizing the following objective function:

Here, the pairs (xi, yi) are the points from the sample data. In this case, we are optimizing
over a three-dimensional parameter space, with one dimension for each of the parameters.
The routine returns the estimated coefficients – the point in the parameter space at which
the objective function is minimized – and a second variable that contains estimates for the
covariance matrix for the fit. We ignored this in this recipe.

The estimated covariance matrix that's returned from the curve_fit routine can be used to
give a confidence interval for the estimated parameters. This is done by taking the square
root of the diagonal elements divided by sample size (100 in this recipe). This gives the
standard error for the estimate that, when multiplied by the appropriate values
corresponding to the confidence, gives us the size of the confidence interval. (We discussed
confidence intervals in Chapter 6, Working with Data and Statistics.)

You might have noticed that the parameters estimated by the curve_fit routine are close,
but not exactly equal, to the parameters that we used to define the sample data in step 1.
The fact that these are not exactly equal is due to the normally distributed noise that we
added to the data. In this recipe, we knew that the underlying structure of the data was
quadratic – that is, a degree 2 polynomial – and not some other, more esoteric, function. In
practice, we are unlikely to know so much about the underlying structure of the data,
which is the reason we added noise to the sample.

There's more...
There is another routine in the SciPy optimize module for performing least-squares fitting
called least_squares. This routine has a slightly less intuitive signature but does return a
results object with more information about the optimization process. However, the way this
routine is set up is perhaps more similar to the way that we constructed the underlying
mathematical problem in the How it works... section. To use this routine, we define the
objective function as follows:

def func(params, x, y):
 return y - (params[0]*x**2 + params[1]*x + params[2])

Finding Optimal Solutions Chapter 9

[288]

We pass this function along with a starting estimate in the parameter space, x0, such as (1,
0, 0). The additional parameters for the objective function, func, can be passed using
the args keyword argument; for example, we could use args=(x_data, y_data). These
arguments are passed into the x and y arguments of the objective function. To summarize,
we could have estimated the parameters using the following call to least_squares:

results = least_squares(func, [1, 0, 0], args=(x_data, y_data))

The results object that's returned from the least_squares routine is actually the same
as the one returned by the other optimization routines described in this chapter. It contains
details such as the number of iterations used, whether the process was successful, detailed
error messages, the parameter values, and the value of the objective function at the
minimum value.

Analyzing simple two-player games
Game theory is a branch of mathematics concerned with the analysis of decision-making
and strategy. It has applications in economics, biology, and behavioral science. Many
seemingly complex situations can be reduced to a relatively simple mathematical game that
can be analyzed in a systematic way to find "optimal" solutions.

A classic problem in game theory is the prisoner's dilemma, which, in its original form, is as
follows: two co-conspirators are caught and must decide whether to remain quiet or to
testify against the other. If both remain quiet, they both serve a 1-year sentence; if one
testifies but the other does not, the testifier is released and the other serves a 3-year
sentence; and if both testify against one another, they both serve a 2-year sentence. What
should each conspirator do? It turns out that the best choice each conspirator can make,
given any reasonable distrust of the other, is to testify. Adopting this strategy, they will
either serve no sentence or a 2-year sentence maximum.

Since this book is about Python, we will use a variation of this classic problem to illustrate
just how universal the idea of this problem is. Consider the following problem: you and
your colleague have to write some code for a client. You think that you could write the code
faster in Python, but your colleague thinks that they could write it faster in C. The question
is, which language should you choose for the project?

Finding Optimal Solutions Chapter 9

[289]

You think that you could write the Python code 4 times faster than in C, so you write C
with speed 1 and Python with speed 4. Your colleague says that they can write C slightly
faster than Python, so they write C with speed 3 and Python with speed 2. If you both agree
on a language, then you write the code at the speed you predicted, but if you disagree, then
the productivity of the faster programmer is reduced by 1. We can summarize this as
follows:

Colleague/You C Python
C 3 / 1 3 / 2
Python 2 / 1 2 / 4

In this recipe, we will learn how to construct an object in Python to represent this simple
two-player game, and then perform some elementary analysis regarding the outcomes of
this game.

Getting ready
For this recipe, we will need the NumPy package imported as np, and the Nashpy package
imported as nash:

import numpy as np
import nashpy as nash

How to do it...
The following steps show you how to create and perform some simple analysis of a two-
player game using Nashpy:

First, we need to create matrices that hold the payoff information for each player1.
(you and your colleague, in this example):

you = np.array([[1, 3], [1, 4]])
colleague = np.array([[3, 2], [2, 2]])

Next, we create a Game object that holds the game represented by these payoff2.
matrices:

dilemma = nash.Game(you, colleague)

Finding Optimal Solutions Chapter 9

[290]

We compute the utility for the given choices using index notation:3.

print(dilemma[[1, 0], [1, 0]]) # [1 3]
print(dilemma[[1, 0], [0, 1]]) # [3 2]
print(dilemma[[0, 1], [1, 0]]) # [1 2]
print(dilemma[[0, 1], [0, 1]]) # [4 2]

We can also compute the expected utilities based on the probabilities of making a4.
specific choice:

print(dilemma[[0.1, 0.9], [0.5, 0.5]]) # [2.45 2.05]

How it works...
In this recipe, we built a Python object that represents a very simple two-player strategic
game. The idea here is that there are two "players" who have decisions to make, and each
combination of both player's choices gives a specific payoff value. What we're aiming to do
here is find the best choice that each player can make. The players are assumed to make a
single move simultaneously, in the sense that neither is aware of the other's choice. Each
player has a strategy that determines the choice they make.

In step 1, we create two matrices – one for each player – that are assigned to each
combination of choices for the payoff value. These two matrices are wrapped by
the Game class from Nashpy, which provides a convenient and intuitive (from a game-
theoretic point of view) interface for working with games. We can quickly calculate the
utility of a given combination of choices by passing in the choices using index notation.

We can also provide calculate expected utilities based on a strategy where choices are
chosen at random according to some probability distribution. The syntax is the same as for
the deterministic case described previously, except we provide a vector of probabilities for
each choice. We compute the expected utilities based on the probability that you choose
Python 90% of the time, while your colleague chooses Python 50% of the time. The
expected speeds are 2.45 and 2.05 for you and your colleague, respectively.

There's more...
There is an alternative to computational game theory in Python. The Gambit project is a
collection of tools that's used for computation in game theory that has a Python interface
(http:/​/​www.​gambit- ​project. ​org/ ​). This is a mature project built around C libraries and
offers more performance than Nashpy.

http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/

Finding Optimal Solutions Chapter 9

[291]

Computing Nash equilibria
A Nash equilibrium is a two-player strategic game – similar to the one we saw in the
Analyzing simple two-player games recipe – that represents a "steady state" in which every
player sees the "best possible" outcome. However, this doesn't mean that the outcome
linked to a Nash equilibrium is the best overall. Nash equilibria are more subtle than this.
An informal definition of a Nash equilibrium is as follows: an action profile in which no
individual player can improve their outcome, assuming that all other players adhere to the
profile.

We will explore the notion of a Nash equilibrium with the classic game of rock-paper-
scissors. The rules are as follows. Each player can choose one of the options: rock, paper, or
scissors. Rock beats scissors, but loses to paper; paper beats rock, but loses to scissors;
scissors beats paper, but loses to rock. Any game in which both players make the same
choice is a draw. Numerically, we represent a win by +1, a loss by -1, and a draw by 0. From
this, we can construct a two-player game and compute Nash equilibria for this game.

In this recipe, we will compute Nash equilibria for the classic game of rock-paper-scissors.

Getting ready
For this recipe, we will need the NumPy package imported as np, and the Nashpy package
imported as nash:

import numpy as np
import nashpy as nash

How to do it...
The following steps show you how to compute Nash equilibria for a simple two-player
game:

First, we need to create a payoff matrix for each player. We will start with the1.
first player:

rps_p1 = np.array([
 [0, -1, 1], # rock payoff
 [1, 0, -1], # paper payoff
 [-1, 1, 0] # scissors payoff
])

Finding Optimal Solutions Chapter 9

[292]

The payoff matrix for the second player is the transpose of rps_p1:2.

rps_p2 = rps_p1.transpose()

Next, we create the Game object to represent the game:3.

rock_paper_scissors = nash.Game(rps_p1, rps_p2)

We compute the Nash equilibria for the game using the support enumeration4.
algorithm:

equilibria = rock_paper_scissors.support_enumeration()

We iterate over the equilibria and print the profile for each player:5.

for p1, p2 in equilibria:
 print("Player 1", p1)
 print("Player 2", p2)

The output of these print statements is as follows:

Player 1 [0.33333333 0.33333333 0.33333333]
Player 2 [0.33333333 0.33333333 0.33333333]

How it works...
Nash equilibria are extremely important in game theory because they allow us to analyze
the outcomes of strategic games and identify advantageous positions. They were first
described by John F. Nash in 1950, and have played a pivotal role in modern game theory.
A two-player game may have many Nash equilibria, but any finite two-player game must
have at least one. The problem is finding all the possible Nash equilibria for a given game.

In this recipe, we used the support enumeration, which effectively enumerates all possible
strategies and filters down to those that are Nash equilibria. In this recipe, the support
enumeration algorithm found just one Nash equilibrium, which is a mixed strategy. This
means that the only strategy for which there is no improvement involves picking one of the
choices at random, each with a 1/3 probability. This is hardly a surprise to anyone who has
played rock-paper-scissors since for any choice we make, our opponent has a 1 in 3 chance
of choosing (at random) the move that beats our choice. Equally, we have a 1 in 3 chance of
drawing or winning the game, so our expected value over all these possibilities is as
follows:

Finding Optimal Solutions Chapter 9

[293]

Without knowing exactly which of the choices our opponent will choose, there is no way to
improve this expected outcome.

There's more...
The Nashpy package also provides other algorithms for computing Nash equilibria.
Specifically, the vertex_enumeration method, when used on a Game object, uses
the vertex enumeration algorithm, while the lemke_howson_enumeration method uses
the Lemke Howson algorithm. These alternative algorithms have different characteristics and
may be more efficient for some problems.

See also
The documentation for the Nashpy package contains more detailed information about the
algorithms and game theory involved. This includes a number of references to texts on
game theory. This documentation can be found at https:/ ​/​nashpy. ​readthedocs. ​io/ ​en/
latest/​.

Further reading
As usual, the Numerical Recipes book is a good source of numerical algorithms. Chapter 10,
Miscellaneous Topics, deals with the maximization and minimization of functions:

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 2017. Numerical
recipes: the art of scientific computing. 3rd ed. Cambridge: Cambridge University Press.

More specific information on optimization can be found in the following books:

Boyd, S.P. and Vandenberghe, L., 2018. Convex optimization. Cambridge: Cambridge
University Press.
Griva, I., Nash, S., and Sofer, A., 2009. Linear and nonlinear optimization. 2nd ed.
Philadelphia: Society for Industrial and Applied Mathematics.

Finally, the following book is a good introduction to game theory:

Osborne, M.J., 2017. An introduction to game theory. Oxford: Oxford University Press.

https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/
https://nashpy.readthedocs.io/en/latest/

10
Miscellaneous Topics

In this chapter, we will look at several topics that don't fit within the categories that we
discussed in the previous chapters of this book. Most of these topics are concerned with
different ways to facilitate computing and otherwise optimize the execution of our code.
Others concern working with specific kinds of data or file formats.

In the first two recipes, we will cover packages that help keep track of units and
uncertainties in calculations. These are very important for calculations that concern data
that have a direct physical application. In the next recipe, we will look at loading and
storing data from NetCDF files. NetCDF is a file format usually used for storing weather
and climate data. (NetCDF stands for network common data form.) In the fourth recipe,
we'll discuss working with geographical data, such as data that might be associated with
weather or climate data. After that, we'll discuss how we can run Jupyter notebooks from
the terminal without having to start up an interactive session. The next two recipes deal
with validating data and working with data streamed from a Kafka server. Our final two
recipes deal with two different ways we can accelerate our code using tools such as Cython
and Dask.

In this chapter, we will cover the following recipes:

Keeping track of units with Pint
Accounting for uncertainties in calculations
Loading and storing data from NetCDF files
Working with geographical data
Executing Jupyter notebooks as a script
Validating data
Working with data streams
Accelerating code with Cython
Distributing computation with Dask

Let's get started!

Miscellaneous Topics Chapter 10

[295]

Technical requirements
This chapter requires many different packages due to the nature of the recipes it contains.
The list of packages we need is as follows:

Pint
uncertainties
NetCDF4
xarray
GeoPandas
Geoplot
Papermill
Cerberus
Faust
Cython
Dask

All of these packages can be installed using your favorite package manager, such as pip:

python3.8 -m pip install pint uncertainties netCDF4 xarray geopandas
 geoplot papermill cerberus faust cython

To install the Dask package, we need to install the various extras associated with the
package. We can do this using the following pip command in the terminal:

python3.8 -m pip install dask[complete]

In addition to these Python packages, we will also need to install some supporting
software. For the Working with geographical data recipe, the GeoPandas and Geoplot libraries
have numerous lower-level dependencies that might need to be installed separately.
Detailed instructions are given in the GeoPandas package documentation at https:/ ​/
geopandas.​org/​install. ​html.

https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html
https://geopandas.org/install.html

Miscellaneous Topics Chapter 10

[296]

For the Working with streaming data recipe, we will need to install the Kafka server. Detailed
instructions on how to install and run a Kafka server can be found on the Apache Kafka
documentation pages at https:/ ​/​kafka. ​apache. ​org/ ​quickstart.

For the Accelerating code with Cython recipe, we will need to have a C compiler installed.
Instructions on how to obtain the GNU C compiler (GCC) are given in the Cython
documentation at https:/ ​/ ​cython. ​readthedocs. ​io/ ​en/​latest/ ​src/ ​quickstart/ ​install.
html.

The code for this chapter can be found in the Chapter 10 folder of the GitHub repository
at https:/​/​github. ​com/ ​PacktPublishing/ ​Applying- ​Math- ​with- ​Python/ ​tree/ ​master/
Chapter%2010.

Check out the following video to see the Code in Action: https:/ ​/​bit. ​ly/​2ZMjQVw.

Keeping track of units with Pint
Correctly keeping track of units in calculations can be very difficult, particularly if there are
places where different units can be used. For example, it is very easy to forget to convert
between different units – feet/inches into meters – or metric prefixes – converting 1 km into
1,000 m, for instance.

In this recipe, we'll learn how to use the Pint package to keep track of units of measurement
in calculations.

Getting ready
For this recipe, we need the Pint package, which can be imported as follows:

import pint

https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://cython.readthedocs.io/en/latest/src/quickstart/install.html
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://github.com/PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw
https://bit.ly/2ZMjQVw

Miscellaneous Topics Chapter 10

[297]

How to do it...
The following steps show you how to use the Pint package to keep track of units in
calculations:

First, we need to create a UnitRegistry object:1.

ureg = pint.UnitRegistry(system="mks")

To create a quantity with a unit, we multiply the number by the appropriate2.
attribute of the registry object:

distance = 5280 * ureg.feet

We can change the units of the quantity using one of the available conversion3.
methods:

print(distance.to("miles"))
print(distance.to_base_units())
print(distance.to_base_units().to_compact())

The output of these print statements is as follows:

0.9999999999999999 mile
1609.3439999999998 meter
1.6093439999999999 kilometer

We wrap a routine to make it expect an argument in seconds and output a result4.
in meters:

@ureg.wraps(ureg.meter, ureg.second)
def calc_depth(dropping_time):
 # s = u*t + 0.5*a*t*t
 # u = 0, a = 9.81
 return 0.5*9.81*dropping_time*dropping_time

Now, when we call the calc_depth routine with a minute unit, it is5.
automatically converted into seconds for the calculation:

depth = calc_depth(0.05 * ureg.minute)
print("Depth", depth)
Depth 44.144999999999996 meter

Miscellaneous Topics Chapter 10

[298]

How it works...
The Pint package provides a wrapper class for numerical types that adds unit metadata to
the type. This wrapper type implements all the standard arithmetic operations and keeps
track of the units throughout these calculations. For example, when we divide a length unit
by a time unit, we will get a speed unit. This means that you can use Pint to make sure the
units are correct after a complex calculation.

The UnitRegistry object keeps track of all the units that are present in the session and
handles things such as conversion between different unit types. It also maintains a
reference system of measurements, which in this recipe is the standard international system
with meters, kilograms, and seconds as base units, denoted mks.

The wrap functionality allows us to declare the input and output units of a routine, which
allows Pint to do automatic unit conversions for the input function – in this recipe, we
converted from minutes into seconds. Trying to call a wrapped function with a quantity
that does not have an associated unit, or an incompatible unit, will raise an exception. This
allows runtime validation of parameters and automatic conversion into the correct units for
a routine.

There's more...
The Pint package comes with a large list of preprogrammed units of measurement that
cover most globally used systems. Units can be defined at runtime or loaded from a file.
This means that you can define custom units or systems of units that are specific to the
application that you are working with.

Units can also be used within different contexts, which allows for easy conversion between
different unit types that would ordinarily be unrelated. This can save a lot of time in
situations where you need to move between units fluidly at multiple points in a calculation.

Miscellaneous Topics Chapter 10

[299]

Accounting for uncertainty in calculations
Most measuring devices are not 100% accurate and instead are accurate up to a certain
amount, usually somewhere between 0 and 10%. For instance, a thermometer might be
accurate to 1%, while a pair of digital calipers might be accurate up to 0.1%. The true value
in both of these cases is unlikely to be exactly the reported value, although it will be fairly
close. Keeping track of the uncertainty in a value is difficult, especially when you have
multiple different uncertainties combined in different ways. Rather than keeping track of
this by hand, it is much better to use a consistent library to do this for you. This is what the
uncertainties package does.

In this recipe, we will learn how to quantify the uncertainty of variables and see how these
uncertainties propagate through a calculation.

Getting ready
For this recipe, we will need the uncertainties package, from which we will import
the ufloat class and the umath module:

from uncertainties import ufloat, umath

How to do it...
The following steps show you how to quantify uncertainty on numerical values in
calculations:

First, we create an uncertain float value of 3.0 plus or minus 0.4:1.

seconds = ufloat(3.0, 0.4)
print(seconds) # 3.0+/-0.4

Next, we perform a calculation involving this uncertain value to obtain a new2.
uncertain value:

depth = 0.5*9.81*seconds*seconds
print(depth) # 44+/-12

Miscellaneous Topics Chapter 10

[300]

Next, we create a new uncertain float value and apply the sqrt routine from3.
the umath module in the reverse of the previous calculation:

other_depth = ufloat(44, 12)
time = umath.sqrt(2.0*other_depth/9.81)
print("Estimated time", time)
Estimated time 3.0+/-0.4

How it works...
The ufloat class wraps around float objects and keeps track of the uncertainty
throughout calculations. The library makes use of linear error propagation theory, which
uses derivatives of non-linear functions, to estimate the propagated error during
calculations. The library also correctly handles correlation so that subtracting a value from
itself gives 0 with no error.

To keep track of uncertainties in standard mathematical functions, you need to use the
versions that are provided in the umath module, rather than those defined in the Python
Standard Library or in a third-party package such as NumPy.

There's more...
The uncertainties package provides support for NumPy, and the Pint package
mentioned in the previous recipe can be combined with uncertainties to make sure that
units and error margins are correctly attributed to the final value of a calculation. For
example, we could compute the units in the calculation from step 2 of this recipe, as follows:

import pint
from uncertainties import ufloat
g = 9.81*ureg.meters / ureg.seconds ** 2
seconds = ufloat(3.0, 0.4) * ureg.seconds

depth = 0.5*g*seconds**2
print(depth)

As expected, the print statement on the last line gives us 44+/-12 meter, as we expect.

Miscellaneous Topics Chapter 10

[301]

Loading and storing data from NetCDF files
Many scientific applications require that we start large quantities of multi-dimensional data
in a robust format. NetCDF is one example of a format used for data that's developed by
the weather and climate industry. Unfortunately, the complexity of the data means that we
can't simply use the utilities from the Pandas package, for example, to load this data for
analysis. We need the netcdf4 package to be able to read and import the data into Python,
but we also need to use xarray. Unlike the Pandas library, xarray can handle higher-
dimensional data while still providing a Pandas-like interface.

In this recipe, we will learn how to load data from and store data in NetCDF files.

Getting ready
For this recipe, we will need to import the NumPy package as np, the Pandas package
as pd, the Matplotlib pyplot module as plt, and an instance of the default random
number generator from NumPy:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from numpy.random import default_rng
rng = default_rng(12345)

We also need to import the xarray package under the alias xr. You will also need to install
the Dask package, as described in the Technical requirements section, and the NetCDF4
package:

import xarray as xr

We don't need to import either of these packages directly.

Miscellaneous Topics Chapter 10

[302]

How to do it...
Follow these steps to load and store sample data in a NetCDF file:

First, we need to create some random data. This data consists of a range of dates,1.
a list of location codes, and randomly generated numbers:

dates = pd.date_range("2020-01-01", periods=365, name="date")
locations = list(range(25))
steps = rng.normal(0, 1, size=(365,25))
accumulated = np.add.accumulate(steps)

Next, we create an xarray Dataset object containing the data. The dates and 2.
locations are indexes, while the steps and accumulated variables are the data:

data_array = xr.Dataset({
 "steps": (("date", "location"), steps),
 "accumulated": (("date", "location"), accumulated)
 },
 {"location": locations, "date": dates}
)
print(data_array)

The output from the print statement is shown here:

<xarray.Dataset>
Dimensions: (date: 365, location: 25)
Coordinates:
* location (location) int64 0 1 2 3 4 5 6 7 8 ... 17 18 19 20 21 22
23 24
* date (date) datetime64[ns] 2020-01-01 2020-01-02 ... 2020-12-30
Data variables:
steps (date, location) float64 geoplot.pointplot(cities, ax=ax,
fc="r", marker="2")
ax.axis((-180, 180, -90, 90))-1.424 1.264 ... -0.4547 -0.4873
accumulated (date, location) float64 -1.424 1.264 -0.8707 ... 8.935
-3.525

Next, we compute the mean over all the locations at each time index:3.

means = data_array.mean(dim="location")

Now, we plot the mean accumulated values on a new set of axes:4.

fig, ax = plt.subplots()
means["accumulated"].to_dataframe().plot(ax=ax)
ax.set(title="Mean accumulated values", xlabel="date",
ylabel="value")

Miscellaneous Topics Chapter 10

[303]

The resulting plot looks as follows:

Figure 10.1: Plot of accumulated means over time

Save this dataset into a new NetCDF file using the to_netcdf method:5.

data_array.to_netcdf("data.nc")

Now, we can load the newly created NetCDF file using the load_dataset6.
routine from xarray:

new_data = xr.load_dataset("data.nc")
print(new_data)

The output of the preceding code is as follows:

<xarray.Dataset>
Dimensions: (date: 365, location: 25)
Coordinates:
 * location (location) int64 0 1 2 3 4 5 6 7 8 ... 17 18 19 20 21
22 23 24
 * date (date) datetime64[ns] 2020-01-01 2020-01-02 ... 2020-12-30
Data variables:
 steps (date, location) float64 -1.424 1.264 ... -0.4547 -0.4873
 accumulated (date, location) float64 -1.424 1.264 -0.8707 ...
8.935 -3.525

Miscellaneous Topics Chapter 10

[304]

How it works...
The xarray package provides the DataArray and DataSet classes, which are (roughly
speaking) multi-dimensional equivalents of the Pandas Series and DataFrame objects.
We're using a dataset in this example because each index – a tuple of a date and location –
has two pieces of data associated with it. Both of these objects expose a similar interface to
their Pandas equivalents. For example, we can compute the mean along one of the axes
using the mean method. The DataArray and DataSet objects also have a convenience
method for converting into a Pandas DataFrame called to_dataframe. We used it in this
recipe to convert to a DataFrame for plotting, which isn't really necessary because xarray
has plotting features built into it.

The real focus of this recipe is on the to_netcdf method and the load_dataset routine.
The former stores a DataSet in NetCDF format file. This requires the NetCDF4 package to
be installed as it allows us to access the relevant C library for decoding NetCDF formatted
files. The load_dataset routine is a general-purpose routine for loading data into
a DataSet object from various file formats, including NetCDF (again, this requires the
NetCDF4 package to be installed).

There's more...
The xarray package has support for a number of data formats in addition to NetCDF, such
as OPeNDAP, Pickle, GRIB, and other formats that are supported by Pandas.

Working with geographical data
Many applications involve working with geographical data. For example, when tracking
global weather, we might want to plot the temperature as measured by various sensors
around the world at their position on a map. For this, we can use the GeoPandas package
and the Geoplot package, both of which allow us to manipulate, analyze, and visualize
geographical data.

In this recipe, we will use the GeoPandas and Geoplot packages to load and visualize some
sample geographical data.

Miscellaneous Topics Chapter 10

[305]

Getting ready
For this recipe, we will need the GeoPandas package, the Geoplot package, and the
Matplotlib pyplot package imported as plt:

import geopandas
import geoplot
import matplotlib.pyplot as plt

How to do it...
Follow these steps to create a simple plot of the capital cities plotted on a map of the world
using sample data:

First, we need to load the sample data from the GeoPandas package, which1.
contains the world geometry information:

world = geopandas.read_file(
 geopandas.datasets.get_path("naturalearth_lowres")
)

Next, we need to load the data containing the name and position of each of the2.
capital cities of the world:

cities = geopandas.read_file(
 geopandas.datasets.get_path("naturalearth_cities")
)

Now, we can create a new figure and plot the outline of the world geometry3.
using the polyplot routine:

fig, ax = plt.subplots()
geoplot.polyplot(world, ax=ax)

Finally, we use the pointplot routine to add the positions of the capital cities on4.
top of the world map. We also set the axes limits to make the whole world
visible:

geoplot.pointplot(cities, ax=ax, fc="r", marker="2")
ax.axis((-180, 180, -90, 90))

Miscellaneous Topics Chapter 10

[306]

The resulting plot of the positions of the capital cities of the world looks as
follows:

Figure 10.2: Plot of the world's capital cities on a map

How it works...
The GeoPandas package is an extension of Pandas that works with geographical data, while
the Geoplot package is an extension of Matplotlib that's used to plot geographical data. The
GeoPandas package comes with a selection of sample datasets that we used in this recipe.
naturalearth_lowres contains geometric figures that describe the boundaries of
countries in the world. This data is not very high resolution, as signified by its name, which
means that some of the finer details of geographical features might not be present on the
map. (Some small islands are not shown at all.) naturalearth_cities contains the names
and locations of the capital cities of the world. We're using the datasets.get_path
routine to retrieve the path for these datasets in the package data directory. The read_file
routine imports the data into the Python session.

The Geoplot package provides some additional plotting routines specifically for plotting
geographical data. The polyplot routine plots polygonal data from a GeoPandas
DataFrame, which might describe the geographical boundaries of a country.
The pointplot routine plots discrete points on a set of axes from a GeoPandas DataFrame,
which in this case describe the position of capital cities.

Miscellaneous Topics Chapter 10

[307]

Executing a Jupyter notebook as a script
Jupyter notebooks are a popular medium for writing Python code for scientific and data-
based applications. A Jupyter notebook is really a sequence of blocks that are stored in a file
in JavaScript Object Notation (JSON) with the ipynb extension. Each block can be one of
several different types, such as code or markdown. These notebooks are typically accessed
through a web application that interprets the blocks and executes the code in a background
kernel that then returns the results to the web application. This is great if you are working
on a personal PC, but what if you want to run the code contained within a notebook
remotely on a server? In this case, it might not even be possible to access the web interface
provided by the Jupyter notebook software. The papermill package allows us to
parameterize and execute notebooks from the command line.

In this recipe, we'll learn how to execute a Jupyter notebook from the command line using
papermill.

Getting ready
For this recipe, we will need to have the papermill package installed, and also have a
sample Jupyter notebook in the current directory. We will use the sample.ipynb notebook
file stored in the code repository for this chapter.

How to do it...
Follow these steps to use the papermill command-line interface to execute a Jupyter
notebook remotely:

First, we open the sample notebook, sample.ipynb, from the code repository for1.
this chapter. The notebook contains three code cells that hold the following code:

import matplotlib.pyplot as plt
from numpy.random import default_rng
rng = default_rng(12345)

uniform_data = rng.uniform(-5, 5, size=(2, 100))

fig, ax = plt.subplots(tight_layout=True)
ax.scatter(uniform_data[0, :], uniform_data[1, :])
ax.set(title="Scatter plot", xlabel="x", ylabel="y")

Miscellaneous Topics Chapter 10

[308]

Next, we open the folder containing the Jupyter notebook in the terminal and use2.
the following command:

papermill --kernel python3 sample.ipynb output.ipynb

Now, we open the output file, output.ipynb, which should now contain the3.
notebook that's been updated with the result of the executed code. The scatter
plot that's generated in the final block is shown here:

Figure 10.3: Scatter plot of the random data that was generated inside a Jupyter notebook, executed remotely using papermill

How it works...
The papermill package provides a simple command-line interface that interprets and then
executes a Jupyter notebook and then stores the results in a new notebook file. In this
recipe, we gave the first argument – the input notebook file – sample.ipynb and the
second argument – the output notebook file – output.ipynb. The tool then executes the
code contained in the notebook and produces the output. The notebook's file format keeps
track of the results of the last run, so these results are added to the output notebook and
stored at the desired location. In this recipe, this is a simple local file, but papermill can also
store to a cloud location such as Amazon Web Services (AWS) S3 storage or Azure data
storage.

Miscellaneous Topics Chapter 10

[309]

In step 2, we added the --kernel python3 option when using the papermill command-
line interface. This option allows us to specify the kernel that is used to execute the Jupyter
notebook. This might be necessary to prevent errors if papermill tries to execute the
notebook with a different kernel than the one used to write the notebook. A list of available
kernels can be found by using the following command in the terminal:

jupyter kernelspec list

If you get an error when executing a notebook, you could try changing to a different kernel.

There's more...
Papermill also has a Python interface so that you can execute notebooks from within a
Python application. This might be useful for building web applications that need to be able
to perform long-running calculations on external hardware and where the results need to
be stored in the cloud. It also has the ability to provide parameters to a notebook. To do
this, we need to create a block in the notebook marked with the parameters tag with the
default values. Updated parameters can then be provided through the command-line
interface using the -p flag, followed by the name of the argument and the value.

Validating data
Data is often presented in a raw form and might contain anomalies or incorrect or
malformed data, which will obviously present a problem for later processing and analysis.
It is usually a good idea to build a validation step into a processing pipeline. Fortunately,
the Cerberus package provides a lightweight and easy to use validation tool for Python.

For validation, we have to define a schema, which is a technical description of what the data
should look like and the checks that should be performed on the data. For example, we can
check the type and place bounds of the maximum and minimum values. Cerberus
validators can also perform type conversions during the validation step, which allows us to
plug data loaded directly from CSV files into the validator.

In this recipe, we will learn how to use Cerberus to validate data loaded from a CSV file.

Miscellaneous Topics Chapter 10

[310]

Getting ready
For this recipe, we need to import the csv module from the Python Standard Library, as
well as the Cerberus package:

import csv
import cerberus

We will also need the sample.csv file from the code repository for this chapter.

How to do it...
In the following steps, we will validate a set of data that's been loaded from CSV using the
Cerberus package:

First, we need to build a schema that describes the data we expect. To do this, we1.
must define a simple schema for floating-point numbers:

float_schema = {"type": "float", "coerce": float, "min": -1.0,
 "max": 1.0}

Next, we build the schema for individual items. These will be the rows of our2.
data:

item_schema = {
 "type": "dict",
 "schema": {
 "id": {"type": "string"},
 "number": {"type": "integer", "coerce": int},
 "lower": float_schema,
 "upper": float_schema,
 }
}

Now, we can define the schema for the whole document, which will contain a list3.
of items:

schema = {
 "rows": {
 "type": "list",
 "schema": item_schema
 }
}

Miscellaneous Topics Chapter 10

[311]

Next, we create a Validator object with the schema we just defined:4.

validator = cerberus.Validator(schema)

Then, we load the data using a DictReader from the csv module:5.

with open("sample.csv") as f:
 dr = csv.DictReader(f)
 document = {"rows": list(dr)}

Next, we use the validate method on the Validator to validate the document:6.

validator.validate(document)

Then, we retrieve the errors from the validation process from the Validator7.
object:

errors = validator.errors["rows"][0]

Finally, we can print any error messages that appeared:8.

for row_n, errs in errors.items():
 print(f"row {row_n}: {errs}")

The output of the error messages is as follows:

row 11: [{'lower': ['min value is -1.0']}]
row 18: [{'number': ['must be of integer type', "field 'number'
cannot be coerced: invalid literal for int() with base 10:
'None'"]}]
row 32: [{'upper': ['min value is -1.0']}]
row 63: [{'lower': ['max value is 1.0']}]

How it works...
The schema that we created is a technical description of all the criteria that we need to
check against our data. This will usually be defined as a dictionary with the name of the
item as the key and a dictionary of properties, such as the type or bounds on the value in a
dictionary, as the value. For example, in step 1, we defined a schema for floating-point
numbers that limits the numbers so that they're between the values of -1 and 1. Note that
we include the coerce key, which specifies the type that the value should be converted
into during the validation. This allows us to pass in data that's been loaded from a CSV
document, which contains only strings, without having to worry about its type.

Miscellaneous Topics Chapter 10

[312]

The Validator object takes care of parsing documents so that they're validated and
checking the data they contain against all the criteria described by the schema. In this
recipe, we provided the schema to the Validator object when it was created. However, we
could also pass the schema into the validate method as a second argument. The errors are
stored in a nested dictionary that mirrors the structure of the document.

Working with data streams
Some data is received in a constant stream from various sources. For example, we might
have a situation where multiple temperature probes are reporting values at set intervals via
a Kafka server. Kafka is a streaming data message broker that passes messages to different
processing agents based on topics.

Processing streaming data is the perfect application for asynchronous Python. This allows
us to process larger quantities of data concurrently, which could be very important in
applications. Of course, we can't directly perform long-running analysis on this data in an
asynchronous context, since this will interfere with the execution of the event loop.

For working with Kafka streams using Python's asynchronous programming features, we
can use the Faust package. This package allows us to define asynchronous functions that
will act as processing agents or services that can process or otherwise interact with a stream
of data from a Kafka server.

In this recipe, we will learn how to use the Faust package to process a stream of data from a
Kafka server.

Getting ready
Unlike most of the recipes in this book, this recipe cannot be run in a Jupyter notebook
since we will run the resulting app from the command line.

For this recipe, we will need to import the Faust package:

import faust

We will also need an instance of the default random number generator from the NumPy
package:

from numpy.random import default_rng
rng = default_rng(12345)

Miscellaneous Topics Chapter 10

[313]

We will also need to run an instance of a Kafka service on our local machine so that our
Faust application can interact with the message broker.

Once you have downloaded Kafka and decompressed the downloaded source, navigate to
the folder that the Kafka application can be found in. Open this folder in the terminal. Start
the ZooKeeper server using the following command for Linux or Mac:

bin/zookeeper-server-start.sh config/zookeeper.properties

If you're on Windows, use the following command instead:

bin\windows\zookeeper-server-start.bat config\zookeeper.properties

Then, in a new terminal, launch the Kafka server using the following command for Linux
or Mac:

bin/kafka-server-start.sh config/server.properties

If you're on Windows, use the following command instead:

bin\windows\kafka-server-start.bat config\server.properties

In each terminal, you should see some logging information that will indicate that the server
is running.

How to do it...
Follow these steps to create a Faust app that will read (and write) data to a Kafka server
and do some simple processing:

First, we need to create a Faust App instance that will act as the interface between1.
Python and the Kafka server:

app = faust.App("sample", broker="kafka://localhost")

Next, we will create a record type that mimics the data we expect from the2.
server:

class Record(faust.Record):
 id_string: str
 value: float

Miscellaneous Topics Chapter 10

[314]

Now, we'll add a topic to the Faust App object that sets the value type to3.
the Record class that we just defined:

topic = app.topic("sample-topic", value_type=Record)

Now, we define an agent, which is an asynchronous function wrapped in4.
the agent decorator on the App object:

@app.agent(topic)
async def process_record(records):
 async for record in records:
 print(f"Got {record.id_string}: {record.value}")

Next, we define two source functions that will publish records to the Kafka5.
server on the sample topic we set up. These are asynchronous functions wrapped
in the timer decorator with an appropriate interval set:

@app.timer(interval=1.0)
async def producer1(app):
 await app.send(
 "sample-topic",
 value=Record(id_string="producer 1", value=
 rng.uniform(0, 2))
)

@app.timer(interval=2.0)
async def producer2(app):
 await app.send(
 "sample-topic",
 value=Record(id_string="producer 2", value=
 rng.uniform(0, 5))
)

Miscellaneous Topics Chapter 10

[315]

At the bottom of the file, we start the application's main function:6.

app.main()

Now, in a new terminal, we can use the following command to start a worker for7.
the application (assuming our application is stored in working-with-data-
streams.py):

python3.8 working-with-data-streams.py worker

At this stage, you should see some output that's been generated by the agent
printed into the terminal, as shown here:

[2020-06-21 14:15:27,986] [18762] [WARNING] Got producer 1:
0.4546720449343393
[2020-06-21 14:15:28,985] [18762] [WARNING] Got producer 2:
1.5837916985487643
[2020-06-21 14:15:28,989] [18762] [WARNING] Got producer 1:
1.5947309146654682
[2020-06-21 14:15:29,988] [18762] [WARNING] Got producer 1:
1.3525093415019491

This will be below some application information that's been generated by Faust.

Press Ctrl + C to close the worker and make sure to close both the Kafka server8.
and the Zookeeper server in the same way.

How it works...
This is a very basic example of a Faust application. Ordinarily, we wouldn't generate the
records and send them through the Kafka server and process them within the same app.
However, this is fine for the purposes of this demonstration. In a production environment,
we'd probably connect to a remote Kafka server that is connected to multiple sources and
publishing to multiple different topics simultaneously.

The Faust app controls the interaction between the Python code and the Kafka server. We
use the agent decorator to add a function to process information published to a particular
channel. This asynchronous function will be executed each time new data is pushed to the
sample topic. In this recipe, the agent that we defined simply prints the information
contained within the Record objects into the terminal.

Miscellaneous Topics Chapter 10

[316]

The timer decorator defines a service that regularly performs some action at a specified
interval. In our case, the timer sends a message to the Kafka server through the App object.
These messages are then pushed to the agent for processing.

The Faust command-line interface is used to start a worker process running the application.
These workers are what actually perform the processing in reaction to events on the Kafka
server or locally in the process, such as the timer services defined in this recipe. Larger
applications might use several worker processes in order to cope with vast quantities of
data.

See also
The Faust documentation provides far more details about the capabilities of Faust, along
with various alternatives to Faust: https:/ ​/​faust. ​readthedocs. ​io/ ​en/ ​latest/ ​.

More information about Kafka can be found on the Apache Kafka website: https:/ ​/​kafka.
apache.​org/​.

Accelerating code with Cython
Python is often criticized for being a slow programming language – a statement that is
endlessly debatable. Many of these criticisms can be addressed by using a high-
performance compiled library with a Python interface – such as the scientific Python stack –
to greatly improve performance. However, there are some situations where it is difficult to
avoid the fact that Python is not a compiled language. One way to improve performance in
these (fairly rare) situations is to write a C extension (or even rewrite the code entirely in C)
to speed up the critical parts. This will certainly make the code run faster, but it might make
it more difficult to maintain the package. Instead, we can use Cython, which is an extension
of the Python language that is transpiled into C and compiled for great performance
improvements.

For example, we can consider some code that's used to generate an image of the
Mandelbrot set. For comparison, the pure Python code – which we assume is our starting
point – is as follows:

mandelbrot/python_mandel.py

import numpy as np

def in_mandel(cx, cy, max_iter):

https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://faust.readthedocs.io/en/latest/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/

Miscellaneous Topics Chapter 10

[317]

 x = cx
 y = cy
 for i in range(max_iter):
 x2 = x**2
 y2 = y**2
 if (x2 + y2) >= 4:
 return i
 y = 2.0*x*y + cy
 x = x2 - y2 + cx
 return max_iter

def compute_mandel(N_x, N_y, N_iter):
 xlim_l = -2.5
 xlim_u = 0.5
 ylim_l = -1.2
 ylim_u = 1.2
 x_vals = np.linspace(xlim_l, xlim_u, N_x, dtype=np.float64)
 y_vals = np.linspace(ylim_l, ylim_u, N_y, dtype=np.float64)

 height = np.empty((N_x, N_y), dtype=np.int64)
 for i in range(N_x):
 for j in range(N_y):
 height[i, j] = in_mandel(x_vals[i], y_vals[j], N_iter)
 return height

The reason why this code is relatively slow in pure Python is fairly obvious: the nested
loops. For demonstration purposes, let's assume that we can't vectorize this code using
NumPy. A little preliminary testing shows that using these functions to generate the
Mandelbrot set using 320 × 240 points and 255 steps takes approximately 6.3 seconds. Your
times may vary, depending on your system.

In this recipe, we will use Cython to greatly improve the performance of the preceding code
in order to generate an image of the Mandelbrot set.

Getting ready
For this recipe, we will need the NumPy package and the Cython package to be installed.
You will also need a C compiler such as GCC installed on your system. For example, on
Windows, you can obtain a version of GCC by installing MinGW.

Miscellaneous Topics Chapter 10

[318]

How to do it...
Follow these steps to use Cython to greatly improve the performance of the code for
generating an image of the Mandelbrot set:

Start a new file called cython_mandel.pyx in the mandelbrot folder. In this1.
file, we will add some simple imports and type definitions:

mandelbrot/cython_mandel.pyx

import numpy as np
cimport numpy as np
cimport cython
ctypedef Py_ssize_t Int
ctypedef np.float64_t Double

Next, we define a new version of the in_mandel routine using the Cython2.
syntax. We add some declarations to the first few lines of this routine:

cdef int in_mandel(Double cx, Double cy, int max_iter):
 cdef Double x = cx
 cdef Double y = cy
 cdef Double x2, y2
 cdef Int i

The rest of the function is identical to the Python version of the function:3.

 for i in range(max_iter):
 x2 = x**2
 y2 = y**2
 if (x2 + y2) >= 4:
 return i
 y = 2.0*x*y + cy
 x = x2 - y2 + cx
 return max_iter

Next, we define a new version of the compute_mandel function. We add two4.
decorators to this function from the Cython package:

@cython.boundscheck(False)
@cython.wraparound(False)
def compute_mandel(int N_x, int N_y, int N_iter):

Miscellaneous Topics Chapter 10

[319]

Then, we define the constants, just as we did in the original routine:5.

 cdef double xlim_l = -2.5
 cdef double xlim_u = 0.5
 cdef double ylim_l = -1.2
 cdef double ylim_u = 1.2

We use the linspace and empty routines from the NumPy package in exactly6.
the same way as in the Python version. The only addition here is that we declare
the i and j variables, which are of the Int type:

 cdef np.ndarray x_vals = np.linspace(xlim_l, xlim_u,
 N_x, dtype=np.float64)
 cdef np.ndarray y_vals = np.linspace(ylim_l, ylim_u,
 N_y, dtype=np.float64)
 cdef np.ndarray height = np.empty((N_x, N_y), dtype=np.int64)
 cdef Int i, j

The remainder of the definition is exactly the same as in the Python version:7.

 for i in range(N_x):
 for j in range(N_y):
 height[i, j] = in_mandel(x_vals[i], y_vals[j], N_iter)
 return height

Next, we create a new file called setup.py in the mandelbrot folder and add8.
the following imports to the top of this file:

mandelbrot/setup.py

import numpy as np
from setuptools import setup, Extension
from Cython.Build import cythonize

After that, we define an extension module with the source pointing to the9.
original python_mandel.py file. Set the name of this module
to hybrid_mandel:

hybrid = Extension(
 "hybrid_mandel",
 sources=["python_mandel.py"],
 include_dirs=[np.get_include()],
 define_macros=[("NPY_NO_DEPRECATED_API",
 "NPY_1_7_API_VERSION")]
)

Miscellaneous Topics Chapter 10

[320]

Now, we define a second extension module with the source set as10.
the cython_mandel.pyx file that we just created:

cython = Extension(
 "cython_mandel",
 sources=["cython_mandel.pyx"],
 include_dirs=[np.get_include()],
 define_macros=[("NPY_NO_DEPRECATED_API",
 "NPY_1_7_API_VERSION")]
)

Next, we add both these extension modules to a list and call the setup routine to11.
register these modules:

extensions = [hybrid, cython]
setup(
 ext_modules = cythonize(extensions, compiler_directives=
 {"language_level": "3"}),
)

Create a new empty file called __init__.py in the mandelbrot folder to make12.
this into a package that can be imported in Python.
Open the terminal inside the mandelbrot folder and use the following13.
command to build the Cython extension modules:

python3.8 setup.py build_ext --inplace

Now, start a new file called run.py and add the following import statements:14.

run.py

from time import time
from functools import wraps
import matplotlib.pyplot as plt

Import the various compute_mandel routines from each of the modules we have15.
defined: python_mandel for the original; hybrid_mandel for the Cythonized
Python code; and cython_mandel for the compiled pure Cython code:

from mandelbrot.python_mandel import compute_mandel
 as compute_mandel_py
from mandelbrot.hybrid_mandel import compute_mandel
 as compute_mandel_hy
from mandelbrot.cython_mandel import compute_mandel
 as compute_mandel_cy

Miscellaneous Topics Chapter 10

[321]

Define a simple timer decorator that we will use to test the performance of the16.
routines:

def timer(func, name):
 @wraps(func)
 def wrapper(*args, **kwargs):
 t_start = time()
 val = func(*args, **kwargs)
 t_end = time()
 print(f"Time taken for {name}: {t_end - t_start}")
 return val
 return wrapper

Apply the timer decorator to each of the imported routines, and define some17.
constants for testing:

mandel_py = timer(compute_mandel_py, "Python")
mandel_hy = timer(compute_mandel_hy, "Hybrid")
mandel_cy = timer(compute_mandel_cy, "Cython")

Nx = 320
Ny = 240
steps = 255

Run each of the decorated routines with the constants we set previously. Record18.
the output of the final call (the Cython version) in the vals variable:

mandel_py(Nx, Ny, steps)
mandel_hy(Nx, Ny, steps)
vals = mandel_cy(Nx, Ny, steps)

Finally, plot the output of the Cython version to check that the routine computes19.
the Mandelbrot set correctly:

fig, ax = plt.subplots()
ax.imshow(vals.T, extent=(-2.5, 0.5, -1.2, 1.2))
plt.show()

Running the run.py file will print the execution time of each of the routines to the
terminal, as follows:

Time taken for Python: 6.276328802108765
Time taken for Hybrid: 5.816391468048096
Time taken for Cython: 0.03116750717163086

Miscellaneous Topics Chapter 10

[322]

The plot of the Mandelbrot set can be seen in the following image:

Figure 10.4: Image of the Mandelbrot set computed using Cython code

This is what we expect for the Mandelbrot set.

How it works...
There is a lot happening in this recipe, so let's start by explaining the overall process.
Cython takes code that is written in an extension of the Python language and compiles it
into C code, which is then used to produce a C extension library that can be imported into a
Python session. In fact, you can even use Cython to compile ordinary Python code directly
to an extension, although the results are not as good as when using the modified language.
The first few steps in this recipe define the new version of the Python code in the modified
language (saved as a .pyx file), which includes type information in addition to the regular
Python code. In order to build the C extension using Cython, we need to define a setup file,
and then we create a file that we run to produce the results.

Miscellaneous Topics Chapter 10

[323]

The final compiled version of the Cython code runs considerably faster than its Python
equivalent. The Cython compiled Python code (hybrid, as we called it in this recipe)
performs slightly better than the pure Python code. This is because the produced Cython
code still has to work with Python objects with all of their caveats. By adding the typing
information to the Python code, in the .pyx file, we start to see major improvements to
performance. This is because the in_mandel function is now effectively defined as a C-
level function that has no interaction with Python objects, and instead operates on primitive
data types.

There are some small, but very important differences, between the Cython code and the
Python equivalent. In step 1, you can see that we imported the NumPy package as usual but
that we also used the cimport keyword to bring some C-level definitions into the scope. In
step 2, we used the cdef keyword instead of the def keyword when we defined
the in_mandel routine. This means that the in_mandel routine is defined as a C-level
function that cannot be used from the Python level, which saves a significant amount of
overhead when calling this function (which happens a lot).

The only other real differences regarding the definition of this function are the inclusion of
some type declarations in the signature and in the first few lines of the function. The two
decorators we applied here disable the checking of bounds when accessing elements from a
list (array). The boundscheck decorator disables checking if the index is valid (between 0
and the size of the array), while the wraparound decorator disables the negative indexing.
Both of these give a modest improvement to speed during execution, although they disable
some of the safety features built into Python. In this recipe, it is OK to disable these checks
because we are using a loop over the valid indices of the array.

The setup file is where we tell Python (and therefore Cython) how to build the C extension.
The cythonize routine from Cython is the key here as it triggers the Cython build process.
In steps 9 and 10, we defined extension modules using the Extension class
from setuptools so that we could define some extra details for the build; specifically, we
set an environment variable for the NumPy compilation and added the include files for
the NumPy C headers. This is done via the define_macros keyword argument for
the Extension class. The terminal command we used in step 13 uses setuptools to build
the Cython extensions, and the addition of the --inplace flat means that the compiled
libraries will be added to the current directory, rather than being placed in a centralized
location. This is good for development.

The run script is fairly simple: import the routines from each of the defined modules – two
of these are actually C extension modules – and time their execution. We have to be a little
creative with the import aliases and routine names to avoid collisions.

Miscellaneous Topics Chapter 10

[324]

There's more...
Cython is a powerful tool for improving the performance of some aspects of your code.
However, you must always be careful to spend your time wisely while optimizing code.
Using a profile such as the cProfiler that is provided in the Python Standard Library can be
used to find the places where performance bottlenecks occur in your code. In this recipe, it
was fairly obvious where the performance bottleneck occurs. Cython is a good remedy to
the problem in this case because it involves repetitive calls to a function inside a (double)
for loop. However, it is not a universal fix for performance issues and, more often than
not, the performance of code can be greatly improved by refactoring it so that it makes use
of high-performance libraries.

Cython is well integrated with Jupyter notebooks and can be used seamlessly in the code
blocks of a notebook. Cython is also included in the Anaconda distribution of Python, so no
additional setup is required for using Cython with Jupyter notebooks when it's been
installed using the Anaconda distribution.

There are alternatives to Cython when it comes to producing compiled code from Python.
For example, the NumBa package (http:/ ​/​numba. ​pydata. ​org/ ​) provides a just in time
(JIT) compiler that optimizes Python code at runtime by simply placing a decorator on
specific functions. NumBa is designed to work with NumPy and other scientific Python
libraries and can also be used to leverage GPUs to accelerate code.

Distributing computing with Dask
Dask is a library that's used for distributing computing across multiple threads, processes,
or even computers in order to effectively perform computation at a huge scale. This can
greatly improve performance and throughput, even if you are working on a single laptop
computer. Dask provides replacements for most of the data structures from the Python
scientific stack, such as NumPy arrays and Pandas DataFrames. These replacements have
very similar interfaces, but under the hood, they are built for distributed computing so that
they can be shared between multiple threads, processes, or computers. In many cases,
switching to Dask is as simple as changing the import statement, and possibly adding a
couple of extra method calls to start concurrent computations.

In this recipe, we will learn how to use Dask to do some simple computations on a
DataFrame.

http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/
http://numba.pydata.org/

Miscellaneous Topics Chapter 10

[325]

Getting ready
For this recipe, we will need to import the dataframe module from the Dask package.
Following the convention set out in the Dask documentation, we will import this module
under the alias dd:

import dask.dataframe as dd

We will also need the sample.csv file from the code repository for this chapter.

How to do it...
Follow these steps to use Dask to perform some computations on a DataFrame object:

First, we need to load the data from sample.csv into a Dask DataFrame:1.

data = dd.read_csv("sample.csv")

Next, we perform a standard calculation on the columns of the DataFrame:2.

sum_data = data.lower + data.upper
print(sum_data)

Unlike with Pandas DataFrames, the result is not a new DataFrame. The print
statement gives us the following information:

Dask Series Structure:
npartitions=1
 float64
 ...
dtype: float64
Dask Name: add, 6 tasks

To actually get the result, we need to use the compute method:3.

result = sum_data.compute()
print(result.head())

The result is now shown as expected:

0 -0.911811
1 0.947240
2 -0.552153
3 -0.429914
4 1.229118
dtype: float64

Miscellaneous Topics Chapter 10

[326]

We compute the means of the final two columns in exactly the same way we4.
would with a Pandas DataFrame, but we need to add a call to the compute
method to execute the calculation:

means = data.loc[:, ("lower", "upper")].mean().compute()
print(means)

The result, as printed, is exactly as we expect it to be:

lower -0.060393
upper -0.035192
dtype: float64

How it works...
Dask builds a task graph for the computation, which describes the relationships between the
various operations and calculations that need to be performed on the collection of data.
This breaks down the steps of the calculation so that calculations can be done in the right
order across the different workers. This task graph is then passed into a scheduler that
sends the actual tasks to the workers for execution. Dask comes with several different
schedulers: synchronous, threaded, multiprocessing, and distributed. The type of scheduler
can be chosen in the call to the compute method or set globally. Dask will choose a sensible
default if one is not given.

The synchronous, threaded, and multiprocessing schedulers work on a single machine,
while the distributed scheduler is for working with a cluster. Dask allows you to change
between schedulers in a relatively transparent way, although for small tasks, you might not
get any performance benefits because of the overhead of setting up more complicated
schedulers.

The compute method is the key to this recipe. The methods that would ordinarily perform
the computation on Pandas DataFrames now just set up a computation that is to be
executed through the Dask scheduler. The computation isn't started until the compute
method is called. This is similar to the way that a Future is returned as a proxy for the
result of an asynchronous function call, which isn't fulfilled until the computation is
complete.

Miscellaneous Topics Chapter 10

[327]

There's more...
Dask provides interfaces for NumPy arrays, as well as the DataFrames shown in this recipe.
There is also a machine learning interface called dask_ml that exposes similar capabilities
to the scikit-learn package. Some external packages, such as xarray, also have a Dask
interface. Dask can also work with GPUs to further accelerate computations and load data
from remote sources, which is useful if the computation is distributed across a cluster.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Python for Finance Cookbook
Eryk Lewinson

ISBN: 978-1-78961-851-8

Download and preprocess financial data from different sources
Backtest the performance of automatic trading strategies in a real-world setting
Estimate financial econometrics models in Python and interpret their results
Use Monte Carlo simulations for a variety of tasks such as derivatives valuation
and risk assessment
Improve the performance of financial models with the latest Python libraries
Apply machine learning and deep learning techniques to solve different financial
problems
Understand the different approaches used to model financial time series data

https://www.packtpub.com/data/python-for-finance-cookbook

Other Books You May Enjoy

[329]

The Python Workshop
Andrew Bird, Dr Lau Cher Han, Mario Corchero Jiménez, Graham Lee, Corey
Wade

ISBN: 978-1-83921-885-9

Learn how to write clean and concise code with Python 3
Understand classes and object-oriented programming
Tackle entry-level data science and create engaging visualizations
Use Python to create responsive, modern web applications
Automate essential day-to-day tasks with Python scripts
Get started with predictive Python machine learning

https://www.packtpub.com/programming/the-python-workshop

Other Books You May Enjoy

[330]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

2
2-sample t-test 186

A
adaptive methods 282
adjacency matrix
 generating, for networks 147, 148, 149
Akaike Information Criteria (AIC) 221
Amazon Web Services (AWS) 308
Analysis of Variance (ANOVA)
 about 187
 used, for testing hypotheses 187, 188, 189
art gallery problem 253, 254
autocorrelation function (ACF) 215
Autoregressive Integrated Moving Average

(ARIMA)
 used, for forecasting from time series data 221,

223, 224, 225, 227
 used, for forecasting seasonal data 228, 229,

230, 231, 232, 234
Autoregressive Moving Average (ARMA)
 used, for modeling time series data 213, 214,

215, 216, 218, 219, 220

B
Basic Linear Algebra Subprograms (BLAS) 13
Bayesian information criterion (BIC) 221
Bayesian techniques
 used, for analyzing conversion rates 122, 123,

125, 127
Bezier curves
 constructing 257, 258, 259, 260, 261, 262
 defining 262
bias 180
BitGenerator class 111
Bokeh

 used, for creating interactive plots 193, 195
Brent's method 72

C
calculations
 numerical value uncertainty, quantifying 299,

300

calculus
 working with 61, 62, 63, 64
central limit theorem 183
Central Processing Unit (CPU) 134
Cerberus
 used, for validating data loaded from CSV file

309, 311, 312
choice method
 used, for creating random samples 106
Circle patch class 243
classification problem
 solving, with logarithmic regression 209, 210,

212

clustering
 quantifying, in networks 156, 158
colormap
 about 58
 applying 59
 reference link 58
complex type 10
computations
 distributing, with Dask 324, 326, 327
continuous probability distribution 115
contour plots
 using 50, 51, 52, 53
conversion rates
 analyzing, with Bayesian techniques 122, 123,

125, 126, 127
convex hulls
 computing 254, 255, 256, 257

[332]

correlation 203
cProfiler 324
Cython
 used, for accelerating code 316, 317, 319, 321,

322, 324

D
Dask
 used, for distributing computations 324, 326,

327

data
 loading, from DataFrame 169
 manipulating, in DataFrames 171, 172, 173,

174

 plotting, from DataFrame 174, 175, 176
 storing, from DataFrame 169
 validating 309, 311, 312
DataFrame objects
 creating 166, 167, 168
DataFrame
 data, loading 169
 data, manipulating 171, 172, 173, 174
 data, plotting 174, 175, 176
 data, storing 169
 descriptive statistics, obtaining 177, 178, 180,

181

decimal type 8, 9
Delaunay triangulation 252
descriptive statistics
 obtaining, from DataFrame 177, 178, 180, 181
determinants 22, 23, 24
differential equations
 solving, numerically 75, 76, 78, 80
directed networks
 about 152
 creating 149, 152
Dirichlet boundary conditions 92
discretization 250
distribution function 112
distributions 112
dominating sets
 finding, in networks 162, 164
Dots per Inch (DPI) 49

E
edges
 finding, in image 247, 248, 249
eigenvalues 27, 28
eigenvectors 27, 28
Encapsulated PostScript (EPS) 50
equations
 solving 68, 69, 70, 71, 72
Eulerian circuit 155
exogenous regressors 234

F
fast Fourier transform (FFT)
 used, for signal processing 93, 95, 96, 97, 98,

99, 100
 uses 100
Faust package
 used, for processing data streams from Kafka

server 312, 313, 315, 316
finite differences 87
forward time central spatial (FTCS) scheme 90
Fourier transform 93
fraction type 10
functions
 plotting, with Matplotlib 34, 35, 36

G
Gambit project
 reference link 290
geographical data
 working with 304, 306
GeoPandas package 306
Geoplot package 306
gradient descent methods
 using, in optimization 276, 277, 280, 281, 283
gradient-free 275
Graph class 140
Graphical Processing Unit (GPU) 134

H
Hannan-Quinn Information Criterion (HQIC) 221
hypotheses
 testing, for non-parametric data 189, 190, 191,

192

[333]

 testing, with ANOVA 187, 188, 189
 testing, with t-test 184, 185, 186, 187

I
image
 edges, finding 247, 248, 249
implicit methods 91
independent and identically distributed (IID) 115
integers method 109
interactive plots
 creating, with Bokeh 193, 195
interior points
 searching 244, 245, 247
interpolation
 performing 54
items
 selecting, at random from container 102, 103,

104, 105

J
JavaScript Object Notation (JSON) 307
Jupyter notebook
 executing, as script 307, 308, 309
just in time (JIT) 324

K
Kafka server
 data streams, processing with Faust package

312, 313, 315, 316
Kafka streams
 working with 312
Kafka
 about 312
 URL 316
kernel density estimation 192
keyword arguments 41
Königsberg bridges problem 155

L
labels
 adding, to plots 42, 43, 44
learning rate 281
least squares
 used, for fitting curve to data 284, 285, 286,

287, 288
Legendre polynomials 64
legends
 adding, to plots 42, 43, 44
linear function
 minimizing 266, 267, 268, 269, 270, 271
linear regression
 benefits 203
 performing, with statsmodels package 199, 201,

203, 204
linprog routine 271
log-odds 208
logarithmic regression
 about 208
 used, for solving classification problem 209,

210, 212
logistic function 208

M
Markov chain 116
Markov Chain Monte Carlo (MCMC) 128
Markov property 116
mathematical functions
 about 10, 11, 13
 gamma function 10
 inverse trigonometric functions 11
 isclose function 13
 log function 11
 math module 12, 13
 sqrt function 11
 trigonometric functions 11
Matplotlib figures
 saving 48, 49
Matplotlib
 figures, creating 37
 plotting routines 38
 used, for plotting functions 34, 35, 36, 37
matrices
 about 19
 methods and properties 19, 20
 systems of equations, solving 24, 25, 26
matrix multiplication 20, 21
matrix
 about 19
 inverses 22, 24

[334]

maximization problem 271
minimal spanning trees
 finding, in networks 162, 164
Monte Carlo simulations
 advantages 134
 used, for estimating parameters 128, 129, 131,

132, 134, 135
MultiGraph 140
multilinear regression
 using 204, 205, 206, 208

N
Nash equilibria
 computing 291, 292, 293
 reference link 293
Nelder-Mead simplex method
 about 275
 using 272, 274, 275
network common data form (NetCDF) files
 data, loading from 301, 302, 303, 304
 data, storing from 301, 302, 303, 304
networks
 adjacency matrix, generating for 147, 148, 149
 characteristics, accessing 144, 145, 146, 147
 clustering, quantifying 156, 158
 coloring 159, 160, 161
 creating, in Python 138, 139, 140, 141
 dominating sets, finding 162, 164
 minimal spanning trees, finding 162, 164
 shortest paths, finding 152, 153, 154
 visualizing 141, 142, 143
NetworkX package
 layout, generating routines 143
Neumann boundary conditions 92
Newton-Raphson method
 about 68, 71
 working 70
No U-turn sampler (NUTS) 134
non-linear function
 minimizing 272, 274, 275, 276
 using 272
non-parametric data
 used, for testing hypotheses 189, 190, 191, 192
normal distribution 112
normally distributed random numbers

 generating 112, 114, 116
Not a Number (NaN) 172
NumBa package
 reference link 324
numerical integration routine
 using, in SciPy 72, 74, 75
NumPy arrays
 about 13, 14
 array arithmetic and functions 15, 16
 creation routines 16
 element access 15
 higher dimensional arrays 17, 18
NumPy documentation
 reference link 111
nx.greedy_color routine 161

O
over-differencing 227

P
paired t-test 186
pandas
 reference link 170
parameters
 estimating, with Monte Carlo simulations 128,

129, 131, 132, 134, 135
partial autocorrelation function (PACF) 215
partial differential equations (PDEs)
 about 29
 solving, numerically 86, 89, 90, 91, 92, 93
PatchPath objects 243
phase space (plane) analysis 86
Pint
 used, for tracking units 296, 298
planar figures
 triangulating 250, 251, 252, 253, 254
plot method 41
plot_trisurf routine
 using 54, 55
plots
 labels, adding 42, 43, 44
 legends, adding 42, 43, 44
plotting style
 changing 39
 modifying 39, 40, 42

[335]

plt.show function 37
Poisson process 116, 120
Polygon patch class 243
polynomials
 working with 61, 62, 63, 64
population mean
 estimating 181, 182, 184
Portable Document Format (PDF) 50
Portable Network Graphics (PNG) format 49
PostScript (PS) 50
power spectral density (PSD) 96
predictor variable 199
probability 102
Prophet
 used, for modeling time series data 234, 235,

237

pseudo random number generator (PRNG) 105
PyMC3 package
 reference link 136
Python numerical types
 about 8
 complex type 10
 decimal type 8, 9
 fraction type 10
Python
 networks, creating 138, 139, 140, 141

R
random data
 generating 106, 107, 108, 109
random number generator
 modifying 109, 110, 111
random processes
 working with 116, 117, 118, 120, 121
randomness 102
response variable 199

S
SARIMAX class
 versus ARIMA class 234
savefig routine 49
Scalable Vector Graphics (SVG) 50
scalar multiplication 19
scatter plotting routine 42
scikit-learn 212

SciPy
 used, for integrating functions numerically 72,

74, 75
 used, for solving constrained linear minimization

problem 267, 268, 269
seasonal data
 forecasting, with ARIMA 228, 231, 232, 234
secant method
 about 68, 71
 working 70
seed 105
Series
 creating 166, 167, 168
signal processing
 fast Fourier transform (FFT), using 93, 95, 96,

97, 98, 99, 100
simplex method 269
singular matrices 23
slack variable 269
solve_ivp routine 80
sparse matrices 29, 30, 31
Spearman's rank correlation coefficient 203
spectral methods 149
standard ARIMA model (SARIMA) 228
standard deviation 180
standard error 182
statsmodels package
 used, for performing linear regression 199, 201,

203, 204
stochastic gradient descent 283
subplots
 adding 44, 45, 47
 creating 47, 48
surface plot
 using 50, 51, 53
Swiss Cheese 243
symbolic function
 differentiating, SymPy used 65, 66, 67, 68
 integrating, SymPy used 65, 66, 67, 68
SymPy
 used, for differentiating symbolic function 65, 66,

67, 68
 used, for integrating symbolic function 65, 66,

67, 68
systems of differential equations

 solving 80, 81, 82, 83, 84, 85, 86
systems of equations
 solving 24, 25, 26

T
t-test
 about 184
 used, for testing hypotheses 184, 185
task graph 326
TensorFlow
 reference link 136
three-dimensional plots
 customizing 56, 57, 58, 59
time series data
 ARIMA, used for forecasting from 221, 223,

224, 225, 227
 modeling, with ARMA 213, 214, 215, 216, 218,

220, 221
 modeling, with Prophet 234, 235, 237
transition matrix 121

triangulations
 using 253
two-dimensional geometric shapes
 visualizing 240, 241, 242, 243, 244
two-player games
 analyzing 288, 289, 290

U
units
 tracking, with Pint 296, 298
 using 298

V
variance 180

W
weighted networks
 about 152
 creating 149, 152
winding number 247

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Basic Packages, Functions, and Concepts
	Technical requirements
	Python numerical types
	Decimal type
	Fraction type
	Complex type

	Basic mathematical functions
	NumPy arrays
	Element access
	Array arithmetic and functions
	Useful array creation routines
	Higher dimensional arrays

	Matrices
	Basic methods and properties
	Matrix multiplication
	Determinants and inverses
	Systems of equations
	Eigenvalues and eigenvectors
	Sparse matrices

	Summary
	Further reading

	Chapter 2: Mathematical Plotting with Matplotlib
	Technical requirements
	Basic plotting with Matplotlib
	Getting ready
	How to do it...
	How it works...
	There's more...

	Changing the plotting style
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding labels and legends to plots
	How to do it...
	How it works...

	Adding subplots
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Saving Matplotlib figures
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Surface and contour plots
	Getting ready
	How to do it...
	How it works...
	There's more...

	Customizing three-dimensional plots
	Getting ready
	How to do it...
	How it works...
	There's more...

	Further reading

	Chapter 3: Calculus and Differential Equations
	Technical requirements
	Working with polynomials and calculus
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Differentiating and integrating symbolically using SymPy
	Getting ready
	How to do it...
	How it works...
	There's more...

	Solving equations
	Getting ready
	How to do it...
	How it works...
	There's more...

	Integrating functions numerically using SciPy
	Getting ready
	How to do it...
	How it works...
	There's more...

	Solving simple differential equations numerically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Solving systems of differential equations
	Getting ready
	How to do it...
	How it works...
	There's more...

	Solving partial differential equations numerically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using discrete Fourier transforms for signal processing
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Further reading

	Chapter 4: Working with Randomness and Probability
	Technical requirements
	Selecting items at random
	Getting ready
	How to do it...
	How it works...
	There's more...

	Generating random data
	Getting ready
	How to do it...
	How it works...
	There's more...

	Changing the random number generator
	Getting ready
	How to do it...
	How it works...
	There's more...

	Generating normally distributed random numbers
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with random processes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Analyzing conversion rates with Bayesian techniques
	Getting ready
	How to do it...
	How it works...
	There's more...

	Estimating parameters with Monte Carlo simulations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Further reading

	Chapter 5: Working with Trees and Networks
	Technical requirements
	Creating networks in Python
	Getting ready
	How to do it...
	How it works...
	There's more...

	Visualizing networks
	Getting ready
	How to do it...
	How it works...
	There's more...

	Getting the basic characteristics of networks
	Getting ready
	How to do it...
	How it works...
	There's more...

	Generating the adjacency matrix for a network
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating directed and weighted networks
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding the shortest paths in a network
	Getting ready
	How to do it...
	How it works...
	There's more...

	Quantifying clustering in a network
	Getting ready
	How to do it...
	How it works...
	There's more...

	Coloring a network
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding minimal spanning trees and dominating sets
	Getting ready
	How to do it...
	How it works...

	Further reading

	Chapter 6: Working with Data and Statistics
	Technical requirements
	Creating Series and DataFrame objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Loading and storing data from a DataFrame
	Getting ready
	How to do it...
	How it works...
	See also

	Manipulating data in DataFrames
	Getting ready
	How to do it...
	How it works...
	There's more...

	Plotting data from a DataFrame
	Getting ready
	How to do it...
	How it works...
	There's more...

	Getting descriptive statistics from a DataFrame
	Getting ready
	How to do it...
	How it works...
	There's more...

	Understanding a population using sampling
	Getting ready
	How to do it...
	How it works...
	See also

	Testing hypotheses using t-tests
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing hypotheses using ANOVA
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing hypotheses for non-parametric data
	Getting ready
	How to do it...
	How it works...

	Creating interactive plots with Bokeh
	Getting ready
	How to do it...
	How it works...
	There's more...

	Further reading

	Chapter 7: Regression and Forecasting
	Technical requirements
	Using basic linear regression
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using multilinear regression
	Getting ready
	How to do it...
	How it works...

	Classifying using logarithmic regression
	Getting ready
	How to do it...
	How it works...
	There's more...

	Modeling time series data with ARMA
	Getting ready
	How to do it...
	How it works...
	There's more...

	Forecasting from time series data using ARIMA
	Getting ready
	How to do it...
	How it works...

	Forecasting seasonal data using ARIMA
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Prophet to model time series data
	Getting ready
	How to do it...
	How it works...
	There's more...

	Further reading

	Chapter 8: Geometric Problems
	Technical requirements
	Visualizing two-dimensional geometric shapes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Finding interior points
	Getting ready
	How to do it...
	How it works...

	Finding edges in an image
	Getting ready
	How to do it...
	How it works...

	Triangulating planar figures
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Computing convex hulls
	Getting ready
	How to do it...
	How it works...

	Constructing Bezier curves
	Getting ready
	How to do it...
	How it works...
	There's more...

	Further reading

	Chapter 9: Finding Optimal Solutions
	Technical requirements
	Minimizing a simple linear function
	Getting ready
	How to do it...
	How it works...
	There's more...

	Minimizing a non-linear function
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using gradient descent methods in optimization
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using least squares to fit a curve to data
	Getting ready
	How to do it...
	How it works...
	There's more...

	Analyzing simple two-player games
	Getting ready
	How to do it...
	How it works...
	There's more...

	Computing Nash equilibria
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Further reading

	Chapter 10: Miscellaneous Topics
	Technical requirements
	Keeping track of units with Pint
	Getting ready
	How to do it...
	How it works...
	There's more...

	Accounting for uncertainty in calculations
	Getting ready
	How to do it...
	How it works...
	There's more...

	Loading and storing data from NetCDF files
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with geographical data
	Getting ready
	How to do it...
	How it works...

	Executing a Jupyter notebook as a script
	Getting ready
	How to do it...
	How it works...
	There's more...

	Validating data
	Getting ready
	How to do it...
	How it works...

	Working with data streams
	Getting ready
	How to do it...
	How it works...
	See also

	Accelerating code with Cython
	Getting ready
	How to do it...
	How it works...
	There's more...

	Distributing computing with Dask
	Getting ready
	How to do it...
	How it works...
	There's more...

	Other Books You May Enjoy
	Index

