
Beginning
Rails 6

From Novice to Professional
—
Fourth Edition
—
Brady Somerville
Adam Gamble
Cloves Carneiro Jr.
Rida Al Barazi

Beginning Rails 6
From Novice to Professional

Fourth Edition

Brady Somerville
Adam Gamble
Cloves Carneiro Jr.
Rida Al Barazi

Beginning Rails 6: From Novice to Professional

ISBN-13 (pbk): 978-1-4842-5715-9 ISBN-13 (electronic): 978-1-4842-5716-6
https://doi.org/10.1007/978-1-4842-5716-6

Copyright © 2020 by Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Boris Stromar on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257159. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Brady Somerville
Bowling Green, KY, USA

Rida Al Barazi
FONTHILL, ON, Canada

Adam Gamble
Gardendale, AL, USA

Cloves Carneiro Jr.
Hollywood, FL, USA

https://doi.org/10.1007/978-1-4842-5716-6

To my parents, who sparked my love of technology
with a Macintosh Classic many years ago and have encouraged,

supported, and loved me unconditionally.

Brady Somerville

v

Chapter 1: Introducing the Rails Framework ��� 1

The Rise and Rise of the Web Application ��� 2

The Web Isn’t Perfect �� 3

Why Use a Framework? �� 3

Why Choose Rails? �� 5

Rails Is Ruby �� 6

Rails Encourages Agility �� 7

Rails Is an Opinionated Software��� 10

Rails Is Open Source�� 11

Rails Is Mature ��� 12

A High-Level Overview of Rails ��� 12

The MVC Cycle ��� 13

The Layers of MVC ��� 14

The Libraries That Make Up Rails ��� 17

Rails Is Modular �� 17

Rails Is No Silver Bullet ��� 17

Summary��� 18

Chapter 2: Getting Started �� 19

An Overview of Rails Installation �� 19

Installing on macOS Catalina �� 21

Table of Contents

About the Authors ��xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

What Is This Book About? ���xxiii

vi

Installing the Command Line Tools for Xcode �� 21

Installing Homebrew�� 21

Installing RVM �� 21

Installing Rails ��� 22

Installing Node�js ��� 22

Installing Yarn �� 23

Installing on Windows ��� 23

Installing Ruby ��� 23

Installing Rails ��� 25

Installing SQLite��� 26

Installing Node�js ��� 27

Installing Yarn �� 27

Installing on Linux ��� 28

Installing Ruby ��� 28

Installing Rails ��� 29

Installing SQLite��� 30

Installing Node�js ��� 30

Installing Yarn �� 31

Creating Your First Rails Application ��� 31

Starting the Built-In Web Server �� 32

Generating a Controller�� 34

Creating an Action ��� 35

Creating a Template ��� 35

Summary��� 38

Chapter 3: Getting Something Running �� 39

An Overview of the Project�� 39

Creating the Blog Application �� 40

Creating the Project Databases ��� 44

Creating the Article Model ��� 46

Creating a Database Table ��� 48

Generating a Controller�� 50

Table of ConTenTs

vii

Up and Running with Scaffolding �� 52

Adding More Fields �� 55

Adding Validations ��� 58

Generated Files �� 60

Summary��� 63

Chapter 4: Introduction to the Ruby Language ��� 65

Instant Interaction ��� 65

Ruby Data Types �� 67

Strings ��� 68

Numbers �� 69

Symbols ��� 70

Arrays and Hashes��� 71

Language Basics ��� 73

Variables �� 73

Operators ��� 75

Blocks and Iterators �� 76

Comments ��� 77

Control Structures ��� 78

Methods ��� 79

Classes and Objects �� 81

Objects �� 81

Classes �� 82

Ruby Documentation ��� 86

Summary��� 87

Chapter 5: Working with a Database: Active Record �� 89

Introducing Active Record: Object-Relational Mapping on Rails ��� 90

What About SQL? ��� 91

Active Record Conventions �� 93

Introducing the Console �� 94

Active Record Basics: CRUD �� 98

Table of ConTenTs

viii

Creating New Records ��� 99

Reading (Finding) Records �� 104

Updating Records �� 110

Deleting Records ��� 111

When Good Models Go Bad ��� 114

Summary��� 117

Chapter 6: Advanced Active Record: Enhancing Your Models ������������������������������ 119

Adding Methods �� 119

Using Associations �� 123

Declaring Associations �� 124

Creating One-to-One Associations ��� 125

Creating One-to-Many Associations �� 132

Applying Association Options �� 139

Creating Many-to-Many Associations �� 141

Creating Rich Many-to-Many Associations �� 146

Advanced Finding�� 149

Using the where Method �� 149

Using an SQL Fragment ��� 150

Using an Array Condition Syntax ��� 151

Using Association Proxies �� 153

Other Finder Methods �� 154

Default Scope �� 156

Named Scope �� 157

Applying Validations �� 160

Using Built-in Validations ��� 160

Building Custom Validation Methods ��� 165

Making Callbacks �� 167

Updating the User Model ��� 170

Reviewing the Updated Models �� 177

Summary��� 178

Table of ConTenTs

ix

Chapter 7: Action Pack: Working with Routes, Controllers, and Views ���������������� 179

Action Pack Components �� 180

Action Controller �� 180

Action View �� 184

Embedded Ruby��� 185

Helpers �� 186

Routing �� 186

RESTful Resources �� 188

Action Pack Request Cycle �� 189

A Controller Walk-Through �� 192

Setting Up Routes �� 192

Revisiting the Scaffold Generator �� 196

Rendering Responses �� 200

Redirecting �� 201

Understanding Templates �� 202

Working with Layouts �� 204

Looking at the Article Form ��� 206

Using Form Helpers ��� 210

Processing Request Parameters ��� 215

Revisiting the Controller �� 215

Displaying Error Messages in Templates ��� 217

The edit and update Actions ��� 218

Revisiting the Views �� 219

Staying DRY with Partials �� 221

Summary��� 223

Chapter 8: Advanced Action Pack �� 225

Generating a Controller ��� 225

Nested Resources ��� 232

Sessions and the Login/Logout Logic ��� 239

Lying in State ��� 240

Using the Session �� 240

Table of ConTenTs

x

Session As a Resource �� 240

Logging In a User ��� 243

Logging Out a User �� 245

Improving Controllers and Templates�� 247

Cleaning Up the Articles Index Page �� 247

Adding Categories to the Article Form ��� 248

Using Filters ��� 252

Requiring Authentication with Filters �� 253

Applying Filters to Controllers ��� 255

Adding Finishing Touches ��� 258

Using Action View Helpers ��� 258

Escaping HTML in Templates ��� 260

Formatting the Body Field ��� 262

Adding Edit Controls �� 262

Making Sure Articles Have Owners ��� 265

Adding Custom Helpers ��� 267

Giving It Some Style �� 270

Summary��� 280

Chapter 9: JavaScript and CSS ��� 281

Benefits of Preprocessing Assets�� 281

Asset Concatenation and Compression ��� 282

Secondary Languages ��� 282

Asset Locations ��� 283

Turbolinks�� 284

Let’s Build Something! �� 284

Ajax and Rails �� 285

JavaScript and the DOM �� 285

Moving to Practice ��� 286

Summary��� 298

Table of ConTenTs

xi

Chapter 10: Active Storage ��� 299

ImageMagick �� 299

Installing on MacOS Catalina ��� 299

Installing on Windows�� 300

Installing on Linux ��� 300

Configuration��� 300

Saving Uploaded Images ��� 301

Displaying Uploaded Images ��� 304

Removing Uploaded Images ��� 306

Summary��� 312

Chapter 11: Action Text �� 313

Installation �� 313

Action Text CSS ��� 315

Action Text JavaScript ��� 318

Action Text Database Storage ��� 320

Using Action Text in Our Blog �� 321

Updating the Article Model �� 321

Migrating Our Data �� 323

Updating the Article View �� 326

Updating the Article Form �� 327

Cleaning Up N+1 Queries �� 330

Summary��� 334

Chapter 12: Sending and Receiving Email �� 335

Setting Up Action Mailer ��� 336

Configuring Mail Server Settings ��� 336

Configuring Application Settings ��� 342

Sending Email ��� 343

Handling Basic Email ��� 346

Previewing Email ��� 356

Table of ConTenTs

xii

Adding Attachments �� 359

Letting Authors Know About Comments �� 361

Receiving Email via Action Mailbox �� 364

Installation ��� 365

Configuration ��� 365

Creating Draft Articles via Email �� 366

Summary��� 380

Chapter 13: Active Job ��� 381

Configuring Active Job �� 382

Creating an Active Job �� 383

Performing a Job ��� 385

Performing a Job Later �� 385

Retrying a Failed Job ��� 386

Discarding a Failed Job ��� 388

Improving Our Blog with Active Job �� 390

Summary��� 394

Chapter 14: Active Model ��� 395

A Tour of Active Model��� 396

ActiveModel::Attributes ��� 397

ActiveModel::Callbacks ��� 399

ActiveModel::Dirty ��� 402

ActiveModel::Validations ��� 404

ActiveModel::Model ��� 407

Enhancing Our Blog with Active Model ��� 409

Create an EmailAFriend Model �� 410

Update Controller/Views to Use Our New Model ��� 411

Try It Out �� 415

Summary��� 415

Table of ConTenTs

xiii

Chapter 15: Action Cable �� 417

Introduction ��� 417

Concepts ��� 418

Configuration��� 420

Application �� 421

Server-Side Changes ��� 422

Client-Side Changes �� 427

Try It Out �� 429

Summary��� 430

Chapter 16: Testing Your Application ��� 431

How Rails Handles Testing �� 433

Unit Testing Your Rails Application �� 435

Testing the Article Model ��� 436

Testing Validations ��� 445

Functional Testing Your Controllers ��� 447

Testing the Articles Controller ��� 448

Creating a Test Helper Method �� 449

Getting ArticlesControllerTest to Pass ��� 450

Handling Edge Cases ��� 457

Running the “Full” Test Suite �� 463

Mailer Tests ��� 464

System Testing �� 468

System Testing the Blog Application ��� 468

Summary��� 477

Chapter 17: Internationalization ��� 479

Internationalization Logic in Rails ��� 480

Setting Up i18n in the Blog Application ��� 486

Localizing the Blog Application to Brazilian Portuguese ��� 493

Bilingual Blog �� 498

Summary��� 504

Table of ConTenTs

xiv

Chapter 18: Deploying Your Rails Applications �� 505

Set Up an Account with Heroku �� 507

Preparing Your Git Repository ��� 508

Creating Your Heroku App ��� 509

Installing PostgreSQL �� 510

Switching to PostgreSQL �� 511

Deploying to Heroku �� 513

That’s It! �� 517

Summary��� 518

 Appendix A: Databases 101 �� 519

 Examining a Database Table ��� 520

 Working with Tables �� 521

Selecting Data ��� 522

Inserting Data �� 523

Updating Data �� 524

Deleting Data ��� 525

 Understanding Relationships �� 525

 SQL and Active Record �� 530

 Appendix B: The Rails Community �� 531

 Beginning Rails 6 Mailing List ��� 531

 Rails Discussion Forums ��� 531

 Rails Chat �� 532

 Rails Blogs and Podcasts �� 533

 Rails Guides �� 533

 Rails APIs �� 534

 Rails Source and Issue Tracking ��� 534

Table of ConTenTs

xv

 Appendix C: Git ��� 535

 What Is Source Control Management? �� 535

 How Does It Work? �� 536

 Git �� 536

Installing Git ��� 537

Setting Global Parameters ��� 538

Initializing a Repository ��� 538

Ignoring Files ��� 540

Adding and Committing ��� 542

Branching and Merging ��� 544

Remote Repositories and Cloning ��� 550

Learning More ��� 551

 Other SCM Systems �� 553

 Online Resources �� 553

Index ��� 555

Table of ConTenTs

xvii

About the Authors

Brady Somerville is a professional web developer and senior engineer at Eezy in

Bowling Green, Kentucky. He has over 15 years of professional web development

experience, using languages and frameworks such as Ruby on Rails, Hypertext

Preprocessor (PHP), and Perl. He earned a bachelor’s degree in computer science and

mathematics from his hometown university, Western Kentucky University.

Adam Gamble is a professional web developer and currently works as CTO for Eezy in

Birmingham, Alabama. He has over 10 years’ experience building web applications for

everything from start-ups to multiple Fortune 500 companies. His passion for technology

has enabled him to turn a hobby into a career that he loves.

Cloves Carneiro Jr is a software engineer who’s been building software since 1997,

especially web-based applications. He’s also the original author of Beginning Rails and

Beginning Ruby on Rails for Apress. His experience includes both Ruby and Java. He is

currently working for LivingSocial in Florida.

Rida Al Barazi is a passionate web developer experienced in building smart web

applications for start-ups. He has been designing and building for the Web since

2002. He started working with Rails in 2005 and has spoken at different web and Rails

conferences around the world.

xix

About the Technical Reviewer

Eldon Alameda is a web developer who currently resides in the harsh climates of

Kansas. He works as a regional webmaster for the US National Weather Service; prior to

this, he did development for a variety of companies including local start-ups, advertising

firms, Sprint PCS, and IBM. During the 1990s, he also acquired a nice stack of worthless

stock options from working for dot-com companies.

xxi

Acknowledgments

First of all, I want to thank my beautiful bride, Heather, for giving me the freedom to

pursue writing this book. Without your support, this simply could not have happened;

thank you, my love! And thank you, Owen, James, and Reuben, for letting Dad work at

his computer just a “little” bit more than usual; I hope I’m fair in saying I do this for you.

And thank you, Mom and Dad, for modeling so many great characteristics for my

siblings and me: how to have a strong work ethic, but still have fun; how to disagree, but

still love; and how to have high expectations, but still show grace. It’s simply not fair that

I was fortunate enough to grow up under your loving care.

I also want to thank my colleagues and bosses along my professional journey, both

for challenging me to be better and for giving me freedom and opportunities to make

choices and fail. Philip at ICA—you showed me what a strong senior developer looks like

and encouraged me to step up my game. Chris and Clinton at Hitcents—for many years,

you trusted me to make good decisions and try new things; thank you! And to my leaders

and colleagues at Eezy, thank you for making me part of your team; we are a close-knit

bunch who grow and learn together every day, and I love working with you all.

And most literally, this book could not have happened without the excellent

guidance and support from the folks at Apress publishing. Steve, thank you for setting

the wheels in motion and doing everything you did to make this happen. Mark, thank

you for (mostly) keeping me on track and for your encouragement along the way. And

thank you to Matthew and the countless others at Apress whose involvement I wasn’t

aware of, but whose involvement was no less important and critical. Thank you all!

Finally, this book would have been of a markedly lesser quality had it not been for

the excellent, careful feedback of our technical reviewer, Eldon Alameda. By having

a careful eye for detail, Eldon saved you, dear reader, from exasperation due to typos,

omissions, and other sundry errors which may have left you wondering where you went

wrong in following code samples, when it had really been my mistake. But Eldon also

kept a bigger picture and gave great feedback at a higher level for improving the flow of

chapters. Thank you, Eldon! We were all fortunate for your involvement in this book.

—Brady Somerville

xxiii

What Is This Book About?

In the past several years, the popularity of the Web has exploded to the point that it

touches nearly every facet of our lives. It touches everything we do; ordering food,

getting rides, and match-making are easy examples to think of. Even some refrigerators

now integrate with the Internet. Ruby on Rails has played a part in fueling that explosion.

This book will equip you with the knowledge you need to build real production web

applications. It leads you through installing the required prerequisites on Windows, OS

X, or Linux and then jumps straight into building applications. It is meant for the novice

programmer who has some command-line experience but little or no programming

experience. At the end of the book, you should have a firm grasp on the Ruby language

and the Rails framework.

Chapter 1 introduces you to the current web landscape and then goes over some of

the ideals and principles that the Rails framework is built on. It teaches you about the

MVC paradigm and shows how Rails implements each piece of that paradigm (model,

view, and controller).

Chapter 2 walks you through installing Ruby, Rails, and the SQLite database. It is

broken down by operating system and, when finished, will give a level platform among

all three. You should be able to follow along with the book no matter which platform you

choose. It also will show you how to build a quick “Hello World” application to make

sure everything is working correctly.

Chapter 3 dives right in and starts the blog application that we’ll use throughout the

rest of the book. We’ll continually build on this application, enhancing and refactoring as

we go along. You’ll create your first model in this chapter, the Article model. We’ll cover

how migrations work and even get Rails to construct our first scaffold. At the end of this

chapter, you’ll have a working blog application, although it will be lacking features. We’ll

add those in the following chapters.

Chapter 4 slows down a little bit from the previous chapter and takes you on a tour of

the Ruby language. If you’ve used Ruby for a while and feel comfortable with it, feel free

to skim over this. If you’re new to Ruby, this chapter will teach you everything you need

xxiv

to know to get started with Rails. Ruby is an easy language to pick up, as the syntax is very

inviting and easy to read. Although we won’t add any code to our blog application here,

you will get to use the Ruby language inside the Ruby console.

Chapter 5 shows you how Rails uses Active Record to let you interact with a variety

of databases. Rails abstracts away the difficult bits (unless you need them) and lets you

interact with databases in an object-oriented (OO) way. You’ll learn how to create new

records, find records, and even update and delete them. We’ll also apply some basic

validations so we can be sure our data are just the way they should be.

Chapter 6 expounds on the previous chapter. You’ll dive deeper into Active Record

and your models. You will build more complex validations and custom instance

methods. A major component of this chapter is the relation between your models and

how Rails lets you define those relations. Your models for the blog application will have

complex relations and validations.

In Chapter 7, we’ll cover the view and controller parts of MVC. We will flesh out the

blog application and walk through the code that Rails generated for the scaffold of our

controllers and views.

Chapter 8 modifies the controllers and views in more advanced ways, and at this

point, the features of our blog application have come together. You’ll learn about

controller callbacks and strong parameters that were added in Rails 4. We’ll also give our

application a fresh coat of paint with some Cascading Style Sheets (CSS).

Chapter 9 goes over the Asset Pipeline that was added in Rails 3.2, as well as

Webpacker which was added in Rails 6, and shows how to add JavaScript and CSS to

your application. We’ll enhance our application with JavaScript dabbling in Ajax and

DOM manipulation. At the end of this chapter, your application will have a nice layer of

spit and polish.

Chapter 10 provides a tour of Active Storage, a component introduced in Rails 5,

which provides an out-of-the-box experience for storing, processing, and retrieving

uploaded files in your Rails application. We will use Active Storage to add the ability to

add cover images to our blog’s articles.

Chapter 11 introduces Action Text, a new component introduced in Rails 6, which

provides a batteries-included approach to adding rich text capabilities to your Rails

application. We’ll use Action Text to allow article authors to include HTML in their

articles using a WYSIWYG editor.

WhaT Is ThIs book abouT?

xxv

Chapter 12 adds email capabilities to our application. We’ll show how to send emails

from your Rails application. We’ll add the ability to suggest articles to friends and even

be notified when your article has new comments. We’ll also cover a new addition to Rails

6, Action Mailbox, which allows your Rails application to receive emails and process

them. We’ll add the ability for authors to send an email to our blog application, which

will create a draft article on their behalf. Amazing!

Chapter 13 covers Active Job, a component of Rails which allows us to defer certain

tasks to be processed later. First, we’ll explore the capabilities of Active Job, and then

we’ll improve our blog’s performance by changing our emails to be sent outside of the

request cycle, using Active Job.

Chapter 14 covers a very useful Rails module—Active Model. We’ll explore how it

can be used to enhance plain Ruby classes with impressive behaviors and then apply our

knowledge to our blog by adding validations to our Email a Friend submission form.

Chapter 15 introduces Action Cable—a sophisticated, yet simple framework for using

WebSocket technology to allow real-time, bidirectional communication between the

server and the client. After getting familiar with some new concepts it introduces, we’ll

add an impressive new feature—instant, in-page notifications to all readers whenever a

new article is published.

Chapter 16 covers one of the most important topics in Rails applications: testing.

We’ll discuss the benefits of automated testing, discuss some of the various types of

tests, and then begin adding tests to our blog application. You can be sure that after this

chapter you’ll be able to add new features without breaking old ones. You’ll test whether

your application behaves exactly the way you think it should.

Chapter 17 covers internationalization. After all, it is the World Wide Web, and not

everyone speaks the same language. We’ll translate our web application into another

language, and along the way you’ll learn how to translate the application into as many

languages as you like.

Chapter 18 will show you how to deploy your web application to Heroku, one of

the leading Platform as a Service (PAAS) providers. This will allow you to present your

application to the world quickly and easily so you can start building a user base.

Finally, the three appendices cover using SQLite and some basic SQL, where to find

help in the Rails community, and some basics for working with the Git version control

system.

WhaT Is ThIs book abouT?

1
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_1

CHAPTER 1

Introducing the Rails
Framework
Rails is a web application framework for the Ruby programming language. Rails is well

thought out and practical: it will help you build powerful websites quickly, with code

that’s clean and easy to maintain.

The goal of this book is to give you a thorough and complete understanding of how

to build dynamic web applications with Rails. This means more than just showing you

how to use the specific features and facilities of the framework, and more than just

giving you a working knowledge of the Ruby language. Rails is quite a bit more than

just another tool: it represents a way of thinking. To completely understand Rails, it’s

essential that you know about its underpinnings, its culture and aesthetics, and its

philosophy of web development.

If you haven’t heard it already, you’re sure to notice the phrase “the Rails way”

cropping up every now and again. It echoes a familiar phrase that has been floating

around the Ruby community for a number of years: “the Ruby way.” The Rails way

is usually the easiest way—the path of least resistance, if you will. This isn’t to say

that you can’t do things your way, nor is it meant to suggest that the framework

is constraining. It simply means that if you choose to go off the beaten path, you

shouldn’t expect Rails to make it easy for you. If you’ve been around the UNIX circle

for any length of time, you may think this idea bears some resemblance to the UNIX

mantra: “Do the simplest thing that could possibly work.” You’re right. This chapter’s

aim is to introduce you to the Rails way.

https://doi.org/10.1007/978-1-4842-5716-6_1#DOI

2

 The Rise and Rise of the Web Application
Web applications are extremely important in today’s world. Almost everything we do

today involves web applications. We increasingly rely on the Web for communication,

news, shopping, finance, and entertainment; we use our phones to access the Web more

than we actually make phone calls! As connections get faster and as broadband adoption

grows, web-based software and similarly networked client or server applications are

poised to displace software distributed by more traditional (read, outdated) means.

For consumers, web-based software affords greater convenience, allowing us to do

more from more places. Web-based software works on every platform that supports a

web browser (which is to say all of them), and there’s nothing to install or download. And

if Google’s stock value is any indication, web applications are really taking off.

All over the world, people are waking up to the new Web and the beauty of being web

based. From email and calendars, photos, and videos to bookmarking, banking, and

bidding, we’re living increasingly inside the browser.

Due to the ease of distribution, the pace of change in the web-based software market

is fast. Unlike traditional software, which must be installed on each individual computer,

changes in web applications can be delivered quickly, and features can be added

incrementally. There’s no need to spend months or years perfecting the final version

or getting in all the features before the launch date. Instead of spending months on

research and development, you can go into production early and refine in the wild, even

without all the features in place.

Can you imagine having a million CDs pressed and shipped, only to find a bug in

your software as the FedEx truck is disappearing into the sunset? That would be an

expensive mistake! Software distributed this way takes notoriously long to get out the

door because before a company ships a product, it needs to be sure the software is bug

free. Of course, there’s no such thing as bug-free software, and web applications aren’t

immune to these unintended features. But with a web application, bug fixes are easy to

deploy.

When a fix is pushed to the server hosting the web application, all users get the

benefit of the update at the same time, usually without any interruption in service. That’s

a level of quality assurance you can’t offer with store-bought software. There are no

service packs to tirelessly distribute and no critical updates to install. A fix is often only a

browser refresh away. And as a side benefit, instead of spending large amounts of money

and resources on packaging and distribution, software developers are free to spend more

time on quality and innovation.

Chapter 1 IntroduCIng the raIls Framework

3

Web-based software has the following advantages:

• Easier to distribute

• Easier to deploy

• Easier to maintain

• Platform independent

• Accessible from anywhere

 The Web Isn’t Perfect
As great a platform as the Web is, it’s also fraught with constraints. One of the biggest

problems is the browser itself. When it comes to browsers, there are several contenders,

each of which has a slightly different take on how to display the contents of a web page.

Although there has been movement toward unification and the state of standards

compliance among browsers is steadily improving, there is still much to be desired. Even

today, it’s nearly impossible to achieve 100% cross-browser compatibility. Something

that works in Internet Explorer doesn’t necessarily work in Firefox, and vice versa.

This lack of uniformity makes it difficult for developers to create truly cross-platform

applications, as well as harder for users to work in their browser of choice.

Browser issues aside, perhaps the biggest constraint facing web development is its

inherent complexity. A typical web application has dozens of moving parts: protocols

and ports, the HTML and Cascading Style Sheets (CSS), the database and the server,

the designer and the developer, and a multitude of other players, all conspiring toward

complexity.

Despite these problems, the new focus on the Web as a platform means the field of web

development is evolving rapidly and quickly overcoming obstacles. As it continues to mature,

the tools and processes that have long been commonplace in traditional, client-side software

development are beginning to make their way into the world of web development.

 Why Use a Framework?
Among the tools making their way into the world of web development is the framework.

A framework is a collection of libraries and tools intended to facilitate development.

Designed with productivity in mind, a good framework provides a basic but complete

infrastructure on top of which to build an application.

Chapter 1 IntroduCIng the raIls Framework

4

Having a good framework is a lot like having a chunk of your application already

written for you. Instead of having to start from scratch, you begin with the foundation in

place. If a community of developers uses the same framework, you have a community

of support when you need it. You also have greater assurance that the foundation

you’re building on is less prone to pesky bugs and vulnerabilities, which can slow the

development process.

A good web framework can be described as follows:

• Full stack: Everything you need for building complete applications

should be included in the box. Having to install various libraries or

configure multiple components is a drag. The different layers should

fit together seamlessly.

• Open source: A framework should be open source, preferably

licensed under a liberal, free-as-in-free license like the Berkeley

Software Distribution (BSD) or that of the Massachusetts Institute of

Technology (MIT).

• Cross-platform: A good framework is platform independent. The

platform on which you decide to work is a personal choice. Your

framework should remain as neutral as possible.

A good web framework provides you with the following:

• A place for everything: Structure and convention drive a good

framework. In other words, unless a framework offers a good

structure and a practical set of conventions, it’s not a very good

framework. Everything should have a proper place within the system;

this eliminates guesswork and increases productivity.

• A database abstraction layer: You shouldn’t have to deal with the

low-level details of database access, nor should you be constrained to a

particular database engine. A good framework takes care of most of the

database grunt work for you, and it works with almost any database.

• A culture and aesthetic to help inform programming decisions: Rather

than seeing the structure imposed by a framework as constraining,

see it as liberating. A good framework encodes its opinions, gently

guiding you. Often, difficult decisions are made for you by virtue

of convention. The culture of the framework helps you make fewer

menial decisions and helps you focus on what matters most.

Chapter 1 IntroduCIng the raIls Framework

5

 Why Choose Rails?
Rails is a best-of-breed framework for building web applications. It’s complete, open

source, and cross-platform. It provides a powerful database abstraction layer called

Active Record, which works with all popular database systems. It ships with a sensible set

of defaults and provides a well-proven, multilayer system for organizing program files

and concerns.

Above all, Rails is opinionated software. It has a philosophy of the art of web

development that it takes very seriously. Fortunately, this philosophy is centered on

beauty and productivity. You’ll find that as you learn Rails, it actually makes writing web

applications pleasurable.

Originally created by David Heinemeier Hansson, Rails was extracted from

Basecamp, a successful web-based project management tool. The first version, released

in July 2004, of what is now the Rails framework, was extracted from a real-world,

working application: Basecamp, by 37signals. The Rails creators took away all the

Basecamp-specific parts, and what remained was Rails.

Because it was extracted from a real application and not built as an ivory tower

exercise, Rails is practical and free of needless features. Its goal as a framework is to

solve 80% of the problems that occur in web development, assuming that the remaining

20% are problems that are unique to the application’s domain. It may be surprising

that as much as 80% of the code in an application is infrastructure, but it’s not as far-

fetched as it sounds. Consider all the work involved in application construction, from

directory structure and naming conventions to the database abstraction layer and the

maintenance of state.

Rails has specific ideas about directory structure, file naming, data structures,

method arguments, and, well, nearly everything. When you write a Rails application,

you’re expected to follow the conventions that have been laid out for you. Instead of

focusing on the details of knitting the application together, you get to focus on the 20%

that really matters.

Since 2004, Rails has come a long way. The Rails team continues to update the

framework to support the latest technologies and methodologies available. You’ll find

that as you use Rails, it’s obvious that the core team has kept the project at the forefront

of web technology. The Rails 6 release proves its maturity; gone are the days of radical,

sweeping changes. Instead, the newest version of Rails makes a few incremental

improvements to maintain relevancy and facilitate common needs.

Chapter 1 IntroduCIng the raIls Framework

6

 Rails Is Ruby
There are a lot of programming languages out there. You’ve probably heard of many of

them. C, C#, Lisp, Java, Smalltalk, PHP, and Python are popular choices. And then there

are others you’ve probably never heard of: Haskell, IO, and maybe even Ruby. Like

the others, Ruby is a programming language. You use it to write computer programs,

including, but certainly not limited to, web applications.

Before Rails came along, not many people were writing web applications with Ruby.

Other languages like PHP and Active Server Pages (ASP) were the dominant players in

the field, and a large part of the Web is powered by them. The fact that Rails uses Ruby is

significant because Ruby is considerably more expressive and flexible than either PHP

or ASP. This makes developing web applications not only easy but also a lot of fun. Ruby

has all the power of other languages, but it was built with the main goal of developer

happiness.

Ruby is a key part of the success of Rails. Rails uses Ruby to create what’s called a

domain-specific language (DSL). Here, the domain is that of web development; when

you’re working in Rails, it’s almost as if you’re writing in a language that was specifically

designed to construct web applications—a language with its own set of rules and

grammar. Rails does this so well that it’s sometimes easy to forget that you’re writing

Ruby code. This is a testimony to Ruby’s power, and Rails takes full advantage of Ruby’s

expressiveness to create a truly beautiful environment.

For many developers, Rails is their introduction to Ruby—a language with a

following before Rails that was admittedly small at best, at least in the West. Although

Ruby had been steadily coming to the attention of programmers outside Japan, the Rails

framework brought Ruby to the mainstream.

Invented by Yukihiro Matsumoto in 1994, it’s a wonder Ruby remained shrouded in

obscurity as long as it did. As far as programming languages go, Ruby is among the most

beautiful. Interpreted and object oriented, elegant, and expressive, Ruby is truly a joy

to work with. A large part of Rails’ grace is due to Ruby and to the culture and aesthetics

that permeate the Ruby community. As you begin to work with the framework, you’ll

quickly learn that Ruby, like Rails, is rich with idioms and conventions, all of which make

for an enjoyable, productive programming environment.

In summary, Ruby can be described as follows:

• An interpreted, object-oriented scripting language

• Elegant, concise syntax

Chapter 1 IntroduCIng the raIls Framework

7

• Powerful metaprogramming features

• Well suited as a host language for creating DSLs

This book includes a complete Ruby primer. If you want to get a feel for what Ruby

looks like now, skip to Chapter 3 and take a look. Don’t worry if Ruby seems a little

unconventional at first. You’ll find it quite readable, even if you’re not a programmer. It’s

safe to follow along in this book learning it as you go and referencing Chapter 3 when you

need clarification. If you’re looking for a more in-depth guide, Peter Cooper has written a

fabulous book titled Beginning Ruby: From Novice to Professional, Third Edition (Apress,

2016). You’ll also find the Ruby community more than helpful in your pursuit of the

language. Be sure to visit http://ruby-lang.org for a wealth of Ruby-related resources.

 Rails Encourages Agility
Web applications aren’t traditionally known for agility. They have a reputation of being

difficult to work with and a nightmare to maintain. It’s perhaps in response to this

diagnosis that Rails came onto the scene, helping to usher in a movement toward agile

programming methodologies in web development. Rails advocates and assists in the

achievement of the following basic principles of software development:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

So reads the Agile Manifesto,1 which was the result of a discussion among 17

prominent figures (including Dave Thomas, Andy Hunt, and Martin Fowler) in the field

of what was then called “lightweight methodologies” for software development. Today,

the Agile Manifesto is widely regarded as the canonical definition of agile development.

Rails was designed with agility in mind, and it takes each of the agile principles to

heart almost obsessively. With Rails, you can respond to the needs of customers quickly

and easily, and Rails works well during collaborative development. Rails accomplishes

this by adhering to its own set of principles, all of which help make agile development

possible.

1 http://agilemanifesto.org

Chapter 1 IntroduCIng the raIls Framework

http://ruby-lang.org
http://agilemanifesto.org

8

Dave Thomas and Andy Hunt’s seminal work on the craft of programming, The

Pragmatic Programmer (Addison Wesley, 1999), reads almost like a road map for Rails.

Rails follows the don’t repeat yourself (DRY) principle, the concepts of rapid prototyping,

and the you ain’t gonna need it (YAGNI) philosophy. Keeping important data in

plain text, using convention over configuration, bridging the gap between customer

and programmer, and, above all, postponing decisions in anticipation of change are

institutionalized in Rails. These are some of the reasons that Rails is such an apt tool for

agile development, and it’s no wonder that one of the earliest supporters of Rails was

Dave Thomas himself.

The sections that follow take you on a tour through some of Rails mantras and,

in doing so, demonstrate how well suited Rails is for agile development. Although we

want to avoid getting too philosophical, some of these points are essential to grasp what

makes Rails so important.

 Less Software

One of the central tenets of Rails’ philosophy is the notion of less software. What does

less software mean? It means using convention over configuration, writing less code, and

doing away with things that needlessly add to the complexity of a system. In short, less

software means less code, less complexity, and fewer bugs.

 Convention over Configuration

Convention over configuration means that you need to define only configuration that is

unconventional.

Programming is all about making decisions. If you were to write a system from

scratch, without the aid of Rails, you’d have to make a lot of decisions: how to organize

your files, what naming conventions to adopt, and how to handle database access are

only a few. If you decided to use a database abstraction layer, you would need to sit down

and write it or find an open source implementation that suited your needs. You’d need to

do all this before you even got down to the business of modeling your domain.

Rails lets you start right away by encompassing a set of intelligent decisions about

how your program should work and alleviating the amount of low-level decision making

you need to do up front. As a result, you can focus on the problems you’re trying to solve

and get the job done more quickly.

Chapter 1 IntroduCIng the raIls Framework

9

Rails ships with almost no configuration files. If you’re used to other frameworks, this

fact may surprise you. If you’ve never used a framework before, you should be surprised.

In some cases, configuring a framework is nearly half the work.

Instead of configuration, Rails relies on common structures and naming

conventions, all of which employ the often-cited principle of least surprise (POLS).

Things behave in a predictable, easy-to-decipher way. There are intelligent defaults

for nearly every aspect of the framework, relieving you from having to explicitly tell the

framework how to behave. This isn’t to say that you can’t tell Rails how to behave: most

behaviors can be customized to your liking and to suit your particular needs. But you’ll

get the most mileage and productivity out of the defaults, and Rails is all too willing to

encourage you to accept the defaults and move on to solving more interesting problems.

Although you can manipulate most things in the Rails setup and environment, the

more you accept the defaults, the faster you can develop applications and predict how

they will work. The speed with which you can develop without having to do any explicit

configuration is one of the key reasons why Rails works so well. If you put your files in the

right place and name them according to the right conventions, things just work. If you’re

willing to agree to the defaults, you generally have less code to write.

The reason Rails does this comes back to the idea of less software. Less software

means making fewer low-level decisions, which makes your life as a web developer a lot

easier. And easier is a good thing.

 Don’t Repeat Yourself

Rails is big on the DRY principle, which states that information in a system should be

expressed in only one place.

For example, consider database configuration parameters. When you connect to

a database, you generally need credentials, such as a username, a password, and the

name of the database you want to work with. It may seem acceptable to include this

connection information with each database query, and that approach holds up fine if

you’re making only one or two connections. But as soon as you need to make more than

a few connections, you end up with a lot of instances of that username and password

littered throughout your code. Then, if your username and password for the database

change, you have to do a lot of finding and replacing. It’s a much better idea to keep

the connection information in a single file, referencing it as necessary. That way, if the

credentials change, you need to modify only a single file. That’s what the DRY principle

is all about.

Chapter 1 IntroduCIng the raIls Framework

10

The more duplication exists in a system, the more room bugs have to hide. The more

places the same information resides, the more there is to be modified when a change is

required, and the harder it becomes to track these changes.

Rails is organized so it remains as DRY as possible. You generally specify information

in a single place and move on to better things.

 Rails Is an Opinionated Software
Frameworks encode opinions. It should come as no surprise then that Rails has strong

opinions about how your application should be constructed. When you’re working on

a Rails application, those opinions are imposed on you, whether you’re aware of it or

not. One of the ways that Rails makes its voice heard is by gently (sometimes forcefully)

nudging you in the right direction. We mentioned this form of encouragement when we

talked about convention over configuration. You’re invited to do the right thing by virtue

of the fact that doing the wrong thing is often more difficult.

Ruby is known for making certain programmatic constructs look more natural by

way of what’s called syntactic sugar. Syntactic sugar means the syntax for something is

altered to make it appear more natural, even though it behaves the same way. Things

that are syntactically correct but otherwise look awkward when typed are often treated to

syntactic sugar.

Rails has popularized the term syntactic vinegar. Syntactic vinegar is the exact

opposite of syntactic sugar: awkward programmatic constructs are discouraged by

making their syntax look sour. When you write a snippet of code that looks bad, chances

are it is bad. Rails is good at making the right thing obvious by virtue of its beauty and the

wrong thing equally obvious by virtue of ugliness.

You can see Rails’ opinion in the things it does automatically, the ways it encourages

you to do the right thing, and the conventions it asks you to accept. You’ll find that Rails

has an opinion about nearly everything related to web application construction: how you

should name your database tables, how you should name your fields, which database

and server software to use, how to scale your application, what you need, and what is a

vestige of web development’s past. If you subscribe to its worldview, you’ll get along with

Rails quite well.

Like a programming language, a framework needs to be something you’re comfortable

with—something that reflects your personal style and mode of working. It’s often said

in the Rails community that if you’re getting pushback from Rails, it’s probably because

Chapter 1 IntroduCIng the raIls Framework

11

you haven’t experienced enough pain from doing web development the old- school way.

This isn’t meant to deter developers; rather, it means that in order to truly appreciate

Rails, you may need a history lesson in the technologies from whose ashes Rails has risen.

Sometimes, until you’ve experienced the hurt, you can’t appreciate the cure.

 Rails Is Open Source
The Rails culture is steeped in open source tradition. The Rails source code is, of course,

open. And it’s significant that Rails is licensed under the MIT license, arguably one of the

most “free” software licenses in existence.

Rails also advocates the use of open source tools and encourages the collaborative

spirit of open source. The code that makes up Rails is 100% free and can be downloaded,

modified, and redistributed by anyone at any time. Moreover, anyone is free to submit

patches for bugs or features, and hundreds of people from all over the world have

contributed to the project over the past nine years.

You’ll probably notice that a lot of Rails developers use Macs. The Mac is clearly the

preferred platform of many core Rails team developers, and most Rails developers are

using UNIX variants (of which macOS is one). Although there is a marked bias toward

UNIX variants when it comes to Rails developers, make no mistake; Rails is truly cross-

platform. With a growing number of developers using Rails in a Windows environment,

Rails has become easy to work with in all environments. It doesn’t matter which

operating system you choose: you’ll be able to use Rails on it. Rails doesn’t require any

special editor or Integrated Development Environment (IDE) to write code. Any text

editor is fine, as long as it can save files in plain text. The Rails package even includes a

built-in, stand-alone web server called Puma, so you don’t need to worry about installing

and configuring a web server for your platform. When you want to run your Rails

application in development mode, simply start up the built-in server and open your web

browser. Why should it be more difficult than that?

The next chapter takes you step by step through the relatively painless procedure

of installing Rails and getting it running on your system. But before you go there, and

before you start writing your first application, let’s talk about how the Rails framework is

architected. This is important because, as you will see in a minute, it has a lot to do with

how you organize your files and where you put them. Rails is a subset of a category of

frameworks named for the way in which they divide the concerns of program design: the

model-view-controller (MVC) pattern. Not surprisingly, the MVC pattern is the topic of

our next section.

Chapter 1 IntroduCIng the raIls Framework

12

 Rails Is Mature
You may have heard murmurs that “Rails is dead.” You may have seen graphs that show

the popularity of Rails declining. Don’t let that worry you! Though other frameworks

may be trendier, don’t assume that means they are better. Rails is still highly effective for

building modern web applications and has the benefit of having proved its effectiveness

for years. Rails has entered adulthood.

 A High-Level Overview of Rails
Rails employs a time-honored and well-established architectural pattern that advocates

dividing application logic and labor into three distinct categories: the model, view,

and controller. In the MVC pattern, the model represents the data, the view represents

the user interface, and the controller directs all the action. The real power lies in the

combination of the MVC layers, which Rails handles for you. Place your code in the right

place and follow the naming conventions, and everything should fall into place.

Each part of the MVC—the model, view, and controller—is a separate entity, capable

of being engineered and tested in isolation. A change to a model need not affect the

views; likewise, a change to a view should have no effect on the model. This means

changes in an MVC application tend to be localized and low impact, easing the pain of

maintenance considerably while increasing the level of reusability among components.

Contrast this to the situation that occurs in a highly coupled application that mixes

data access, business logic, and presentation code (PHP, we’re looking at you). Some

folks call this spaghetti code because of its striking resemblance to a tangled mess. In

such systems, duplication is common, and even small changes can produce large ripple

effects. MVC was designed to help solve this problem.

MVC isn’t the only design pattern for web applications, but it’s the one Rails has

chosen to implement. And it turns out that it works great for web development. By

separating concerns into different layers, changes to one don’t have an impact on the

others, resulting in faster development cycles and easier maintenance.

Chapter 1 IntroduCIng the raIls Framework

13

 The MVC Cycle
Although MVC comes in different flavors, control flow generally works as follows (Figure 1-1):

• The user interacts with the interface and triggers a request to the

server (e.g., submits a registration form).

• The server routes the request to a controller, passing any data that

was sent by the user’s request.

• The controller may access one or more models, perhaps

manipulating and saving the data in some way (e.g., by creating a

new user with the form data).

• The controller invokes a view template that creates a response to the

user’s request, which is then sent to back to the user (e.g., a welcome

screen).

• The interface waits for further interaction from the user, and the cycle

repeats.

Figure 1-1. The MVC cycle

Chapter 1 IntroduCIng the raIls Framework

14

If the MVC concept sounds a little involved, don’t worry. Although entire books have

been written on this pattern and people will argue over its purest implementation for all

time, it’s easy to grasp, especially the way Rails does MVC.

Next, we’ll take a quick tour through each letter in the MVC and then learn how Rails

handles it.

 The Layers of MVC
The three layers of the MVC pattern work together as follows:

• Model: The information the application works with

• View: The visual representation of the user interface

• Controller: The director of interaction between the model and the view

 Models

In Rails, the model layer represents the database. Although we call the entire layer

the model, Rails applications are usually made up of several individual models, each

of which (usually) maps to a database table. For example, a model called User, by

convention, would map to a table called users. The User model assumes responsibility

for all access to the users table in the database, including creating, reading, updating,

and deleting rows. So, if you want to work with the table and, say, search for someone by

name, you do so through the model, like this:

User.find_by name: 'Linus'

This snippet, although very basic, searches the users table for the first row with the

value Linus in the name column and returns the results. To achieve this, Rails uses its

built-in database abstraction layer, Active Record. Active Record is a powerful library;

needless to say, this is only a small portion of what you can do with it.

Chapters 5 and 6 will give you an in-depth understanding of Active Record and

what you can expect from it. For the time being, the important thing to remember is that

models represent data. All rules for data access, associations, validations, calculations,

and routines that should be executed before and after save, update, or destroy operations

are neatly encapsulated in the model. Your application’s world is populated with Active

Record objects: single ones, lists of them, new ones, and old ones. And Active Record lets

you use Ruby language constructs to manipulate all of them, meaning you get to stick to

one language for your entire application.

Chapter 1 IntroduCIng the raIls Framework

15

 Controllers

For the discussion here, let’s rearrange the MVC acronym and put the C before the V.

As you’ll see in a minute, in Rails, controllers are responsible for rendering views, so it

makes sense to introduce them first.

Controllers are the conductors of an MVC application. In Rails, controllers accept

requests from the outside world, perform the necessary processing, and then pass control

to the view layer to display the results. It’s the controller’s job to field web requests, like

processing server variables and forming data, asking the model for information, and

sending information back to the model to be saved in the database. It may be a gross

oversimplification, but controllers generally perform a request from the user to create,

read, update, or delete a model object. You see these words a lot in the context of Rails,

most often abbreviated as CRUD. In response to a request, the controller typically

performs a CRUD operation on the model, sets up variables to be used in the view, and

then proceeds to render or redirect to another action after processing is complete.

Controllers typically manage a single area of an application. For example, in a recipe

application, you probably have a controller just for managing recipes. Inside the recipes

controller, you can define what are called actions. Actions describe what a controller

can do. If you want to be able to create, read, update, and delete recipes, you create

appropriately named actions in the recipes controller. A simple recipes controller would

look something like this:

class RecipesController < ApplicationController

 def index

 # logic to list all recipes

 end

 def show

 # logic to show a particular recipe

 end

 def create

 # logic to create a new recipe

 end

 def update

 # logic to update a particular recipe

 end

Chapter 1 IntroduCIng the raIls Framework

16

 def destroy

 # logic to delete a particular recipe

 end

end

Of course, if you want this controller to do anything, you need to put some

instructions inside each action. When a request comes into your controller, it uses a URL

parameter to identify the action to execute; and when it’s done, it sends a response to the

browser. The response is what you look at next.

 Views

The view layer in the MVC forms the visible part of the application. In Rails, views are the

templates that (most of the time) contain HTML markup to be rendered in a browser. It’s

important to note that views are meant to be free of all but the simplest programming

logic. Any direct interaction with the model layer should be delegated to the controller

layer, to keep the view clean and decoupled from the application’s business logic.

Generally, views have the responsibility of formatting and presenting model

objects for output on the screen, as well as providing the forms and input boxes that

accept model data, such as a login box with a username and password or a registration

form. Rails also provides the convenience of a comprehensive set of helpers that make

connecting models and views easier, such as being able to prepopulate a form with

information from the database or the ability to display error messages if a record fails any

validation rules, such as required fields.

You’re sure to hear this eventually if you hang out in Rails circles: a lot of folks

consider the interface to be the software. We agree with them. Because the interface is

all the user sees, it’s the most important part. Whatever the software is doing behind the

scenes, the only parts that an end user can relate to are the parts they see and interact

with. The MVC pattern helps by keeping programming logic out of the view. With this

strategy in place, programmers get to deal with code, and designers get to deal with

templates called ERb (Embedded Ruby). These templates take plain HTML and use

Ruby to inject the data and view specific logic as needed. Designers will feel right at

home if they are familiar with HTML. Having a clean environment in which to design the

HTML means better interfaces and better software.

Chapter 1 IntroduCIng the raIls Framework

17

 The Libraries That Make Up Rails
Rails is a collection of libraries, each with a specialized task. Assembled together, these

individual libraries make up the Rails framework. Of the several libraries that compose

Rails, three map directly to the MVC pattern:

• Active Record: A library that handles database abstraction and

interaction.

• Action View: A templating system that generates the HTML

documents the visitor gets back as a result of a request to a Rails

application.

• Action Controller: A library for manipulating both application flow

and the data coming from the database on its way to being displayed

in a view.

These libraries can be used independently of Rails and of one another. Together, they

form the Rails MVC development stack. Because Rails is a full-stack framework, all the

components are integrated, so you don’t need to set up bridges among them manually.

 Rails Is Modular
One of the great features of Rails is that it was built with modularity in mind from the

ground up. Although many developers appreciate the fact that they get a full stack,

you may have your own preferences in libraries, either for database access, template

manipulation, or JavaScript libraries. As we describe Rails features, we mention

alternatives to the default libraries that you may want to pursue as you become more

familiar with Rails’ inner workings.

 Rails Is No Silver Bullet
There is no question that Rails offers web developers a lot of benefits. After using Rails,

it’s hard to imagine going back to web development without it. Fortunately, it looks like

Rails will be around for a long time, so there’s no need to worry. But it brings us to an

important point.

Chapter 1 IntroduCIng the raIls Framework

18

As much as we’ve touted the benefits of Rails, it’s important for you to realize that

there are no silver bullets in software design. No matter how good Rails gets, it will never

be all things to all people, and it will never solve all problems. Most important, Rails

will never replace the role of the developer. Its purpose is to assist developers in getting

their job done. Impressive as it is, Rails is merely a tool, which when used well can yield

amazing results. It’s our hope that as you continue to read this book and learn how to

use Rails, you’ll be able to leverage its strength to deliver creative and high-quality

web- based software.

 Summary
This chapter provided an introductory overview of the Rails landscape, from the growing

importance of web applications to the history, philosophy, evolution, and architecture of

the framework. You learned about the features of Rails that make it ideally suited for agile

development, including the concepts of less software, convention over configuration,

and DRY. Finally, you learned the basics of the MVC pattern and received a primer on

how Rails does MVC.

With all this information under your belt, it’s safe to say you’re ready to get up and

running with Rails. The next chapter walks you through the Rails installation so you can

try it for yourself and see what all the fuss is about. You’ll be up and running with Rails in

no time.

Chapter 1 IntroduCIng the raIls Framework

19
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_2

CHAPTER 2

Getting Started
For various reasons, Rails has gained an undeserved reputation of being difficult to

install. This chapter dispels this myth. The truth is that installing Rails is relatively easy

and straightforward, provided you have all the right ingredients. The chapter begins with

an overview of what you need to get Rails up and running and then provides step-by- step

instructions for the installation. Finally, you’ll start your first Rails application.

 An Overview of Rails Installation
The main ingredient you need for Rails is, of course, Ruby. Some systems, such as macOS,

come with Ruby preinstalled, but it’s often outdated. To make sure you have the best

experience with this book, it’s best if you start from a clean slate, so you’ll install it. After

you have Ruby installed, you can install a package manager (a program designed to help

you install and maintain software on your system) called RubyGems. You use that to

install Rails.

If you’re a Ruby hacker and already have Ruby and RubyGems installed on your

computer, Rails is ridiculously easy to get up and running. Because it’s packaged as a

gem, you can install it with a single command:

> gem install rails

That’s all it comes down to—installing Rails is a mere one-liner. The key is in having

a working installation of Ruby and RubyGems. Before you get there, though, you need

one other ingredient to use Rails: a database server.

As you’re well aware by now, Rails is specifically meant for building web

applications. Well, it’s a rare web application that isn’t backed by a database. Rails is

so sure you’re using a database for your application that it’s downright stubborn about

working nicely without one. Although Rails works with nearly every database out there,

in this chapter you use one called SQLite. SQLite is open source, easy to install, and

incredibly easy to develop with. Perhaps that’s why it’s the default database for Rails.

https://doi.org/10.1007/978-1-4842-5716-6_2#ESM

20

Rails 6 introduces the use of webpack for processing CSS and JS files. This also means

we’ll need to install Node.js to run JavaScript on the server and Yarn to manage our

JavaScript dependencies.

You start by installing Ruby and RubyGems, and you use the magical one-liner to

install Rails. Then, you install SQLite, Node.js, and Yarn and make sure they are working

properly. Here are the steps in order:

 1. Install Ruby.

 2. Install Rails.

 3. Install SQLite.

 4. Install Node.js.

 5. Install Yarn.

Before you begin, note that the “many ways to skin a cat” adage applies to Rails

installation. Just as the Rails stack runs on many platforms, there are as many ways to

install it. This chapter describes what we feel is the easiest and most reliable way to

install Rails for your platform. You go about the process differently for macOS, Linux, and

Windows, but they all amount to the same thing.

No matter which platform you’re using, you need to get familiar with the

command line. This likely isn’t a problem for the Linux crowd, but it’s possible that

some macOS users and certainly many Windows users don’t have much experience

with it. If you’re using macOS, you can find a terminal emulator in /Applications/

Utilities/Terminal.app. If you’re on Windows, you can open a command prompt

by clicking Start, typing cmd, and clicking “Command Prompt.” Note that you’ll use the

command line extensively in your travels with Rails. A growing number of IDEs make

developing applications with Rails even simpler, and they completely abstract the use

of a command-line tool; but stick to the command line to make sure you grasp all the

concepts behind many commands. If you later decide to use an IDE such as JetBrains’

RubyMine, you’ll have a great understanding of Rails and will understand even better

where the IDE is speeding up your work.

Also, a quick note for macOS users: If you’re using a Mac and would prefer to use a

package manager such as Fink or MacPorts, the Linux instructions will prove useful.

Go ahead and flip to the section that describes your platform (macOS, Windows, or

Linux), and let’s begin.

Chapter 2 GettinG Started

21

 Installing on macOS Catalina
You’d think that given the prevalence of macOS among Rails developers, installing

Rails on macOS would be easy. And you’d be correct. First, we need to install Apple’s

Developer Tools so that we can compile packages. Note that SQLite is preinstalled on

macOS, so that’s one thing we don’t need to worry about.

 Installing the Command Line Tools for Xcode
Some RubyGems you may need in the future require compilation, so you’ll need to

install a compiler. Apple’s Command Line Tools for Xcode includes a compiler and

provides the easiest way to set up a development environment on your Mac. Run the

following command:

> xcode-select --install

Follow the prompts to continue installation.

 Installing Homebrew
For this next piece, you’ll need to dig into the terminal a bit, but don’t worry, we’ll guide

you through it. Homebrew is a great package manager for macOS that is written in

Ruby no less. It will help you to install the other pieces you’ll need as you go. To install

Homebrew, enter the following command into the terminal (Applications ➤ Utilities ➤

Terminal):

> ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/

master/install)"

 Installing RVM
Now you’ll need to install a common Ruby tool called the Ruby Version Manager (RVM).

It helps you manage versions of Ruby and various gems that you may use for projects. Its

install is just as simple as Homebrew. It’s just one command:

> \curl -sSL https://get.rvm.io | bash -s stable --ruby

Chapter 2 GettinG Started

22

You can test to see if Ruby is installed correctly by asking Ruby for its version number:

> ruby --version

 ruby 2.6.5p114 (2019-10-01 revision 67812) [x86_64-darwin19]

If your output isn’t exactly like this, don’t panic. Ruby is often updated with new

security patches and features, but it should at least say Ruby 2.5.0 in order to support

Rails 6.

 Installing Rails
To install Rails, use the command line:

> gem install rails -v '~> 6.0.2'

The "-v '~> 6.0.2'" part of the command ensures you'll get the most recent

version of Rails 6.0.

That’s it! Rails is installed. Let’s check the version to make sure everything went well:

> rails -v

Rails 6.0.2.1

Again, if your output isn’t exactly like this, don’t panic. Quite likely a newer version of

Rails 6.0 has been released. But to ensure compatibility with this book, please make sure

your version number begins with 6.0.

 Installing Node.js
To install Node.js, use the command line:

> brew install node

To verify Node.js installation succeeded, issue the following command:

> node --version

Chapter 2 GettinG Started

23

If everything went well, you should see output that includes something like

v13.2.0

 Installing Yarn
To install Yarn, we’ll use npm, the Node.js package manager, which was installed for you

when you installed Node.js:

> npm install -g yarn

To verify Yarn installation succeeded, issue the following command:

> yarn --version

If everything went well, you should see output that includes something like

1.21.0

Great! Ruby, Rails, SQLite, Node.js, and Yarn are installed and working correctly.

 Installing on Windows
Installation on Windows is easy thanks to installer packages. You start by installing Ruby.

 Installing Ruby
Installing Ruby on Windows is marvelously easy thanks largely to the one-click installer

for Ruby. You can read more and download the installer from its website: http://

rubyinstaller.org/.

The latest version of the installer at the time of this writing is Ruby 2.6.5-1. While a

newer version of Ruby would probably still be compatible with Rails 6.0 and the code in

this book, a safer bet would be to install the most recent stable Ruby 2.6 version.

Chapter 2 GettinG Started

http://rubyinstaller.org/
http://rubyinstaller.org/

24

After you’ve downloaded the installer, start the installation by double-clicking

its icon. What follows is standard installer fare, and the defaults are sufficient for

your purposes. When you select the location where you want to put Ruby (usually

C:\Ruby26-x64), as shown in Figure 2-1, select the “Add Ruby executables to your

PATH” checkbox; the installer takes care of the rest. You have a fully functioning Ruby

installation in minutes.

Figure 2-1. Ruby installer for Windows

When the installer is finished, you can test to see if Ruby is working and that your

environment is correctly configured by opening your command prompt and asking Ruby

its version number:

> ruby --version

ruby 2.6.5p114 (2019-10-01 revision 67812) [x64-mingw32]

Chapter 2 GettinG Started

25

 Installing Rails
You’ll be pleased to know that Ruby 2.6 comes bundled with RubyGems, a package

management system for Ruby (http://rubygems.org), which makes installing Ruby

libraries, utilities, and programs a breeze. This includes Rails installation.

First, let’s update RubyGems and its sources list. Open your command prompt and

issue the following gem command:

> gem update –system

Now, to install Rails, issue the following gem command in your command prompt:

> gem install rails -v '~> 6.0.2'

The “-v ‘~> 6.0.2’” part of the command ensures that the most recent version of Rails

6.0 is installed—important for making sure you can follow along with this book. Be

forewarned that the gem command can take some time. Don’t be discouraged if it seems

to be sitting there doing nothing for a few minutes; it’s probably updating its index file.

RubyGems searches for gems in its remote repository (https://rubygems.org), so you

need to be connected to the Internet for this command to work.

After spitting out some text to the screen and generally chugging away for a few

minutes, the gem program should exit with something like the following before dumping

you back at the command prompt:

Successfully installed rails-6.0.2.1

That’s all there is to it! The one-click installer takes care of most of the work by

installing and configuring Ruby; and because Rails is distributed as a RubyGem,

installing it is a simple one-liner.

You can double-check that Rails was installed successfully by issuing the rails -v

command at the command prompt:

> rails -v

Rails 6.0.2.1

Chapter 2 GettinG Started

http://rubygems.org
https://rubygems.org

26

 Installing SQLite
To install SQLite on Windows, visit the SQLite website (www.sqlite.org/download.

html), find the “Precompiled Binaries for Windows” section, and download the two

files you’ll need: the “sqlite-tools-*.zip” file and the “sqlite-dll-*.zip” file which matches

your system—either the 32-bit (x86) version or the 64-bit (x64) version. (Most relatively

modern computers should be x64 instead of x86. If unsure, open the “About your PC”

program, and look at “Device specifications ➤ System type.” For Windows versions other

than Windows 10, you might need to use your favorite search engine to learn how to

determine this). For example, the following is for our x64 system:

www.sqlite.org/2019/sqlite-dll-win64-x64-3300100.zip

www.sqlite.org/2019/sqlite-tools-win32-x86-3300100.zip

Note that the version number may be different by the time you read this. Unzip the

zip files, and move their contents to the Ruby bin directory created by the preceding ruby

installation step—in our case, C:\Ruby26-x64\bin. When you’re done, you can test that you’ve

correctly installed SQLite by issuing the following command from the command prompt:

> sqlite3 --version

3.30.1 2019-10-10 20:19:45

18db032d058f1436ce3dea84081f4ee5a0f2259ad97301d43c426bc7f3df1b0b

Now that you’ve installed SQLite, let’s install its Ruby binding—a Ruby library that

allows you to talk with SQLite. To install the SQLite3 Ruby binding, issue the following

gem command from the command prompt:

> gem install sqlite3

If everything went well, you should see output that includes something like

Successfully installed sqlite3-1.4.1

Chapter 2 GettinG Started

http://www.sqlite.org/download.html
http://www.sqlite.org/download.html
http://www.sqlite.org/2019/sqlite-dll-win64-x64-3300100.zip
http://www.sqlite.org/2019/sqlite-tools-win32-x86-3300100.zip

27

 Installing Node.js
To install Node.js on Windows, simply visit https://nodejs.org/, and download the

installer which is “recommended for most users.” (At the time of this writing, that’s

version 12.13.1 LTS.) Run the installer, accepting most of the defaults, but be sure to

check “Automatically install the necessary tools” to avoid more manual steps. Follow the

remaining steps to complete installation of Node.js.

To verify Node.js installation succeeded, open a new command prompt and issue the

following command:

> node --version

If everything went well, you should see output that includes something like

v12.13.1

 Installing Yarn
To install Yarn on Windows, simply visit https://yarnpkg.com/, click “Install Yarn,” and

download the installer for the current stable version for Windows. (At the time of this

writing, that’s version 1.19.2.) Run the installer, accepting the defaults, and complete the

installation.

To verify Yarn installation succeeded, open a new command prompt and issue the

following command:

> yarn --version

If everything went well, you should see output that includes something like

1.19.2

With Ruby, Rails, SQLite, Node.js, and Yarn happily installed, it’s time to take them

for a test drive. Unless you feel like reading the installation instructions for Linux, you’re

free to skip ahead to the “Creating Your First Rails Application” section.

Chapter 2 GettinG Started

https://nodejs.org/
https://yarnpkg.com/

28

 Installing on Linux
Linux (and UNIX-based systems in general) comes in a variety of different flavors, but

they share a lot in common. These instructions use a Debian-based variant called

Ubuntu Linux, but they should apply to most UNIX systems with varying mileages.

Note Ubuntu Linux is a top-notch distribution that has rapidly gained mindshare
in the Linux community. at the time of this writing, it’s one of the most popular
Linux distributions for general use and is largely responsible for the increased
viability of Linux as a desktop platform. it’s freely available from
http://ubuntu.org and highly recommended.

Just about all Linux distributions (including Ubuntu) ship with a package manager.

Whether you’re installing programs or code libraries, they usually have dependencies; a

single program may depend on dozens of other programs in order to run properly, which

can be a struggle to deal with yourself. A package manager takes care of these tasks for

you, so you can focus on better things.

Ubuntu Linux includes the Debian package manager apt, which is what the

examples in this book use. If you’re using a different distribution, you likely have a

different package manager, but the steps should be reasonably similar.

Before you begin installing Ruby, Rails, SQLite, Node.js, and Yarn, update the

package library using the apt-get update command:

$ sudo apt-get update

The apt-get program keeps a cached index of all the programs and their versions in

the repository for faster searching. Running the update command ensures that this list is

up to date, so you get the most recent versions of the software you need.

 Installing Ruby
Before you install Ruby, you need to install a few libraries required by the components

you’re installing. Enter the following command:

$ sudo apt-get install build-essential curl git

Chapter 2 GettinG Started

http://ubuntu.org

29

You’re going to use the Ruby Version Manager to let Ruby install it for you. This

makes everything a snap! First, install the GPG keys for RVM (as found on https://rvm.

io/rvm/install):

$ gpg --keyserver hkp://pool.sks-keyservers.net --recv-keys \

 409B6B1796C275462A1703113804BB82D39DC0E3 \

 7D2BAF1CF37B13E2069D6956105BD0E739499BDB

Next, run the command to install RVM.

$ \curl -sSL https://get.rvm.io | bash -s stable --ruby

Note if using Gnome terminal, you’ll need to enable its “run command as a login
shell” option for rVM to work. Go to its preferences ➤ profile ➤ Command, and
enable that option. then close and reopen the terminal.

You can test that this is working by asking Ruby for its version number:

$ ruby --version

ruby 2.6.3p62 (2019-04-16 revision 67580) [x86_64-linux]

 Installing Rails
Now you can use RubyGems to install Rails. Enter this command:

$ gem install rails -v '~> 6.0.2'

The “-v ‘~> 6.0.2’” part of the command ensures that the most recent version of Rails

6.0 is installed—important for making sure you can follow along with this book. After

spitting out some text to the screen and generally chugging away for a little while, the gem

program should exit, with a message like the following somewhere in the output:

Successfully installed rails-6.0.2.1

Chapter 2 GettinG Started

https://rvm.io/rvm/install
https://rvm.io/rvm/install

30

You can verify this claim by asking Rails for its version number:

$ rails --version

Rails 6.0.2.1

With Ruby and Rails happily installed, you’re ready to move on to the next step:

installing SQLite.

 Installing SQLite
To install SQLite with apt-get, issue the following command:

$ sudo apt-get install sqlite3 libsqlite3-dev

If all goes according to plan, you can test your SQLite3 installation by invoking the

sqlite3 program and asking for its version number:

$ sqlite3 --version

3.29.0 2019-07-10 17:32:03

Now that you’ve installed SQLite, let’s install its Ruby binding—a Ruby library that

allows you to talk with SQLite. To install the SQLite3 Ruby binding, issue the following

gem command from the command prompt:

$ gem install sqlite3

 Installing Node.js
To install Node.js, use the command line:

> curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -

> sudo apt-get install -y nodejs

To verify Node.js installation succeeded, issue the following command:

> node --version

If everything went well, you should see output that includes something like

v12.13.0

Chapter 2 GettinG Started

31

 Installing Yarn
To install Yarn, we’ll use npm, the Node.js package manager, which was installed for you

when you installed Node.js:

> sudo npm install -g yarn

To verify Yarn installation succeeded, issue the following command:

> yarn --version

If everything went well, you should see output that includes something like

1.21.1

With Ruby, Rails, SQLite, Node.js, and Yarn happily installed, it’s time to take them

for a test drive.

 Creating Your First Rails Application
You’ll start by using the rails command to create a new Rails project. Go to the directory

where you want your Rails application to be placed; the rails command takes the name

of the project you want to create as an argument and creates a Rails skeleton in a new

directory by the same name. The newly created directory contains a set of files that Rails

generates for you to bootstrap your application. To demonstrate, create a new project

called (what else?) hello:

$ rails new hello

 create

 create README.md

 create Rakefile

 create .ruby-version

 create config.ru

 create .gitignore

 create Gemfile

...

Chapter 2 GettinG Started

32

 create app

 create app/controllers/application_controller.rb

 create app/helpers/application_helper.rb

...

 create app/models/application_record.rb

...

 create app/views/layouts/application.html.erb

...

If you look closely at the output, you see that the subdirectories of app/ are named

after the MVC pattern introduced in Chapter 1. You also see a name that was mentioned

briefly in Chapter 1: helpers. Helpers help bridge the gap between controllers and views;

Chapter 7 will explain more about them.

Rails generated a new directory called hello. If you look at the folder structure, you’ll

see the following:

app/ db/ node_modules/ README.md yarn.lock

babel.config.js Gemfile package.json storage/

bin/ Gemfile.lock postcss.config.js test/

config/ lib/ public/ tmp/

config.ru log/ Rakefile vendor/

 Starting the Built-In Web Server
Next, let’s start up a local web server so you can test your new project in the browser.

True, you haven’t written any code yet, but Rails has a nice welcome screen that you can

use to test whether the project is set up correctly. It even gives you some information

about your Ruby environment.

Ruby ships with a built-in, zero-configuration, pure Ruby web server that makes

running your application in development mode incredibly easy. You start up the built-in

web server using the rails server command. To start the server now, make sure you’re

inside the directory of your Rails application, and then enter the following command:

Chapter 2 GettinG Started

33

$ cd hello

$ rails server

=> Booting Puma

=> Rails 6.0.2 application starting in development

=> Run `rails server --help` for more startup options

Puma starting in single mode...

* Version 4.3.1 (ruby 2.6.3-p62), codename: Mysterious Traveller

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://127.0.0.1:3000

* Listening on tcp://[::1]:3000

Use Ctrl-C to stop

The message from the rails server command tells you that a web server is running

at the IP address 127.0.0.1 on port 3000. That means that the server is running locally on

your machine. The hostname localhost also resolves to your local machine and is thus

interchangeable with the IP address. We prefer to use the hostname variant.

With the server running, if you open http://localhost:3000/ in your browser, you’ll see

the Rails welcome page, as shown in Figure 2-2. Congratulations! You’ve put Ruby on Rails.

Figure 2-2. Rails welcome page

Chapter 2 GettinG Started

34

The welcome page is nice, but it doesn’t teach you much. The first step in learning

how Rails works is to generate something dynamic. You’re about to learn why you called

this project “hello”!

We’re sure it would be in violation of the law of programming books if we didn’t

start with the ubiquitous “Hello World” example. And who are we to disobey? In the

next few steps, you make your Rails application say hello; and in doing so, you learn a

few new concepts. Your goal is to have a request with the URL http://localhost:3000/

salutation/hello respond with a friendly “Hello World!” message.

First things first: Stop the web server by pressing Ctrl+C in the command prompt

window. That should bring you back to your prompt.

Note notice how easy it is to start and stop a local server? that’s the whole point
of the built-in server in a nutshell. You shouldn’t need to be a system administrator
to develop a rails application.

 Generating a Controller
You use the rails command’s generate option to create certain files within your project.

Because you’re dealing with the request and response cycle (you request a URL, and the

browser receives a response), you generate a controller that is responsible for handling

salutations:

$ rails generate controller salutation

 create app/controllers/salutation_controller.rb

 invoke erb

 create app/views/salutation

 invoke test_unit

 create test/controllers/salutation_controller_test.rb

 invoke helper

 create app/helpers/salutation_helper.rb

 invoke test_unit

 invoke assets

 invoke scss

 create app/assets/stylesheets/salutation.scss

Chapter 2 GettinG Started

35

Not unlike the rails command you used to generate your application, the rails

generate controller command creates a bunch of new files. These are mostly empty,

containing only skeletal code (often called stubs). You could easily create these files on

your own. The generator merely saves you time and the effort of needing to remember

which files to create and where to put them.

The salutation controller was created in the app/controllers directory and is

sensibly named salutation_controller.rb. If you open it with a text editor, you see

that there’s not much to it, as shown in Listing 2-1.

Listing 2-1. The app/controllers/salutation_controller.rb File

class SalutationController < ApplicationController

end

 Creating an Action
If you want SalutationController to respond to a request for hello, you need to make

an action for it. Open salutation_controller.rb in your text editor and add the hello

action, as shown in Listing 2-2.

Listing 2-2. The Updated app/controllers/salutation_controller.rb File: http://

gist.github.com/319866

class SalutationController < ApplicationController

 def hello

 @message = 'Hello World!'

 end

end

Actions are implemented as Ruby methods. You can always tell a method definition

because of the def keyword. Inside the action, you set a Ruby instance variable called @

message, the value of which you output to the browser.

 Creating a Template
With your action successfully defined, your next move is to add some HTML into the mix.

Rails makes it easy by separating the files that contain HTML into their own directory as

per the MVC pattern. In case you haven’t guessed, HTML is the responsibility of the view.

Chapter 2 GettinG Started

http://gist.github.com/319866
http://gist.github.com/319866

36

If you look in the app/views directory, you see another product of the controller

generator: a directory called salutation. It’s linked to the salutation controller, and it’s

where you put template files that correspond to your salutation actions.

Note Because rails allows you to embed ruby code in your htML by using the
erb templating library, you use the .html.erb (htML + erb) extension for your
templates.

The default way to render a template in response to a request for an action is

remarkably simple: name it the same as the action. This is another case of using a

predefined Rails convention. Because you want to show a response to the hello action,

name your file hello.html.erb, and Rails renders it automatically. This is easy to grasp

in practice. Figure 2-3 gives a visual cue as to how controllers and templates correspond.

Figure 2-3. Controllers correspond to a directory in app/views

Chapter 2 GettinG Started

37

Start by creating a new, blank file in app/views/salutation/. Name it hello.html.

erb, and add the code shown in Listing 2-3. Notice the <%= %> syntax that surrounds

the @message variable: these are known as Embedded Ruby (ERb) output tags. Chapter 7

explains more about ERb. For now, it’s only important to know that whenever you see

<%= %> in a template, whatever is between the tags is evaluated as Ruby, and the result is

printed out.

Listing 2-3. The app/views/salutation/hello.html.erb File: https://gist.

github.com/nicedawg/0a45eae95abb3ff0e7993b9fd2120d59

<h1><%= @message %></h1>

If familiar with HTML, you may be wondering why we don’t need to include tags like

<html> or <body> in our view! By default, our views will be wrapped inside of the code

found in app/views/layouts/application.html.erb, which contains the <html> and

<body> tags, as well as other HTML which we want to include in most of our pages.

You now have to tell your Rails application how to respond to a URL. You do that by

updating the config/routes.rb file. You don’t need to worry about the details of how

the routes file works for now, Chapter 7 will cover that. Replace the contents of your

config/routes.rb file and make sure it looks like Listing 2-4.

Listing 2-4. The config/routes.rb File: https://gist.github.com/nicedawg/

29b16f5d5fefeea7c3f5293b7dddb0da

Rails.application.routes.draw do

 get 'salutation/hello'

end

It looks like you’re all set. The salutation controller fields the request for hello

and automatically renders the hello.html.erb template. Start up the web server again

using the rails server command, and request the URL http://localhost:3000/

salutation/hello in your browser. You should see the result shown in Figure 2-4.

Chapter 2 GettinG Started

https://gist.github.com/nicedawg/0a45eae95abb3ff0e7993b9fd2120d59
https://gist.github.com/nicedawg/0a45eae95abb3ff0e7993b9fd2120d59
https://gist.github.com/nicedawg/29b16f5d5fefeea7c3f5293b7dddb0da
https://gist.github.com/nicedawg/29b16f5d5fefeea7c3f5293b7dddb0da

38

Sure enough, there’s your greeting! The hello template reads the @message variable

that you set in the controller and, with a little help from ERb, printed it out to the screen.

In case you didn’t notice, the URL http://localhost:3000/salutation/hello

maps directly to the controller and action you created because of the change you made

to your config/routes.rb file. Rails saw your “salutation/hello” route and figured out it

should execute the “hello” action in your SalutationController. By following Rails naming

conventions like this, you can avoid a lot of extra configuration code!

 Summary
This chapter covered a lot, so you should be proud of yourself. You went from not having

Rails installed to getting a basic Rails application up and running. You learned how to

install Ruby and how to manage packages with RubyGems (which you used to install

Rails). You also learned how to create a new Rails project using the rails command

and how to use the generator to create a new controller. And you learned how controller

actions correspond to templates. The stage is now set for the next chapter, where you

begin building a more full-featured project.

Figure 2-4. The “Hello World” application

Chapter 2 GettinG Started

39
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_3

CHAPTER 3

Getting Something
Running
The best way to learn a programming language or a web framework is to dig in and write

some code. After reading the first two chapters, you should have a good understanding

of the Rails landscape. Chapter 4 will lead you through the Ruby language, but first let’s

write a little code to whet your appetite. This chapter builds a foundation and will get

you excited by walking you through the construction of a basic application. You will

learn how to create a database and how to connect it to Rails, as well as how to use a web

interface to get data in and out of the application.

You will receive a lot of information in this chapter, but it shouldn’t be more than you

can absorb. The goal is to demonstrate, not to overwhelm. Rails makes it incredibly easy to

get started, and that’s a feature this chapter highlights. There are a few places where Rails

really shines, and getting something running is one of them. By the end of this chapter,

you’ll have a working web application to play with, explore, and learn from. You’ll build on

this application throughout the rest of the book, adding features and refining functionality.

 An Overview of the Project
This chapter will walk you through building a simple blog application that lets you create

and publish articles, like WordPress or Blogger. The first iteration focuses on the basics:

creating and editing articles.

Before you start coding, let’s sketch a brief summary of the goals and flow of the

application at a very high level. The idea isn’t to focus on the nitty-gritty, but instead to

concentrate on the general case.

Your application will have two kinds of users: those who post and publish articles

and those who wish to comment on existing articles. In some cases, people will play both

roles. Not all users will need to create an account by registering on the site. It will also be

https://doi.org/10.1007/978-1-4842-5716-6_3#DOI

40

nice if people can notify their friends about interesting articles using a feature that sends

a friendly email notification to interested parties.

You will add some of these features in later chapters. Other application requirements

will likely come up as you continue, but these are enough to get started. In the real world,

specifications evolve as we learn how real users interact with our web applications. Don’t

let this frustrate you or surprise you—that’s what the Agile methodology of software

development recognizes and celebrates. Rails doesn’t penalize you for making changes

to an application that’s under construction, so you can engage in an iterative style of

development, adding and incrementing functionality as you go.

You start with what matters most: articles. You may wonder why you don’t begin with

users. After all, without users, who will post the articles? If you think about it, without

articles, what could users do? Articles are the epicenter of the application, so it makes

the most sense to start there and work out the details as you go. Ready? Let’s get started!

 Creating the Blog Application
As you saw in Chapter 2, the first step is to create a new Rails application. You could

come up with a fancy name, but let’s keep it simple and call the application blog. It’s not

going to win any awards for creativity, but it works.

To begin, from the command line, go to the directory where you want to place your

new application; then, issue the rails command to generate the application skeleton

and base files:

$ rails new blog

 create

 create README.md

 create Rakefile

 create .ruby-version

 create config.ru

 create .gitignore

 create Gemfile

...

As you recall from the example in Chapter 2, the rails command takes as an

argument the name of the project you want to create and generates a directory of the

Chapter 3 GettinG SomethinG runninG

41

same name that contains all the support files. In this case, it creates a subdirectory called

blog in the current working directory. Change into the blog directory and get oriented.

Figure 3-1 shows the directory structure.

You’ll quickly get used to the Rails directory structure, because all Rails applications

follow this standard. This is another benefit of conventions: you always know where to

locate files if you have to work on a Rails project that was developed by someone else.

Table 3-1 briefly explains the directory structure.

Figure 3-1. The Rails directory structure

Table 3-1. Rails Directory Structure

Folder/File Description

app all the components of your application.

bin executables to support rails.

config Configuration files for all of the components of your application.

db Files related to the database you’re using and a folder for migrations.

(continued)

Chapter 3 GettinG SomethinG runninG

42

Table 3-1. (continued)

Folder/File Description

lib Libraries that may be used in your application.

log Log files that your application may require.

node_modules external javascript dependencies.

public Static assets served by your application, such as images, JavaScript, and

CSS files.

storage Contains uploaded files when using active Storage’s disk service.

test Directory containing unit tests for your application.

tmp Contains temporary files supporting your application.

vendor external libraries, such as gems and plug-ins, that your application bundles.

.browserslistrc Configuration file which declares what types of browsers your frontend

(JS/CSS) tools should try to support.

.gitignore Contains patterns of files/directories to ignore when saving changes to

version control.

.ruby- version Declares which version of ruby to use with this rails project.

babel.config.js Configures babel so you can write javascript code with new features and

syntax that can still work on older browsers.

config.ru a file used by rack servers to start the application.

Gemfile used by the bundler gem to keep a list of gems used in your application.

Gemfile.lock Canonical resource of what gems should be installed.

package.json Declares javascript dependencies and configuration.

postcss.config.js Config for postCSS (a tool that lets you process CSS with javascript).

Rakefile Lists available for tasks used by rake.

README.md human-readable file generated to describe an application.

yarn.lock Canonical resource of which javascript dependencies should be installed

(like Gemfile.lock, but for javascript!).

Chapter 3 GettinG SomethinG runninG

43

Your first stop is the config directory. Of the little configuration there is to do in a

Rails application, most of it takes place in this aptly named location. To get an idea of

what Rails expects as far as databases go, open the config/database.yml file in your

editor and take a peek. You should see something like the file shown in Listing 3-1

(comments are omitted here).

Listing 3-1. The config/database.yml File

default: &default

 adapter: sqlite3

 pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>

 timeout: 5000

development:

 <<: *default

 database: db/development.sqlite3

test:

 <<: *default

 database: db/test.sqlite3

production:

 <<: *default

 database: db/production.sqlite3

The first thing you should notice is the different sections: development, test,

and production. Rails understands the concept of environments and assumes you’re

using a different database for each environment. Therefore, each has its own database

connection settings, and different connection parameters are used automatically.

Rails applications run in development mode by default, so you really only need to

worry about the development section at this point. Still, other than the database names

(db/*.sqlite3), there should be little difference between the connection parameters for

each environment.

This example uses the default SQLite database because it’s easy to use and set up.

However, you can use the database management system of your choice by passing

the –d or --database= option to the “rails new” command with one of the following

options as per your preference: mysql, oracle, postgresql, sqlite3, sqlserver, or other

supported database servers. (See “rails new --help” for a complete list.)

Chapter 3 GettinG SomethinG runninG

44

If you select a database other than SQLite, the rails command may prefill the

database parameter based on the database server and project name: blog in this

case. If you give your application a different name (say, a snazzy Web 2.0 name like

blog.ilicio.us *beta) with a database server such as MySQL, you’ll see something

different here. It doesn’t matter what you name your databases, as long as database.

yml references the correct one for each environment. Let’s stick with the convention and

create the databases using the default names.

WHAT IS YAML?

the .yml extension refers to a YamL file. YamL (a recursive acronym that stands for “YamL

ain’t markup Language”) is a special language for expressing objects in plain text. rails can

work with YamL natively and can turn what looks like plain text into ruby objects that it can

understand.

YamL is whitespace sensitive: it uses spaces (not tabs) to convey structure and meaning.

make sure your editor knows the difference between tabs and spaces, and be sure that when

you’re editing YamL files, you use only spaces.

 Creating the Project Databases
You may think that to create a new database, you’ll use your favorite database

administration tool. However, because you already told Rails the database connection

details, you can now run a Rails command that talks to the database and issues all the

necessary commands to set up the databases. Jump to the command prompt and type:

$ cd blog

$ rails db:create

When using SQLite, you aren’t forced to create the database, because a new database

file is automatically created if one doesn’t exist; but it will come in handy when you try a

different database engine. You also may see some messages like db/development.sqlite3

already exists. Don’t be afraid—this is an indication that an SQLite file was found. If you

see that message, rest assured that your existing database was left untouched and no

database file has been harmed.

Chapter 3 GettinG SomethinG runninG

45

Regardless of the database management system you select, you should notice that

the databases you want to use are created. This is another case in which Rails removes

some complexity from your mind and helps you focus on your application.

Note Depending on how your environment is set up, you may not need to specify
the username, password, and other options in your config/databases.yml file
to create the database.

Although you’re only concerned with the development environment at this time, it

doesn’t hurt to create the other databases while you’re at it. Go ahead and create two

more databases, one each for the test and production environments:

$ rails db:create:all

Rails provides an easy way to interact directly with the database via its command-

line interface. You can confirm the creation of the database by using the rails

dbconsole program to interact with your development database:

$ rails dbconsole

SQLite version 3.29.0 2019-07-10 17:32:03

Enter ".help" for usage hints.

sqlite> .databases

main: /path/to/your/blog/db/development.sqlite3

sqlite> .exit

At this point, you can issue any number of SQL (Structured Query Language)

statements and look at the tables and records that eventually will be in your application.

(If you aren’t familiar with SQL, you can learn more about it in Appendix B.) When

you’re finished with the SQLite console, type the .exit command to go back to your

regular prompt. You can test to see if your connection is working by running the

following command:

$ rails db:migrate

Chapter 3 GettinG SomethinG runninG

46

If nothing exceptional is returned, congratulations! Rails can connect to your

database. However, if you’re using a database engine other than SQLite and you may see

something like this

rake aborted!

Access denied for user 'root'@'localhost' (using password: NO)

then you need to adjust your connection settings. If you’re having problems, make sure

the database exists and that you’ve entered the correct username and password in the

config/database.yml configuration file.

 Creating the Article Model
Now that you can connect to the database, this section will explain how you create a

model. Remember that models in Rails usually correspond to database table names.

Because you want to model articles, let’s create a model named Article. By convention,

model names are camel-cased singular and correspond to lowercased plural table

names. So an Article model expects a table named articles; a Person model expects a

table named people.

Note Camel case means that each word begins with a capital letter and is
written without spaces. For instance, a class that described blog images would be
written as Blogimage. refer to http://en.wikipedia.org/wiki/CamelCase
for more information.

rails is smart enough to use the correct plural name for most common words; it
doesn’t try to create a persons table.

Like most things in Rails, models have their own generator script that makes it easier

to get started. The generator automatically creates a new model file in the app/models

directory and also creates a bunch of other files. Among these are a unit test (for testing

your model’s functionality, as discussed in Chapter 16) and a database migration.

A database migration contains instructions for modifying the database table and

columns. Whenever you generate a new model, a migration is created along with it.

Chapter 3 GettinG SomethinG runninG

http://en.wikipedia.org/wiki/CamelCase

47

Note if you want to skip generation of the migration when generating a new
model, you can pass the --no-migration argument to the generator. this may
be useful if you’re creating a model for an existing database or table.

To see the generator’s usage information, run it without arguments:

$ rails generate model

Usage:

 rails generate model NAME [field[:type][:index] field[:type][:index]]

[options]

...

As you can see from the usage banner, the generator takes a model name as its

argument and an optional list of fields. The model name may be given in camel-cased or

snake-cased format, and options can be provided if you want to automatically populate

the resulting migration with column information.

Note Snake-cased words are written in all lowercase with underscores
replacing spaces, for instance, blog_image. For more information, visit
http://en.wikipedia.org/wiki/Snake_case.

Let’s run the generator now to create the first model, Article:

$ rails generate model Article

 invoke active_record

 create db/migrate/20191219235126_create_articles.rb

 create app/models/article.rb

 invoke test_unit

 create test/models/article_test.rb

 create test/fixtures/articles.yml

If you look at the lines that start with create, you see that the generator has created

an Article model, an Article test, an articles fixture (which is a textual representation of

Chapter 3 GettinG SomethinG runninG

http://en.wikipedia.org/wiki/Snake_case

48

table data you can use for testing), and a migration named 20191219235126_create_

articles.rb. From that, your model is generated.

Note the first part of the migration file name is the timestamp when the file was
generated. So the file on your computer will have a slightly different name.

 Creating a Database Table
You need to create a table in the database. You could do this with a database

administration tool or even manually using SQL, but Rails provides a much more

efficient facility for table creation and maintenance called a migration. It’s called a

migration because it allows you to evolve, or migrate, your schema over time. (If you’re

not familiar with databases, tables, and SQL, consult Appendix B for the basics.)

Note Schema is the term given to the properties that make up a table: the table’s
name, its columns, and its column types, as well as any default values a column
will have.

What’s the best part about migrations? You get to define your schema in pure Ruby.

This is all part of the Rails philosophy that you should stick to one language when

developing. It helps eliminate context switching and results in higher productivity.

As you can see from the output of the model generator, it created a new file in db/

migrate called 20191219235126_create_articles.rb. As mentioned before, migrations

are named with a numeric prefix, which is a number that represents the exact moment

when the migration file was created. Because multiple developers can create migrations

in a development team, this number helps uniquely identify this specific migration in a

project.

Let’s open this file and take a peek. It’s shown in Listing 3-2.

Listing 3-2. The db/migrate/20191219235126_create_articles.rb File

class CreateArticles < ActiveRecord::Migration[6.0]

 def change

 create_table :articles do |t|

Chapter 3 GettinG SomethinG runninG

49

 t.timestamps

 end

 end

end

In its initially generated form, the migration is a blank canvas. But before you go any

further, let’s note a few important items. First, notice the instance method: change. In

previous versions of Rails, there would be an up and down class method, but now Rails is

smart enough to figure it out based on the modifications you make in this method. You

can roll back without ever writing a method that explicitly drops the table. Pretty slick,

isn’t it?

Listing 3-3 has the details filled in for you. Even without ever having seen a migration

before, you should be able to tell exactly what’s going on.

Listing 3-3. Completed db/migrate/20191219235126_create_articles.rb File

class CreateArticles < ActiveRecord::Migration[6.0]

 def change

 create_table :articles do |t|

 t.string :title

 t.text :body

 t.datetime :published_at

 t.timestamps

 end

 end

end

Let’s step through the code. First, you use the create_table method, giving it the

name of the table you want to create. Inside the code block, the string, text, and

datetime methods each create a column of the said type named after the parameter;

for example, t.string :title creates a field named title with the type string. The

timestamps method, in the t.timestamps call, is used to create a couple of fields called

created_at and updated_at, which Rails sets to the date when the record is created

and updated, respectively. (For a full description of the available method types you can

create in your migrations, see https://api.rubyonrails.org/classes/ActiveRecord/

Migration.html.)

Chapter 3 GettinG SomethinG runninG

https://api.rubyonrails.org/classes/ActiveRecord/Migration.html
https://api.rubyonrails.org/classes/ActiveRecord/Migration.html

50

On its own, this migration does nothing. Really, it’s just a plain old Ruby class. If you

want it to do some work and create a table in the database for you, you need to run it. To

run a migration, you use the built-in db:migrate Rails command that Rails provides.

From the command line, type the following to run the migration and create the

articles table. This is the same command you used to test the database connection.

You sort of hijack it for this test, knowing that it will attempt to connect to the database

and thus prove whether the connection works. Because there were no existing

migrations when you first ran it, it didn’t do anything. Now that you have your first

migration, running it results in a table being created:

$ rails db:migrate

== 20191219235126 CreateArticles: migrating ===============================

-- create_table(:articles)

 -> 0.0028s

== 20191219235126 CreateArticles: migrated (0.0029s) ======================

Just as the output says, the migration created the articles table. If you try to run

the migration again (go ahead, try it), nothing happens. That’s because Rails keeps track

of all the migrations it runs in a database table, and in this case there’s nothing left to

do. If for some reason you decide you need to roll back the migration, you can use the

db:rollback task to roll back. Try it and you will notice that it dropped the articles

table. Remember that we never wrote any code to drop the table, Rails just handled it

for us. Imagine if you would have edited the database schema directly with a database

management tool; if you wanted to roll back, you’d have to remember what it looked like

before and exactly what you changed. This makes your life much easier. Okay, before we

move on, don’t forget to run migrations again since we rolled back.

 Generating a Controller
You’ve created a model and its supporting database table, so the next step is to work on

the controller and view side of the application. Let’s create a controller named articles

(remember controllers are plural and models are singular) to control the operation of the

application’s articles functionality. Just as with models, Rails provides a generator that

you can use to create controllers:

Chapter 3 GettinG SomethinG runninG

51

$ rails generate controller articles

 create app/controllers/articles_controller.rb

 invoke erb

 create app/views/articles

 invoke test_unit

 create test/controllers/articles_controller_test.rb

 invoke helper

 create app/helpers/articles_helper.rb

 invoke test_unit

 invoke assets

 invoke scss

 create app/assets/stylesheets/articles.scss

The controller generator creates four files:

• app/controllers/articles_controller.rb: The controller that is

responsible for handling requests and responses for anything to do

with articles.

• test/controllers/articles_controller_test.rb: The class that

contains all functional tests for the articles controller (Chapter 16

covers testing applications).

• app/helpers/articles_helper.rb: The helper class in which you

can add utility methods that can be used in your views (Chapters 7

and 8 cover helpers).

• app/assets/stylesheets/articles.scss: This is a SASS

(Syntactically Awesome Style Sheets) file where you can put style

sheets for the associated views.

Chapter 3 GettinG SomethinG runninG

52

Note SaSS is a language that compiles into CSS. SaSS extends CSS with
enhanced syntax that helps developers organize their CSS and simplify their code.
(See https://sass-lang.com/ for more info.) rails supports SaSS out of the
box by precompiling it into CSS automatically via the asset pipeline.

The controller generator also creates an empty directory in app/views called

articles. This is where you place the templates for the articles controller.

 Up and Running with Scaffolding
One of the most talked-about features that has given a lot of exposure to Rails is its

scaffolding capabilities. Scaffolding allows you to create a boilerplate-style set of actions

and templates that makes it easy to manipulate data for a specific model. You generate

scaffolding using the scaffold generator. You’re probably getting used to generators by

now. Rails makes heavy use of them because they help automate repetitive tasks and

generally remove the chances for errors when creating new files. Unlike you probably

would, the generator won’t ever forget how to name a file; nor will it make a typo when

creating a class. Let’s use the scaffold generator now and solve the mystery of how this

works.

First, we need to remove the files we generated in the previous steps. Rather than

having to find all the files we generated and delete them by hand, we can use the “rails

db:rollback” and “rails destroy” commands to undo previous operations. Run the

following commands:

$ rails destroy controller articles

$ rails db:rollback

$ rails destroy model Article

Now, we’ll run the following commands to generate scaffolding for our Article

model, complete with controllers, views, and other files, and then to create the database

table:

$ rails generate scaffold Article title:string body:text published_

at:datetime

$ rails db:migrate

Chapter 3 GettinG SomethinG runninG

https://sass-lang.com/

53

The scaffold provides methods and pages that allow you to insert, update, and

delete records in your database. That’s all you need to generate a working scaffold of

the Article model. Let’s fire up the web server and test it. Start your local web server

from the command line (rails server), and browse to the articles controller in your

browser:

http://localhost:3000/articles

You should see the results displayed in your browser, as shown in Figure 3-2.

Click the New Article link, and you’re taken to a screen where you can enter articles.

Notice that the URL is http://localhost:3000/articles/new, which means you’re

invoking the new action on the articles controller. Go ahead and add a few articles and

generally play with the application. Figure 3-3 shows an example of an article entered on

this screen.

Figure 3-2. Articles scaffolding

Chapter 3 GettinG SomethinG runninG

54

Notice that every time you add an article, you’re redirected back to the show action,

where you see the details of the article you just created. You can click “Back” to go the

index action, where you see all of your articles listed. You can edit them, delete them, or

create new ones. You’ve got to admit, Rails gives you a lot of functionality for free.

Speed is the key benefit here. The scaffold generator allows you to quickly get

something running, which is a great way to test your assumptions.

Caution Scaffolding comes with an important disclaimer. You shouldn’t use it
in production. it exists to help you do exactly what you just did: get something
running. By its definition, it’s a temporary or unfinished product.

Figure 3-3. Adding an article

Chapter 3 GettinG SomethinG runninG

55

 Adding More Fields
Now that you can see the model represented in the browser, let’s add some more fields

to make it a little more interesting. Whenever you need to add or modify database fields,

you should do so using a migration. In this case, let’s add the excerpt and location

fields to the articles table.

You didn’t need to generate the last migration (the one you used to create the

articles table), because the model generator took care of that for you. This time

around, you can use the migration generator. It works just like the model and controller

generators, which you’ve seen in action. All you need to do is give the migration

generator a descriptive name for the transformation:

$ rails generate migration add_excerpt_and_location_to_articles

excerpt:string location:string

 invoke active_record

 create db/migrate/20191220013103_add_excerpt_and_location_to_articles.rb

As you’ve already seen, the generator creates a migration class in db/migrate

prefixed by a number identifying when the migration was created. If you open the

20191220013103_add_excerpt_and_location_to_articles.rb file, you see the

migration class with the code shown in Listing 3-4. As with the model generator, which

prefilled the migration to some extent, passing field names and types as options to the

migration generator prefills the generated class for you as long as you refer to the correct

table name at the end of the migration name—in this case, to_articles.

Listing 3-4. The db/migrate/20191220013103_add_excerpt_and_location_to_

articles.rb File

class AddExcerptAndLocationToArticles < ActiveRecord::Migration[6.0]

 def change

 add_column :articles, :excerpt, :string

 add_column :articles, :location, :string

 end

end

Chapter 3 GettinG SomethinG runninG

56

Looking at the add_column method, the first argument is the table name (articles),

the second is the field name, and the third is the field type. Remember that the change

method knows how to migrate up or down, so if in the unlikely event you want to remove

these columns, Rails will know how.

With this new migration in place, use the following Rails command to apply it and

make the changes to the database:

$ rails db:migrate

== 20191220013103 AddExcerptAndLocationToArticles: migrating ===========

-- add_column(:articles, :excerpt, :string)

 -> 0.0030s

-- add_column(:articles, :location, :string)

 -> 0.0017s

== 20191220013103 AddExcerptAndLocationToArticles: migrated (0.0052s) =====

If all goes according to plan, the articles table now has two new fields. You could edit

the view templates in the app/views/articles folder to add form elements for the new

fields, but instead let’s call the generator again (you’ll learn about views in Chapter 7):

First, we need to remove a few files again, so that the generator won’t refuse to run:

• app/models/article.rb

• app/controllers/articles_controller.rb

• app/helpers/articles_helper.rb

And now, we can rerun the scaffold generator with our new options:

$ rails generate scaffold Article title:string location:string excerpt:string

body:text published_at:datetime --no-migration

Press Y when asked if you want to overwrite some files, and you’re finished, as you

can see in Figure 3-4.

Chapter 3 GettinG SomethinG runninG

57

This exposes one of the issues of this type of scaffolding: when you generate new

versions of the scaffold files, you run the risk of overwriting custom changes you may

have made. We’re doing it this way as an illustration, but you wouldn’t normally do this.

Figure 3-4. Additional fields added to the new article form

Chapter 3 GettinG SomethinG runninG

58

 Adding Validations
You may wonder what happens if you try to save a new article without giving it any

information. Try doing that: Rails doesn’t care. Actually, it’s the Article model that

doesn’t care. This is because in Rails, the rules for data integrity (such as required fields)

are the responsibility of the model.

To add basic validation for required fields, open the Article model in app/models/

article.rb and add the validation method shown in Listing 3-5 inside the class body.

Listing 3-5. Validation Added to the app/models/article.rb File

class Article < ApplicationRecord

 validates :title, :body, presence: true

end

Save the file, and try creating an empty article again. Instead of saving the record,

Rails displays a formatted error message, as shown in Figure 3-5.

Chapter 3 GettinG SomethinG runninG

59

If you’ve done any web development before, you know that validating fields is a

major nuisance. Thankfully, Rails makes it easy.

Note notice that you don’t need to restart the web server when you make
changes to your project files in the app/ directory. this is a convenience provided
by rails when running in development mode.

Figure 3-5. Error messages for an article

Chapter 3 GettinG SomethinG runninG

60

Chapter 6 goes through all the specifics of model validations. For now, you’re using

only the most primitive methods of protecting your data. It shouldn’t surprise you that

Active Record is capable of much more involved validations, such as making sure a

numeric value is entered, validating that data are in the correct format using regular

expressions, and ensuring unique values, among other checks.

Note Regular expressions (regex for short) are expressions that describe
patterns in strings. Like most programming languages, ruby has built-in support
for regular expressions.

 Generated Files
Now that you’ve seen the pages in action, let’s look at the articles controller again. As

you can see in Listing 3-6, the controller is now chock-full of actions. There’s one for each

of index, show, new, create, edit, update, and destroy—the basic CRUD actions.

Listing 3-6. The app/controllers/articles_controller.rb

class ArticlesController < ApplicationController

 before_action :set_article, only: [:show, :edit, :update, :destroy]

 # GET /articles

 # GET /articles.json

 def index

 @articles = Article.all

 end

 # GET /articles/1

 # GET /articles/1.json

 def show

 end

 # GET /articles/new

 def new

 @article = Article.new

 end

Chapter 3 GettinG SomethinG runninG

61

 # GET /articles/1/edit

 def edit

 end

 # POST /articles

 # POST /articles.json

 def create

 @article = Article.new(article_params)

 respond_to do |format|

 if @article.save

 format.html { redirect_to @article, notice: 'Article was

successfully created.' }

 format.json { render :show, status: :created, location: @article }

 else

 format.html { render :new }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /articles/1

 # PATCH/PUT /articles/1.json

 def update

 respond_to do |format|

 if @article.update(article_params)

 format.html { redirect_to @article, notice: 'Article was

successfully updated.' }

 format.json { render :show, status: :ok, location: @article }

 else

 format.html { render :edit }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

Chapter 3 GettinG SomethinG runninG

62

 # DELETE /articles/1

 # DELETE /articles/1.json

 def destroy

 @article.destroy

 respond_to do |format|

 format.html { redirect_to articles_url, notice: 'Article was

successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_article

 @article = Article.find(params[:id])

 end

 # Only allow a list of trusted parameters through.

 def article_params

 params.require(:article).permit(:title, :location, :excerpt, :body,

:published_at)

 end

end

As you did in this chapter, after you’ve generated scaffolding, if you change your

model, you have to regenerate it if you want your application to follow suit. Most of

the time, however, you make the changes by hand and have a variation of the default

scaffold.

It’s important to realize why scaffolding exists and to be aware of its limitations. As

you’ve just seen, scaffolding helps when you need to get something running quickly to

test your assumptions. It doesn’t take you very far in the real world, and eventually you

end up replacing most (if not all) of it.

Explore the generated code and see if you can figure out how it hangs together. Don’t

worry if you can’t understand all of it—the chapters that follow will discuss it in depth.

With everything you know about Rails already, you should be able to piece together most

of it.

Chapter 3 GettinG SomethinG runninG

63

Try changing a few things to see what happens. If you inadvertently break something,

you can always run the scaffolding generator again to revert to the original. Can you

see how the views in app/views/articles are related to the actions? What about the

response messages, like Article was successfully created? What happens when

you change them? See if you can find where the error messages for failed validations are

rendered. If you remove the message, does the record still get saved? You can learn a lot

by exploring, so take as much time as you need.

 Summary
This chapter started by outlining the basics of the sample application. Then, you rolled

up your sleeves and created a database and configuration files. Based on the goals

of the application, you began by creating the tables necessary to run the core of your

Article model and got a first look at the simplicity and flexibility that migrations give

the development process. The scaffolding allowed you to test your assumptions about

the model and table you created by getting a firsthand look at it in action. You also took

a first crack at adding in validations that ensure you maintain the integrity of your data.

The chapters that follow investigate these concepts in depth, starting with the first part of

the MVC principle: models.

Chapter 3 GettinG SomethinG runninG

65
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_4

CHAPTER 4

Introduction to the Ruby
Language
Rails is a great framework for the development of web-based applications. One of

its greatest advantages over other web frameworks is that it’s written in Ruby, a very

consistent and elegant object-oriented programming language. In order to increase your

productivity as a Rails developer, it’s important that you master Ruby. If you’re new to

programming, don’t worry: we explain the concepts in a way you can understand.

Ruby was made to make developers happy. This should be exciting to you because

you’re a developer, and you want to be happy! Some languages feel like the creator was

in a bad mood and hated you. Ruby tries its best to make you feel at ease and in control.

As you grow as a developer, you’ll understand the importance of this fact more and

more, especially if you do this for a living.

This chapter gives you an overview of the features of the Ruby language. It explains

how the language is organized and presents its fundamentals. After reading this chapter,

you should better understand how the Ruby language that Rails is built on works, and you

should be able to create classes and methods and use control-flow statements in your

code. The best way to learn is to explore the language using this chapter as a guide. It’s

important that you run the examples given yourself and also to try things on your own.

Ruby has far more features than we can mention in this short introduction.

We encourage you to investigate more of the complex features of Ruby as you continue

using Rails.

 Instant Interaction
A lot of languages require that you write some code, compile, and then run the program

to see the results. However, Ruby is dynamic, which means you can work with the

language live. You will get instant feedback from your commands.

https://doi.org/10.1007/978-1-4842-5716-6_4#DOI

66

Ruby comes with a great little tool: an interactive interpreter called irb (for

Interactive Ruby). You can start up an irb session whenever you want by typing irb at the

command prompt. Using irb, you can play around with code and make sure it works as

you expect before you write it into your programs.

You can execute any arbitrary Ruby code in irb and do anything you would otherwise

do inside your Ruby programs: set variables, evaluate conditions, and inspect objects.

The only essential difference between an interactive session and a regular old Ruby

program is that irb echoes the return value of everything it executes. This saves you from

having to explicitly print the results of an evaluation. Just run the code, and irb prints the

result.

You can tell when you’re in an irb session by looking for the irb prompt, which looks

like irb(main):001:0>, and the arrow symbol (=>), which indicates the response.

To start an irb session, go to the command prompt and type irb. You should see the

irb prompt waiting for your input:

$ irb

irb(main):001:0>

Look at that. You’re inside Ruby! If you press Enter, Ruby ignores the line and gives

you another prompt, but it ends with an asterisk instead of the greater-than sign to

indicate that Ruby is expecting something from you to execute. It can only get more

exciting from here.

Note Your irb prompt might look slightly different depending on your version of
Ruby and your computer environment. This is perfectly okay.

When learning a new programming language, traditionally, the first thing you do is

make the language print the string “Hello, World!” Let’s go ahead and do that. Type the

following after the irb prompt:

irb(main):001:0> "Hello, World!"

=> "Hello, World!"

Excellent. You just wrote your first bit of Ruby! Some languages require many more

lines of code to write the Hello, World! application, but in Ruby it only took one. One of

the ways Ruby makes developers happy is by being concise. One line is certainly concise,

wouldn’t you say?

ChapTeR 4 InTRoduCTIon To The RubY Language

67

So what exactly happened here? Well, first, you created a string with the content

“Hello, World!” The irb command always outputs the value of the last command to the

screen; thus, you have “Hello, World!” written to the screen. You will notice as you type

valid Ruby commands and press Enter that irb will continue to output the value of those

commands. Try adding two numbers together:

irb(main):001:0> 1 + 1

=> 2

Now let’s try something a little more difficult. Let’s ask Ruby for the current time:

irb(main):001:0> Time.now

=> 2020-01-20 19:38:17 -0600

So Ruby dutifully reported the current time to us, including the date no less. What if

you just wanted the current year?

irb(main):001:0> Time.now.year

=> 2020

You can see how easy and concise Ruby is. The code is simple and almost reads like

an English sentence. If you’re wanting a description of exactly what you did in the last

two examples, here it is: You called a method (now) on a class (Time). In the second

example, you chained another method call onto the previous one. We’ll cover this in

depth later, but first let’s talk about data types.

 Ruby Data Types
A data type is a constraint placed on the interpretation of data. Numbers and strings

are just two of the data types the Ruby interpreter distinguishes among, and the way

Ruby adds numbers is different from the way in which it adds strings. For example, 2 + 3

evaluates to 5, but “2” + “3” evaluates to “23”. The second example may seem surprising

at first, but it’s simple: anything, including numbers, surrounded by quotes is interpreted

as a string. Read on to find out more.

ChapTeR 4 InTRoduCTIon To The RubY Language

68

 Strings
A string is a sequence of characters that usually represents a word or some other form

of text. In Ruby, you can create String objects by putting the characters inside single or

double quotation marks:

irb(main):001:0> 'Ruby is a great language'

=> "Ruby is a great language"

irb(main):002:0> "Rails is a great framework"

=> "Rails is a great framework"

The main difference between strings delimited by single and double quotes is that

the latter are subject to substitutions. Those substitutions are identified by Ruby code

inside the #{} construct, which is evaluated and replaced by its result in the final String

object. The technical term for this technique is string interpolation:

irb(main):003:0> "Now is #{Time.now}"

=> Now is 2020-01-20 19:39:45 -0600"

irb(main):004:0> 'Now is #{Time.now}'

=> "Now is \#{Time.now}"

Note In general, most developers only use double quotes when using string
interpolation or if the actual string includes single quotes. This is technically faster,
if only slightly.

When you use the hash symbol (#) with the curly braces, Ruby notices and tries to

evaluate whatever is between the braces. To evaluate means to process it like any other

code. So, inside the braces, you say Time.now, which returns the current time. However,

when you use single quotes, Ruby doesn’t check the string for substitutions before

sending it through.

The String class has a large number of methods you need when doing string

manipulation, like concatenation and case-changing operations. The following

examples list a few of those methods:

irb(main):005:0> "Toronto - Canada".downcase

=> "toronto - canada"

ChapTeR 4 InTRoduCTIon To The RubY Language

69

irb(main):006:0> "New York, USA".upcase

=> "NEW YORK, USA"

irb(main):007:0> "a " + "few " + "strings " + "together"

=> "a few strings together"

irb(main):008:0> "HELLO".capitalize

=> "Hello"

Tip To get a list of methods available for any object, call the "methods" method
using an instance of the object you want to inspect. Type "a string".methods
in irb to see all the methods you can call on the String object. If you want to
find a certain method, try using grep on that method too. For example, typing
"a string".methods.grep /case/ shows all string methods containing the
word case. other examples would be

4.methods

["some", "array", "elements"].methods

 Numbers
Ruby has a couple of classes to represent numbers: Integer and Float. Integer

represents whole numbers, while Float objects represent real numbers, meaning

numbers with a fractional part. As in most programming languages, you can perform

basic arithmetic operations in Ruby as you would using a calculator:

irb(main):001:0> 1 + 2

=> 3

irb(main):002:0> 2323 + 34545

=> 36868

irb(main):003:0> 9093 - 23236

=> -14143

irb(main):004:0> 343 / 4564

=> 0

ChapTeR 4 InTRoduCTIon To The RubY Language

70

irb(main):005:0> 3434 / 53

=> 64

irb(main):006:0> 99 * 345

=> 34155

irb(main):007:0> 34545.6 / 3434.1

=> 10.059578928977025

Note notice that when whole numbers are divided, the result is always a whole
number even if there is a remainder. If one of the numbers is a decimal, then a
decimal will always be returned:

irb(main):001:0> 6/4

=> 1

irb(main):002:0> 6/4.0

=> 1.5

 Symbols
Symbols aren’t a common feature in most languages. However, as you’ll learn when

reading this book, they’re extremely useful. Symbol is a data type that starts with a colon,

like :controller. Symbols are objects that work just like any other object in Ruby.

They’re used to point to some data that isn’t a traditional String object, in a human-

readable format. In fact, they’re almost like strings, except you can’t modify them:

irb(main):001:0> :my_symbol

=> :my_symbol

irb(main):002:0> :my_symbol + :second

Traceback (most recent call last):

 ...

 1: from (irb):22

NoMethodError (undefined method `+' for :my_symbol:Symbol)

irb(main):003:0> "my_string" + "second"

=> "my_stringsecond"

ChapTeR 4 InTRoduCTIon To The RubY Language

71

Fancy computer science types refer to this condition as being immutable, which

really just means you can’t modify something. Use symbols when you want to name

something nicely and you don’t want it changed at all—for example, by having

something appended to the end of it. There are also memory advantages to using

symbols, but that is out of the scope of this book. The importance of symbols will

become clear as you use Ruby more.

 Arrays and Hashes
Sometimes you have a lot of data that you need to keep track of—maybe a list of

students, users, or anything that you may keep in a collection. Ruby has two different

types of container objects for storing collections: arrays and hashes.

Arrays are part of almost every modern language. They keep information in order.

You can ask for the first item or the last item or put items in a certain order. You can think

of an Array object as a long series of boxes in which you can put things. You define arrays

by using the [] notation. Note that in most programming languages, including Ruby,

arrays are 0 indexed. This means you always refer to the first element in an array as 0.

Read carefully what happens here:

irb(main):001:0> city_array = ['Toronto', 'Miami', 'Paris']

=> ["Toronto", "Miami", "Paris"]

irb(main):002:0> city_array[0]

=> "Toronto"

irb(main):003:0> city_array[1] = 'New York'

=> "New York"

irb(main):004:0> city_array << 'London'

=> ["Toronto", "New York", "Paris", "London"]

irb(main):004:0> city_array + ["Los Angeles"]

=> ["Toronto", "New York", "Paris", "London", "Los Angeles"]

In the first example, we created the array of cities and assigned it to the variable

named city_array. In the second example, we referenced the city array and asked for

the object at the index position 0 (remember, with arrays, 0 is the first index). “Toronto”

is returned. In the third example, we are replacing the object at index 1 with the string

“New York.” Notice in the next example when the array is printed to the screen, Miami is

ChapTeR 4 InTRoduCTIon To The RubY Language

72

no longer in the list but has been replaced. The fourth example uses what is commonly

called the shovel operator. Simply put, this just adds the object to the end of the array. So

we added the string “London” to the end of our array. Finally, in the last array, we added

the array that contains “Los Angeles” to our previous array. This returns a new single

dimensional array with the contents of both arrays. Arrays are extremely common and

useful in Ruby.

The Hash object offers another way to keep a collection. Hashes are different from

arrays, because they store items using a key. Hash objects preserve order, just like arrays,

which enables you to call certain methods on them—for example, hash.first to get

the first key-value pair. In Ruby, you often use symbols for hash keys, but in reality, any

object can function as a key.

You define hashes with curly braces, {}. You can create a Hash object by defining it

with {key: "value", other_key: "other value" }. Then, you can pull out data by

using square brackets on the end of the list. For instance, you retrieve a value by typing

my_hash[:key] from the my_hash variable. Here are some examples:

irb(main):005:0> my_hash = {canada: 'Toronto', france: 'Paris', uk: 'London'}

=> {:canada=>"Toronto", :france=>"Paris", :uk=>"London"}

Notice how the return value doesn’t quite look like what you typed in—the format of

the hash changed. What you typed in is referred to as JavaScript Object Notation (JSON)

style, whereas the format shown in the return value is referred to as the Hashrocket style.

(See the rockets in the hash?) In a sense, the two styles are equivalent. Many prefer the

more compact JSON-style hash, though it has some limitations; with JSON-style hashes,

the keys must be symbols, whereas Hashrocket supports any object as a key. You will see

both styles regularly used.

We’ve created a hash and assigned it to the “my_hash” variable. In this example, the

keys of our array are countries, and the values are cities. To reference a specific value of a

hash, you pass the hash a key, and it will return the value to you:

irb(main):006:0> my_hash[:uk]

=> "London"

We’ve passed the hash a key of :uk, and it returned the value of “London.”

irb(main):007:0> my_hash[:canada] = 'Calgary'

=> "Calgary"

ChapTeR 4 InTRoduCTIon To The RubY Language

73

This is the same idea, but here we’re changing the value out for the key Canada. So

the value of “Toronto” goes away and is replaced by “Calgary.”

irb(main):008:0> my_hash.first

=> [:canada, "Calgary"]

In this example, we use the first method, which returns the first key-value pair.

Notice in this case the return value is an array. The first element in the array is the

key, and the second is the value. The keys method will return an array of all the keys

contained in the hash. Here is an example:

irb(main):010:0> my_hash.keys

=> [:canada, :france, :uk]

It is important to note that in all of our examples, we have assigned strings to

different positions to both our hashes and arrays, but any object could be stored in an

array or hash. For instance, you might want to store numbers or even another array or

hash. The possibilities are unlimited:

irb(main):001:0> numbers_array = [1, 2, 3, 4, 5]

=> [1,2,3,4,5]

irb(main):002:0> numbers_hash = {one: 1, two: 2, three: 3}

=> {:one => 1, :two => 2, :three => 3}

 Language Basics
Like other programming languages, Ruby includes variables, operators, control-flow

statements, and methods. This section shows you how to use them.

 Variables
Variables are used to hold values you want to keep for later processing. When you

perform a calculation, you probably want to use the result of that calculation somewhere

else in your application code, and that’s when you need a variable. In Ruby, variables are

easily created. You just need to give a variable a name and assign a value to it; there’s no

need to specify a data type for the variable or define it in your code before you use it.

ChapTeR 4 InTRoduCTIon To The RubY Language

74

Let’s create a few variables to hold some values you may need later. Notice that you

can reuse a variable name by reassigning a value:

irb(main):001:0> test_variable = 'This is a string'

=> "This is a string"

irb(main):002:0> test_variable = 2010

=> 2010

irb(main):003:0> test_variable = 232.3

=> 232.3

You’ve created a variable named test_variable and assigned a few different values

to it. Because everything in Ruby is an object, the test_variable variable holds a

reference to the object you assigned.

Variable names can be any sequence of numbers and letters, as long as they start

with a letter or an underscore; however, the first character of a variable indicates the type

of the variable. Variables also have a scope, which is the context in which the variable is

defined. Some variables are used in a small snippet of code and need to exist for only a

short period of time; those are called local variables. Table 4-1 lists the different types

of variables supported by Ruby and shows how to recognize them when you’re coding.

Type some variable names in irb, and you’ll get results similar to those shown here.

Table 4-1. Ruby Variables

Example Description

$user Global variables start with $. global variables are not constrained by any scope—

they’re available anywhere. While this sounds convenient, global variables can also

lead to bugs which are difficult to diagnose. global variables should generally be

avoided except in unique circumstances.

@@count Class variables start with @@. Class variables exist in the scope of a class, so all

instances of a specific class have a single value for the class variable.

@name Instance variables start with @. Instance variables are unique to a given instance of a

class.

(continued)

ChapTeR 4 InTRoduCTIon To The RubY Language

75

In Ruby, it’s considered best practice to use long and descriptive variable names.

For example, in Java, you may have a variable named phi; but in Ruby, you write out

place_holder_variable for clarity. The basic idea is that code is much more readable if

the person looking at it (probably you) doesn’t have to guess what phi stands for. This is

extremely important when you come back to a piece of code after a year or so.

 Operators
You can combine Ruby code using operators. Many classes implement operators as

methods. Table 4-2 lists the most common operators and their functions.

Ruby contains a ternary operator that you can use as a short notation for if-else- end.

The ternary operator uses the form expression ? value_if_true : value_if_false:

Table 4-2. Ruby Operators

Operator Description

[] []= assignment

* / % + ** arithmetic

<= >= < > Comparison

.. ... Range

& ^ | and, exclusive oR, regular oR (bitwise)

|| && not or and Logical operators

Example Description

SERVER_IP You can create a constant in Ruby by capitalizing the first letter of a variable, but it’s

a convention that constants are written in all uppercase characters. Constants are

variables that don’t change throughout the execution of a program. In Ruby, constants

can be reassigned; however, you get a warning from the interpreter if you do so.

my_string Local variables start with a lowercase letter or an underscore, and they live for only a

short period of time. They usually exist only inside the method or block of code where

they’re first assigned.

Table 4-1. (continued)

ChapTeR 4 InTRoduCTIon To The RubY Language

76

a = 10

b = 20

a > b ? a : b

=> 20

In plain English, we’re saying if a is greater than b, then return a; otherwise, return b.

The ternary operator is very concise but still easy to read.

 Blocks and Iterators
Any method in Ruby can accept a code block—a fragment of code between curly braces

or do..end constructs. It determines whether the method in question calls the given

block. The block always appears immediately after the method call, with the start of the

block coming on the same line as the method invocation.

Here’s an example using the times method; times executes the given code block

once for each iteration. In this case, “Hello” is printed five times:

5.times { puts "Hello" }

Hello

Hello

Hello

Hello

Hello

If a method yields arguments to a block, the arguments are named between two

pipe characters (|) on the same line as the method call. In the next example, the block

receives one argument, item:

[1,2,3,4,5].each { |item| puts item }

1

2

3

4

5

ChapTeR 4 InTRoduCTIon To The RubY Language

77

Here, each number is yielded to the block in succession. You store the number in the

block variable item and use puts to print it on its own line.

The convention is to use braces for single-line blocks and do..end for multiline

blocks. Here’s an example similar to the previous one; it uses each_with_index, which

yields the item and its index in the array:

["a", "b", "c"].each_with_index do |item, index|

 puts "Item: #{item}"

 puts "Index: #{index}"

 puts "---"

end

Item: a

Index: 0

Item: b

Index: 1

Item: c

Index: 2

 Comments
Sometimes developers feel the need to annotate their code with information to help

future developers understand some code. Such annotations are called comments. In

Ruby, comments are most often identified by an unquoted #, and anything between the

and the end of the line of code is ignored by the Ruby interpreter. You can also use a #

to “comment out” a line of code—essentially temporarily disabling it while developing or

debugging. Here’s an example with both an “informative” comment and a commented-

out line:

This method creates a widget

def create_widget

 widget = Widget.new

ChapTeR 4 InTRoduCTIon To The RubY Language

78

 # widget.forge!

 widget

end

To make the best use of comments, avoid using them to state the obvious (like the

preceding example). Instead, reserve comments for explaining difficult sections of

code. (Or better yet, rewrite the code so it’s intuitively understood without comments.)

Comments can be a liability when they add too much clutter to the code or when they’re

not updated to accurately reflect changes to the code since they were first written.

 Control Structures
In all of the previous examples, the Ruby interpreter executed the code from top to

bottom. However, in the majority of cases, you want to control which methods are to be

executed and when they should be executed. The statements you want to be executed

may depend on many variables, such as the state of some computation or the user input.

For that purpose, programming languages have control-flow statements, which allow you

to execute code based on conditions. Here are a few examples of how to use if, else,

elsif, unless, while, and end. Notice that control structures in Ruby are terminated

using the end keyword:

now = Time.now

=> 2020-01-20 20:00:37 -0600

if now == Time.now

 puts "now is in the past"

elsif now > Time.now

 puts "nonsense"

else

 puts "time has passed"

end

=> time has passed

The first if statement will never trigger because there is a slight bit of time that

passes between when you set the now variable and when you test it against Time.now.

The second conditional won’t trigger because the now variable will obviously be in the

past, if only slightly. The third conditional “else” will always trigger, because neither of

the first two conditionals triggered.

ChapTeR 4 InTRoduCTIon To The RubY Language

79

A trick that makes simple conditionals easy to read is to place if and unless

conditional statements at the end of a code line so they act as modifiers. Here’s how it

looks:

a = 5

b = 10

puts "b is greater than a" if a < b

b is greater than a

puts "a is greater than b" unless a < b

nil

The unless structure was confusing for us at first. Once we started reading it as “if

not,” it made sense. In the previous example, reading the statement as “puts ‘a is greater

than b’ if not a < b” makes the most sense.

You can also use while statements, as in all major programming languages:

a = 5

b = 10

while a < b

 puts "a is #{a}"

 a += 1

end

a is 5

a is 6

a is 7

a is 8

a is 9

 Methods
Methods are little programmable actions that you can define to help your development.

Let’s leave irb for the moment and talk about pure Ruby code. (All of this also works if

you type it into irb.)

ChapTeR 4 InTRoduCTIon To The RubY Language

80

Suppose that, several times in the application you’re writing, you need to get the

current time as a string. To save yourself from having to retype Time.now.to_s over and

over, you can build a method. Every method starts with def:

def time_as_string

 Time.now.to_s

end

Anywhere in the application that you want to get the time, you type time_as_string:

puts time_as_string

"2020-01-20 20:03:15 -0600”

See how easy that is? Obviously with this code, you didn’t do much, but methods can

be much more complex. Methods can also take in variables:

def say_hello_to(name)

 "Hello, #{name}!"

end

puts say_hello_to("John")

"Hello, John!"

Here you defined a method named say_hello_to that accepts one argument name.

That method uses string interpolation to return a string of “Hello, name that was passed

to the method!” The puts then sends the response of that method to the screen.

Next, let’s look at how to put methods together into classes to make them really

powerful.

Note You already know that local variables must start with a lowercase letter and
can’t contain any characters other than letters, numbers, and underscores. Method
names are restricted to the same rules, which means they often look like variables.
Keywords (like if, or, when, and, etc.) share the same set of properties. how does
the Ruby interpreter know the difference? When Ruby encounters a word, it sees
it as a local variable name, a method invocation, or a keyword. If it’s a keyword,

ChapTeR 4 InTRoduCTIon To The RubY Language

81

then Ruby knows it and responds accordingly. If there’s an equals sign (=) to the
right of the word, Ruby assumes it’s a local variable being assigned. If it’s neither a
keyword nor an assignment, Ruby assumes it’s a method being invoked and sends
the method to the implied receiver, self.

 Classes and Objects
You’ve reviewed all the basic types of items in a Ruby application, so let’s start using them.

 Objects
Ruby is an object-oriented (OO) programming language. If you’ve never worked in an

OO language before, the metaphors used can be confusing the first time you hear them.

Basically, objects are simple ways to organize your code and the data it contains. Objects

are just like objects in the real world. You can move them around, make them do things,

destroy them, create them, and so forth. In OO programming, you act on objects by

either passing messages to them or passing them in messages to other objects. This will

become clearer as we go along.

To better understand OO programming, let’s start out with some procedural code

(which is decidedly not object oriented) first. Let’s say you’re writing a program to help

track the athletic program at a school. You have a list of all the students who are currently

participating in a team, along with their student IDs. This example looks at the rowing

team. You could keep an array of arrays representing the students on the team:

rowing_team = [[1975, "Smith", "John"], [1964, "Brown", "Dan"], ...]

Note This is called a multidimensional array. It’s simply an array that contains
more arrays as elements. You could reference the first array in the array like so:

rowing_team.first=>
[1975, "Smith", "John"]

This is an array of [id, first_name, last_name]. You’d probably need to add a

comment to explain that. If you wanted multiple teams, you could wrap this in a hash:

ChapTeR 4 InTRoduCTIon To The RubY Language

82

teams = { :rowing => [[1975, "Smith", "John"], [1964, "Brown", "Dan"], ...],

 :track => [[1975, "Smith", "John"], [1900, "Mark", "Twain"], ...]

 }

That works for now. But it’s kind of ugly, and you could easily get confused,

especially if you kept adding teams. This style of coding is referred to as procedural, and

it’s not object oriented. You’re keeping track of huge data collections that are made up

of simple types. Wouldn’t it be nice to keep all these data more organized? You’ll need to

define what your objects will look like, so you’ll need a pattern, called a class. Then you

will instantiate your class to make an instance.

 Classes
A class is like a blueprint for creating an object. You’ve been using classes all over the

place—Array, String, User, and so on. Now, let’s construct a Student class and a Team

class.

Here is the basic blueprint for a Student class:

class Student

 # Setter method for @first_name

 def first_name=(value)

 @first_name = value

 end

 # Getter method for @first_name

 def first_name

 @first_name

 end

 # Setter method for @last_name

 def last_name=(value)

 @last_name = value

 end

 # Getter method for @last_name

 def last_name

 @last_name

 end

ChapTeR 4 InTRoduCTIon To The RubY Language

83

 # Returns full name

 def full_name

 last_name + ", " + first_name

 end

end

Note “getter” and “setter” methods are methods that get an instance variable or
set an instance variable, respectively. It’s that simple. They are used to expose this
functionality both inside and outside your instance. In this case, you have a getter
and setter method for last_name and first_name. They use instance variables
(as opposed to local variables) so that the getter and setter methods can share the
same data. otherwise, if they used local variables, the getter and setter methods
for last_name, for example, would have their own data for the last name—
meaning you couldn’t “get” what you “set.”

Right now, you’re keeping track of the student’s first_name and last_name strings.

As you can see, you define a method named first_name=(value), and you take value

and put it into an instance variable named @first_name. Let’s try using this class:

Take the Class, and turn it into a real Object instance

@student = Student.new

@student.first_name = "Bob"

@student.last_name = "Jones"

puts @student.full_name

"Jones, Bob"

Instead of building a dumb array, you’ve built a smart class. When you call new on

the class, it builds a version of itself called an object, which is then stored in the @student

variable. In the next two lines, you use the = methods to store the student’s first and last

names. Then, you use the method full_name to give a nicely formatted response.

It turns out that creating getter and setter methods like this is a common practice in

OO programming. Fortunately, Ruby saves you the effort of creating them by providing a

shortcut called attr_accessor:

ChapTeR 4 InTRoduCTIon To The RubY Language

84

class Student

 attr_accessor :first_name, :last_name, :id_number

 def full_name

 last_name + ", " + first_name

 end

end

This behaves in exactly the same way as the first version. The attr_accessor bit

helps by automatically building the methods you need, such as first_name=. Also, this

time you add an @id_number.

Let’s build a Team class now:

class Team

 attr_accessor :name, :students

 def initialize(name)

 @name = name

 @students = []

 end

 def add_student(id_number, first_name, last_name)

 student = Student.new

 student.id_number = id_number

 student.first_name = first_name

 student.last_name = last_name

 @students << student

 end

 def print_students

 @students.each do |student|

 puts student.full_name

 end

 end

end

ChapTeR 4 InTRoduCTIon To The RubY Language

85

You’ve added something new to this class: the initialize method. Now, when you

call new, you can pass in the name. For example, you can type Team.new('baseball'),

and the initialize method is called. Not only does initialize set up the name but it

also sets up an instance variable named @students and turns it into an empty array. The

method add_students fills the array with new Student objects.

Let’s see how you use this class:

team = Team.new("Rowing")

team.add_student(1982, "John", "Smith")

team.add_student(1984, "Bob", "Jones")

team.print_students

 Smith, John

 Jones, Bob

Containing things in objects cleans up your code. By using classes, you ensure

that each object only needs to worry about its own concerns. If you were writing this

application without objects, everyone’s business would be shared. The variables would

all exist around one another, and there would be one huge object. Objects let you break

things up into small working parts.

By now you should have a general idea of what’s going on with some of the Ruby

code you’ve seen floating around Rails. There is a lot more to Ruby that we haven’t

touched on here. Ruby has some amazing metaprogramming features you can read

about in a book that specifically focuses on Ruby, such as Beginning Ruby: From Novice

to Professional, Third Edition, by Peter Cooper (Apress, 2016).

RUBY STYLE

Style is important when you’re programming. Ruby programmers tend to be picky about style,

and they generally adhere to a few specific guidelines, summarized here:

• Indentation size is two spaces.

• Spaces are preferred to tabs.

• Variables should be lowercase and underscored: some_variable, not

someVariable or somevariable.

ChapTeR 4 InTRoduCTIon To The RubY Language

86

• Method definitions should include parentheses and no unnecessary spaces:

MyClass.my_method(my_arg), not my_method(my_arg) or my_

method my_arg.

Whatever your personal style, the most important thing is to remain consistent. nothing is

worse than looking at code that switches between tabs and spaces or mixed and lowercase

variables.

 Ruby Documentation
You can refer to the following documentation for more information about Ruby:

• Core library: The Ruby distribution comes with a set of classes

known as the Ruby Core library, which includes base classes such

as Object, String, Array, and others. In the Ruby Core application

programming interface (API) documentation, you can find all the

classes and methods included in the Core library. In this short

chapter, you’ve already seen a few classes in action. One of the secrets

to effectively using Ruby is to know which classes and methods are

available to you. We recommend that you go to the Ruby Core API

documentation page at www.ruby-doc.org/core/ and start to learn

more about Ruby classes and methods.

• Standard library: In addition to the Core library, the Ruby

distribution comes bundled with the Ruby Standard library. It

includes a set of classes that extends the functionality of the Ruby

language by helping developers perform common programming

tasks, such as network programming and threading. Make sure you

spend some time reading the Standard library documentation at

www.ruby-doc.org/stdlib/.

• Online resources: The Ruby documentation project home page is

located at www.ruby-doc.org. There you can find additional reading

resources to help you learn Ruby, such as articles and tutorials, as

well as the Core and Standard Ruby API documentation.

ChapTeR 4 InTRoduCTIon To The RubY Language

http://www.ruby-doc.org/core/
http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org

87

 Summary
This chapter gave a strong introduction to the Ruby language. You now have the tools to

start learning the Rails framework and start building web applications. As you progress,

you’ll more than likely come to love Ruby, especially if you have a background in other

languages. Its power is only matched by its simplicity, and it’s genuinely fun to program

with. The next chapter will dive into Active Record and learn how Rails lets you easily

interact with your database.

ChapTeR 4 InTRoduCTIon To The RubY Language

89
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_5

CHAPTER 5

Working with a Database:
Active Record
Earlier, you took a whirlwind tour through creating a basic Rails application using the

built-in scaffolding feature. You sketched out a basic model for a blog application and

created the project databases. You used the built-in web server to run the application

locally and practiced adding and managing articles from the web browser. This chapter

will take a more in-depth look at how things work, starting with what is arguably the

most important part of Rails: Active Record.

You may recall from Chapter 1 that Active Record is the Ruby object-relational

mapping (ORM) library that handles database abstraction and interaction for Rails.

Whether you realized it or not, in Chapter 3 all access to the database—adding, editing,

and deleting articles—happened through the magic of Active Record.

If you’re not sure what exactly object-relational mapping is, don’t worry. By the end

of this chapter, you’ll know. For now, it’s best if you think of Active Record as being an

intermediary that sits between your code and your database, allowing you to work with

data effectively and naturally. When you use Active Record, you communicate with

your database using pure Ruby code. Active Record translates the Ruby you write into a

language that databases can understand.

This chapter teaches you how to use Active Record to talk to your database

and perform basic operations. It introduces the concepts you need to know about

communicating with databases and object-relational mapping. Then, you will look at

Active Record and walk through the techniques you need to know to effectively work

with a database from Rails. If you don’t have a lot of database experience under your

belt, don’t worry. Working with databases through Active Record is a painless and even

enjoyable experience. If you’re an experienced database guru, you’ll find that Active

Record is an intelligent and efficient way to perform database operations without the

need for low-level database-specific commands.

https://doi.org/10.1007/978-1-4842-5716-6_5#DOI

90

Note If you need to get the code at the exact point where you finished
Chapter 3, download the zip file from GitHub (https://github.com/
nicedawg/beginning-rails-6-blog/archive/chapter-03.zip).

 Introducing Active Record: Object-Relational
Mapping on Rails
The key feature of Active Record is that it maps tables to classes, table rows to objects,

and table columns to object attributes. This practice is commonly known as object-

relational mapping (ORM). To be sure, Active Record isn’t the only ORM in existence,

but it may well be the easiest to use of the bunch.

One of the reasons Active Record is so easy to use is that almost no configuration

is required to have it map a table to a class. You just need to create a Ruby class that’s

named after the table you want to map and extend the Active Record Base class:

class Book < ApplicationRecord

end

Notice the part that reads < ApplicationRecord. The less-than sign indicates that

the Book class on the left is a subclass of the one on the right, ApplicationRecord. In

Ruby, when you inherit from a class like this, you automatically gain access to all the

functionality in the parent class. ApplicationRecord is defined in your app/models/

application_record.rb. Initially, it simply inherits from ActiveRecord::Base. There’s a

lot of code in the ActiveRecord::Base class, but you don’t need to look at it. Your class

merely inherits it, and your work is finished.

Assuming Active Record knows how to find your database and that you have a table

called books (note that the table name is plural, whereas the class name is singular), the

table is automatically mapped. If you know your books table contains the fields title,

publisher, and published_at, you can do this in any Ruby context:

book = Book.new

book.title = "Beginning Rails 6"

book.publisher = "Apress"

book.published_at = "2020-04-15"

book.save

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

https://github.com/nicedawg/beginning-rails-6-blog/archive/chapter-03.zip
https://github.com/nicedawg/beginning-rails-6-blog/archive/chapter-03.zip

91

These five lines write a new record to the books table. You gain a lot of ability by the

simple act of subclassing! And that’s why Active Record is easy to use. Notice how the

table’s fields (title, publisher, and published_at) can be read and written to using

methods on the object you created (book). And you didn’t need to tell Active Record

what your fields were named or even that you had any fields. It figured this out on its

own. Of course, Active Record doesn’t just let you create new records. It can also read,

update, and delete records, plus a lot more.

Active Record is database agnostic, so it doesn’t care which database software you

use, and it supports nearly every database out there. Because it’s a high-level abstraction,

the code you write remains the same no matter which database you’re using. For the

record (no pun intended), in this book you use SQLite. As explained in Chapter 2,

SQLite is open source, easy to use, and fast, and it’s the default database used for Rails

development. (Along with the SQLite site, https://sqlite.org, the Wikipedia entry on

SQLite is a good resource: https://en.wikipedia.org/wiki/SQLite.)

At some point, you may need to switch to another database backend. (SQLite is great

for development, but not appropriate for many production apps.) Rails 6 has added a

command—rails db:system:change—which makes it easy to switch databases. We won’t

run this command for this book, but just know this command exists.

Note rails is also orM agnostic: it allows you to hook up your orM of
choice. there are several alternatives to active record which you can use if you
think active record has some deficiencies. (see www.ruby-toolbox.com/
categories/orm for a list of popular ones.) However, we feel that sticking to the
default orM is the best way to learn. We don’t cover alternative orMs in this book.

 What About SQL?
To be sure, you don’t need Active Record (or any ORM) to talk to and manipulate your

database. Databases have their own language: SQL, which is supported by nearly every

relational database in existence. Using SQL, you can view column information, fetch

a particular row or a set of rows, and search for rows containing certain criteria. You

can also use SQL to create, drop, and modify tables and insert, update, and destroy the

information stored in those tables. The problem with SQL is that it’s not object oriented.

If you want to learn the basic SQL syntax, look at Appendix B.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

https://sqlite.org
https://en.wikipedia.org/wiki/SQLite
http://www.ruby-toolbox.com/categories/orm
http://www.ruby-toolbox.com/categories/orm

92

Object-oriented programming and relational databases are fundamentally different

paradigms. The relational paradigm deals with relations and is mathematical by nature.

The object-oriented paradigm, however, deals with objects, their attributes, and their

associations to one another. As soon as you want to make objects persistent using a

relational database, you notice something: there is a rift between these two paradigms—

the so-called object-relational gap. An ORM library like Active Record helps you bridge

that gap.

Note active record is based on a design pattern. Design patterns are standard
solutions to common problems in software design. Well, it turns out that when
you’re working in an object-oriented environment, the problem of how to
effectively communicate with a database (which isn’t object oriented) is quite
common. therefore, many smart people have wrapped their minds around the
problem of how best to bring the object-oriented paradigm together with the
relational database. one of those smart people is Martin Fowler, who, in his
book Patterns of Enterprise Application Architecture (addison Wesley, 2002),
first described a pattern that he called an active record. In the pattern Fowler
described, a one-to-one mapping exists between a database record and the
object that represents it. When rails creator David Heinemeier Hansson sought to
implement an orM for his framework, he based it on Fowler’s pattern.

Active Record lets you model real-world things in your code. Rails calls these

real-world things models—the M in MVC. A model might be named Person, Product,

or Article, and it has a corresponding table in the database: people, products, or

articles. Each model is implemented as a Ruby class and is stored in the app/models

directory. Active Record provides the link between these classes and your tables,

allowing you to work with what look like regular objects, which, in turn, can be persisted

to the database. This frees you from having to write low-level SQL to talk to the database.

Instead, you work with your data as if they were an object, and Active Record does all

the translation into SQL behind the scenes. This means that in Rails, you get to stick with

one language: Ruby.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

93

Note Just because you’re using active record to abstract your sQL generation
doesn’t mean sQL is evil. active record makes it possible to execute sQL directly
whenever that’s necessary. the truth is that raw sQL is the native language of
databases, and there are some (albeit rare) cases when an orM won’t cut it.

 Active Record Conventions
Active Record achieves its zero-configuration reputation by way of convention. Most of

the conventions it uses are easy to grasp. After all, they’re conventions, so they’re already

in wide use. Although you can override most of the conventions to suit the particular

design of your database, you’ll save a lot of time and energy if you stick to them.

Let’s take a quick look at the two main conventions you need to know:

• Class names are singular; table names are plural.

• Tables contain an identity column named id.

Active Record assumes that the name of your table is the plural form of the class

name. If your table name contains underscores, then your class name is assumed to be

in CamelCase. Table 5-1 shows some examples.

All tables are assumed to have a unique identity column named id. This column

should be the table’s primary key (a value used to uniquely identify a table’s row). This is

a fairly common convention in database design. (For more information on primary keys

in database design, the Wikipedia entry has a wealth of useful information and links:

https://en.wikipedia.org/wiki/Unique_key.)

Table 5-1. Table and Class Name Conventions

Table Class

events Event

people Person

categories Category

order_items OrderItem

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

https://en.wikipedia.org/wiki/Unique_key

94

The belief in convention over configuration is firmly entrenched in the Rails

philosophy, so it should come as no surprise that there are more conventions at work

than those listed here. You’ll likely find that they all make good sense, and you can use

them without paying much attention.

 Introducing the Console
Ruby comes with a great little tool: an interactive interpreter called irb (for Interactive

Ruby). irb is Ruby’s standard REPL—a Read-Eval-Print Loop. Many programming

languages have REPL tools, and Ruby has REPL tools other than irb. (pry is a popular

alternative REPL for ruby with some great features.)

Most of the time, you invoke irb using the rails console command that ships with

Rails, but you can start up an irb session whenever you want by typing irb at the

command prompt. The advantage of the console is that it enjoys the special privilege

of being integrated with your project’s environment. This means it has access to and

knowledge of your models (and, subsequently, your database).

You use the console as a means to get inside the world of your Article model and

to work with it in the exact same way your Rails application would. As you’ll see in a

minute, this is a great way to showcase the capabilities of Active Record interactively.

You can execute any arbitrary Ruby code in irb and do anything you might otherwise

do inside your Ruby programs: set variables, evaluate conditions, and inspect objects.

The only essential difference between an interactive session and a regular old Ruby

program is that irb echoes the return value of everything it executes. This saves you from

having to explicitly print the results of an evaluation. Just run the code, and irb prints the

result.

You can tell whenever you’re inside an irb session by looking for the double greater-

than sign (>>)—or a slightly different sign depending on your environment—which

indicates the irb prompt, and the arrow symbol (=>), which indicates the response.

As you continue to progress with both Ruby and Rails, you’ll find that irb is an

essential tool. Using irb, you can play around with code and make sure it works as you

expect before you write it into your programs.

If you’ve been following along with the previous chapters, then you should have a

model called Article (in app/models/article.rb), and you’ve probably already entered

some sample data when playing with scaffolding in Chapter 3. If not, make sure you get

up to speed by reading Chapters 2 and 3 before moving on.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

95

Let’s load irb and start to experiment with the Article model. Make sure

you’re inside the blog application directory, and then type rails console on your

command line. This causes the irb console to load with your application’s development

environment and leaves you at a simple prompt, waiting for you to enter some code:

$ rails console

Loading development environment.

>>

From the console, you can interrogate your Article model for information. For

instance, you can ask it for its column names:

>> Article.column_names

=> ["id", "title", "body", "published_at", "created_at", "updated_at",

"excerpt", "location"]

Look at that! All your columns are presented as a Ruby array (you can tell by the fact

that they’re surrounded by square brackets). Another quick trick you may use often is

to type just the name of your model class in the console to find out not only the column

names but also the data type of each column:

>> Article

=> Article(id: integer, title: string, body: text, published_at: datetime,

created_at: datetime, updated_at: datetime, excerpt: string, location: string)

You get the column_names class method courtesy of the ActiveRecord::Base class

from which your Article class ultimately inherits. Actually, you get a lot of methods

courtesy of ActiveRecord::Base. To see just how many, you can ask

>> Article.methods.size

=> 690

Note Depending on the version of rails you are using and what gems you have
installed, the number of methods might be different from 690. this is normal.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

96

That’s a lot of methods! You may get a different number of methods depending on

your environment. Many of the methods are inherited from ActiveRecord, but many of

them come from classes that Active Record ultimately inherits from—like Ruby’s base

Object class and its parent classes. Don’t worry—you don’t need to memorize all of these

methods. Most of them are used internally so you’ll never have to use them directly. Still,

it’s important, if for no other reason than to get a sense of what you get for free just by

subclassing Active Record. Although in this case ApplicationRecord is considered the

superclass, it sure makes your lowly Article class super, doesn’t it? (Sorry, enough bad

humor.)

A CRASH COURSE IN RUBY CLASS DESIGN

object-oriented programming is all about objects. You create a class that encapsulates all the

logic required to create an object, along with its properties and attributes, and use the class

to produce new objects, each of which is a unique instance, distinct from other objects of the

same class. that may sound a little abstract (and with good reason—abstraction, after all,

is the name of the game), but if it helps, you can think of a class as being an object factory.

the obvious example is that of a car factory. Contained within a car factory are all the

resources, tools, workers, and processes required to produce a shiny new car. each car that

comes off the assembly line is unique. the cars may vary in size, color, and shape, or they may

not vary from one another much at all. the point is that even if two cars share the exact same

attributes, they aren’t the same car. You certainly wouldn’t expect a change to the color of one

car to affect all the others, would you? Well, in object-oriented programming, it’s not much

different. the class is the factory that produces objects, which are called instances of a class.

From a single factory, an infinite number of objects can be produced:

class Car

end

car1 = Car.new

car2 = Car.new

car1 is a Car object, which is to say it’s an instance of the class Car. each car is a different

object, created by the same factory. each object knows which class it belongs to (which

factory created it), so if you’re ever in doubt, you can ask it:

car2.class #=> Car

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

97

Your Car class doesn’t really do anything that useful—it has no attributes. so let’s give it

some. You start by giving it a make—something like toyota or nissan. of course, you need to

define a way to read and write these attributes. You do this by creating aptly named reader
and writer methods. some object-oriented languages refer to these as getters and setters. the

two sets of terms are pretty much interchangeable, but ruby favors the former. Let’s add a

reader and writer for the make attribute:

class Car

 # A writer method. Sets the value of the @make attribute

 def make=(text)

 @make = text

 end

 # A reader method. Returns the value of the @make attribute

 def make

 @make

 end

end

the methods you just defined (make() and make=()) are instance methods. this is because

they can be used only on instances of the class, which is to say the individual objects that

have been created from the class. to create a new instance of the Car class, you use the new

constructor:

my_car = Car.new

that’s all that’s required to create a new instance of the class Car in a local variable called

my_car. the variable my_car can now be considered a Car object. although you have a new

Car object, you haven’t yet given it a make. If you use the reader method you created to ask

your car what its make is, you see that it’s nil:

my_car.make #=> nil

apparently, if you want your car to have a make, you have to set it. this is where the writer

method comes in handy:

my_car.make = 'toyota'

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

98

this sets the value of the make attribute for your car to Toyota. If you had other Car objects,

their makes would remain unchanged. You’re setting the attribute only on the my_car object.

now, when you use the reader method, it confirms that the make attribute has been updated:

my_car.make #=> 'Toyota'

of course, you can change the value any time you want:

my_car.make = 'Mazda'

and again, if you ask your Car object its make, it will tell you:

my_car.make #=> 'Mazda'

that’s a simple example, but it illustrates a couple of very important points: classes are used

to create objects, and objects have attributes. every object has a unique set of attributes,

different from other objects of the same class.

the reason for this crash course in ruby class design is to illustrate the point that modeling

with active record is a lot like modeling with standard ruby classes. If you decided to think of

active record as being an extension to standard ruby classes, you wouldn’t be very far off. In

practice, this fact makes using active record in ruby quite natural. and because active record

can reflect on your tables to determine which fields to map automatically, you need to define

your attributes in only one place: the database. that’s DrY (don’t repeat yourself)! see Chapter

4 to learn more about ruby’s syntax, classes, and objects.

 Active Record Basics: CRUD
Active Record is a big topic, so let’s start with the basics. You’ve seen the so-called big

four earlier, but here they are again: create, read, update, and delete, affectionately

known as CRUD. In one way or another, most of what you do with Active Record in

particular, and with databases in general, relates to CRUD. Rails has embraced CRUD as

a design technique and as a way to simplify the modeling process. It’s no surprise then

that this chapter takes an in-depth look at how to do CRUD with Active Record.

Let’s build on the blog application you started in Chapter 3. Although your

application doesn’t do much yet, it’s at a stage where it’s easy to demonstrate these

concepts in a more concrete fashion.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

99

This section uses the console, so keep it open as you work, and feel free to

experiment as much as you want. The more experimentation you do, the deeper your

understanding will be.

 Creating New Records
You start by creating a new article in the database so you have something to work with.

There are a few different ways to create new model objects, but they’re all variations on

the same theme. This section shows how each approach works and explains the often

subtle differences among them.

 Resetting the Database

Before we begin creating records, we’ll reset our database to a clean state. If we had

data we cared about keeping, this would be a bad idea! But since we don’t, resetting our

database will help your output more closely match the output shown in the following

examples. From a directory within your Rails project, issue the following command:

$ rails db:reset

Dropped database 'db/development.sqlite3'

Dropped database 'db/test.sqlite3'

Created database 'db/development.sqlite3'

Created database 'db/test.sqlite3'

This command drops the database, recreates it, loads the schema, and seeds your

database with seed data according to your db/seeds.rb file (which is empty at this point).

 Using the new Constructor

The most basic way to create a new model object is with the new constructor. If you read

the crash course section on Ruby classes earlier, you’re sure to recognize it. If you didn’t,

then it’s enough that you know new is the usual way to create new objects of any type.

Active Record classes are no different. Try it now:

>> article = Article.new

=> #<Article id: nil, title: nil, body: nil, published_at: nil, created_at: nil,

updated_at: nil, excerpt: nil, location: nil>

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

100

All you’re doing here is creating a new Article object and storing it in the local

variable article. True to form, the console responds with the return value of the

method, which in this case is a string representation of the model object. It may look

a little funny, but this is what all Ruby objects look like when you inspect them. The

response lists the attributes of the Article class. Starting here, you could call a few of the

article variable methods. For example, the new_record? method tells you whether this

object has been persisted (saved) to the database, and the attributes method returns

a hash of the attributes that Active Record garnered by reflecting on the columns in the

table. Each key of the hash will be the name of a column (body, created_at, etc.).

>> article.new_record?

=> true

>> article.attributes

=> {"id"=>nil, "title"=>nil, "body"=>nil, "published_at"=>nil, "created_

at"=>nil, "updated_at"=>nil, "excerpt"=>nil, "location"=>nil}

Here, you’re using reader methods, which read and return the value of the

attribute in question. Because this is a brand-new record and you haven’t given it any

information, all your attributes are nil, which means they have no values. Let’s remedy

that now using (what else?) writer methods:

>> article.title = 'RailsConf'

=> "RailsConf"

>> article.body = 'RailsConf is the official gathering for Rails developers..'

=> "'RailsConf is the official gathering for Rails developers.."

>> article.published_at = '2020-01-31'

=> "2020-01-31"

Note a return of nil always represents nothing. It’s a helpful little object that
stands in the place of nothingness. If you ask an object for something and it
returns false, then false is something, so it’s not a helpful representation. as
a nerdy fact, in logics, false and true are equal and opposite values, but they’re
values in the end. the same is true of zero (0). the number 0 isn’t truly nothing—
it’s an actual representation of an abstract nothing, but it’s still something. that’s
why in programming you have nil (or null in other languages).

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

101

Now, when you inspect your Article object, you can see that it has attributes:

>> article

=> #<Article id: nil, title: "RailsConf", body: "RailsConf is the official

 gathering for Rails devel...", published_at: "2020-01-31 00:00:00",

 created_at: nil, updated_at: nil, excerpt: nil, location: nil>

You still haven’t written a new record. If you were to look at the articles table in the

database, you wouldn’t find a record for the object you’re working with. (If you squint

really hard at the preceding object-inspection string, notice that no id has been assigned

yet.) That’s because you haven’t yet saved the object to the database. Fortunately, saving

an Active Record object couldn’t be any easier:

>> article.save

 (0.1ms) begin transaction

 Article Create (0.7ms) INSERT INTO "articles" ("title", "body",

"published_at", "created_at", "updated_at") VALUES (?, ?, ?, ?, ?)

[["title", "RailsConf"], ["body", "RailsConfig is the official gathering

for Rails developers.."], ["published_at", "2020-01-31 00:00:00"],

["created_at", "2020-02-01 01:04:01.870579"], ["updated_at", "2020-02-01

01:04:01.870579"]]

 (5.0ms) commit transaction

=> true

When you save a new record, an SQL INSERT statement is constructed behind

the scenes; notice that Rails has displayed the generated SQL for you. If the INSERT is

successful, the save operation returns true; if it fails, save returns false. You can ask for

a count of the number of rows in the table just to be sure that a record was created:

>> Article.count

=> 1

Sure enough, you have a new article! You’ve got to admit, that was pretty easy. (You

may have created some articles during the scaffolding session. If so, don’t be surprised if

you have more than one article already.) Additionally, if you ask the article whether it’s a

new_record?, it responds with false. Because it’s saved, it’s not “new” anymore:

y

>> article.new_record?

=> false

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

102

Let’s create another article. This time, we’ll omit all the chatter from the console

so you can get a better sense of how the process plays out. You create a new object and

place it in a variable, you set the object’s attributes, and finally you save the record.

Note that although you’re using the local variable article to hold your object, it can be

anything you want. Usually, you use a variable that indicates the type of object you’re

creating, like article or, if you prefer shorthand, just a:

>> article = Article.new

>> article.title = "Introduction to SQL"

>> article.body = "SQL stands for Structured Query Language, .."

>> article.published_at = Time.zone.now

>> article.save

Note although writer methods look like assignments, they’re really methods
in disguise. article.title = 'something' is the functional equivalent
of article.title=('something'), where title=() is the method. ruby
provides a little syntactic sugar to make writers look more natural.

Now you’re rolling! You’ve already created a few articles and haven’t had to write a

lick of SQL. Given how easy this is, you may be surprised that you can do it in even fewer

steps, but you can. Instead of setting each attribute on its own line, you can pass all of

them to new at once. Here’s how you can rewrite the preceding process of creating a new

record in fewer lines of code:

>> article = Article.new(title: "Introduction to Active Record",

body: "Active Record is Rails's default ORM..", published_at: Time.zone.now)

>> article.save

Not bad, but you can do even better. The new constructor creates a new object, but

it’s your responsibility to save it. If you forget to save the object, it will never be written to

the database. There is another method available that combines the creating and saving

steps into one.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

103

 Using the create Method

When you want to create an object and save it in one fell swoop, you can use the create

method. Use it now to create another article:

>> Article.create(title: "RubyConf 2020", body: "The annual RubyConf will

take place in..", published_at: '2020-01-31')

=> #<Article id: 4, title: "RubyConf 2020", body: "The annual RubyConf will take

place in..", published_at: "2020-01-31 00:00:00", created_at: "2020-01-31

23:17:19", updated_at: "2020-01-31 23:17:19", excerpt: nil, location: nil>

Instead of returning true or false, the create method returns the object it created—

in this case, an Article object. You’re actually passing a hash of attributes to the create

method. Although hashes are normally surrounded by curly braces, when a hash is the

last argument to a Ruby method, the braces are optional. You can just as easily create the

attribute’s hash first and then give that to create:

>> attributes = { title: "Rails Pub Nite", body: "Rails Pub Nite is every

3rd Monday of each month, except in December.", published_at: "2020-01-31"}

=> {:title=>"Rails Pub Nite", :body=>"Rails Pub Nite is every

3rd Monday of each month, except in December.", :published_at=>" 2020-01- 31"}

>> Article.create(attributes)

=> #<Article id: 5, title: "Rails Pub Nite", body: "Rails Pub Nite is every 3rd

Monday of each month, e...", published_at: "2020-01-31 00:00:00",

created_at: "2020-01-31 23:36:07", updated_at: "2020-01-31 23:36:07",

excerpt: nil, location: nil>

Let’s see how many articles you’ve created by doing a count:

>> Article.count

=> 5

You’re getting the hang of this now. To summarize, when you want to create a new

object and save it manually, use the new constructor; when you want to create and save

in one operation, use create. You’ve already created five new records, which are plenty

for now, so let’s move on to the next step: finding records.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

104

 Reading (Finding) Records
Now that you have a few articles to play with, it’s time to practice finding them. Every

model class understands the find method. It’s quite versatile and accepts a number of

options that modify its behavior.

Let’s start with the basics. find is a class method. That means you use it on the model

class rather than an object of that class, just as you did the new and create methods. Like

new and create, a find operation, if successful, returns a new object.

You can call find four ways:

• find(:id): Finds a single record by its unique id or multiple records

if :id is an array of ids

• all: Finds all records in the table

• first: Finds the first record

• last: Finds the last record

The following sections go through the different ways to call find and explain how to

use each.

 Finding a Single Record Using an ID

The find, first, and last methods mostly return a single record. The :id option is

specific; you use it when you’re looking for a specific record and you know its unique

id. If you give it a single id, it either returns the corresponding record (if there is one) or

raises an exception (if there isn’t one). If you pass an array of ids—like [4, 5]—as the

parameter, the method returns an array with all records that match the passed in ids. The

first method is a little more forgiving; it returns the first record in the table or nil if the

table is empty, as explained in the next section.

You can find a single record using its unique id by using find(:id). Here’s how it

works:

>> Article.find(3)

=> #<Article id: 3, title: "Introduction to Active Record", body: "Active Record

is Rails's default ORM..", published_at: "2020-01-31 04:00:00",

created_at: "2020-01-31 23:15:37", updated_at: "2020-01-31 23:15:37",

excerpt: nil, location: nil>

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

105

As you can see, you found the article with the id of 3. If you want to take a closer look

at what was returned, you can store the result in a local variable:

>> article = Article.find(3)

=> #<Article id: 3 ...>

>> article.id

=> 3

>> article.title

=> "Introduction to Active Record"

Here, you store the object that find returned in the local variable article. Then, you

can interrogate it and ask for its attributes.

All this works because an article with the id 3 actually exists. If instead you search for

a record that you know doesn’t exist (say, 1037), Active Record raises an exception:

>> Article.find 1037

ActiveRecord::RecordNotFound: (Couldn't find Article with ‘id’=1037)

...

Active Record raises a RecordNotFound exception and tells you it couldn’t find any

articles with the id of 1037. Of course it couldn’t. You know that no such record exists.

The lesson here is that you use find(:id) when you’re looking for a specific record that

you expect to exist. If the record doesn’t exist, it’s probably an error you want to know

about; therefore, Active Record raises RecordNotFound.

RECOVERING FROM RECORDNOTFOUND ERRORS

When you use find with a single id, you expect the record to exist. Usually we don’t want to

display rails error messages directly to the user, but we can make them nicer and customize the

verbiage. so how can you recover gracefully from a RecordNotFound exception if you need to?

You can use ruby’s facility for error handling: begin and rescue. Here’s how this works:

begin

 Article.find(1037)

rescue ActiveRecord::RecordNotFound

 puts "We couldn't find that record"

end

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

106

First, you open a begin block. then, you cause a RecordNotFound error by deliberately

searching for a record that you know doesn’t exist. When the error occurs, ruby runs the code

you put inside the rescue part of the body, which prints a friendly message.

You can put anything you like in the rescue block—you might want to render a specific view

here, log the error, or even redirect to another location. error handling works the same way

with other error messages also. If you need to rescue from any error at all, you can just use

rescue without specifying an error class.

 Finding a Single Record Using first
You can find the first record that the database returns by using the first method. This

always returns exactly one item, unless the table is empty, in which case nil is returned:

>> Article.first

=> #<Article id: 1, title: "RailsConf", body: "RailsConf is the official

 gathering for Rails devel...", published_at: "2020-01-31 00:00:00",

 created_at: "2020-01-31 23:12:09", updated_at: "2020-01-31 23:12:09",

 excerpt: nil, location: nil>

Keep in mind that this isn’t necessarily the first record in the table. It depends on the

database software you’re using and the default order in which you want your records

to be retrieved. Usually records are ordered by either created_at or updated_at. If you

need to be sure you get the first record you’re expecting, you should specify an order.

It’s the equivalent of saying SELECT * FROM table LIMIT 1 in SQL. If you need to find a

record and don’t particularly care which record it is, first can come in handy. Note that

first doesn’t raise an exception if the record can’t be found.

The last method works exactly the same as first; however, records are retrieved

in the inverse order of first. For example, if records from articles are listed in

chronological order for first, they’re retrieved in inverse chronological order for last:

>> Article.last

=> #<Article id: 5, title: "Rails Pub Nite", body: "Rails Pub Nite is every 3rd

Monday of each month, e...", published_at: "2020-01-31 00:00:00",

created_at: "2020-01-31 23:36:07", updated_at: "2020-01-31 23:36:07",

excerpt: nil, location: nil>

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

107

 Finding All Records

So far, you’ve looked at finding a single record. In each case, find, first, or last returns

a single Article object. But what if you want to find more than one article? In your

application, you want to display all the articles on the home page.

If you run the all method, it returns all records for that class:

>> articles = Article.all

=> #<ActiveRecord::Relation [#<Article id: 1,..> #<Article id: 2,..>,

#<Article id: 3,..>,

#<Article id: 4,..> , #<Article id: 5,..>]>

Look closely at the response, and you’ll see that an instance of

ActiveRecord::Relation was returned. Most ActiveRecord query methods return an

instance of ActiveRecord::Relation. Why do this instead of simply returning an array of

Article instances? By returning an ActiveRecord::Relation, it allows more query methods

to be chained together and for the SQL to be executed at the last possible moment. We’ll

see an example of that soon.

Even though articles at this point is an ActiveRecord::Relation object, it can behave

in many cases like an array. Like all Ruby arrays, you can ask for its size:

>> articles.size

=> 5

Because articles acts like an array, you can access the individual elements it

contains by using its index, which is numeric, starting at 0:

>> articles[0]

=> #<Article id: 1, title: "RailsConf", body: "RailsConf is the official

 gathering for Rails devel...", published_at: "2020-01-31 00:00:00",

 created_at: "2020-01-31 23:12:09", updated_at: "2020-01-31 23:12:09",

 excerpt: nil, location: nil>

And after you’ve isolated a single Article object, you can find its attributes:

>> articles[0].title

=> "RailsConf"

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

108

What’s happening here is that all produces an array, and you access the object at

the 0 index and call the title method. You can also use the first method, which all

arrays respond to, and get the same result, but with a little more natural syntax:

>> articles.first.title

=> "RailsConf"

If you want to iterate over the collection, you can use the each method, which, again,

works with all arrays. Here, you loop over the array, extract each item into a variable

called article, and print its title attribute using the puts command:

>> articles.each { |article| puts article.title }

RailsConf

Introduction to SQL

Introduction to Active Record

RubyConf 2020

Rails Pub Nite

=> [#<Article id: 1,..> #<Article id: 2,..>, #<Article id: 3,..>,

#<Article id: 4,..> , #<Article id: 5,..>]

Sometimes you want your results ordered. For example, if you’re listing all your

articles, you might want them listed alphabetically by title. To do so, you can use the

order method, which accepts as argument the name of the column or columns. For you

SQL heroes, it corresponds to the SQL ORDER clause:

>> articles = Article.order(:title)

=> #<ActiveRecord::Relation [#<Article id: 3,..> #<Article id: 2,..>,

#<Article id: 5,..>,

#<Article id: 1,..> , #<Article id: 4,..>]>

>> articles.each {|article| puts article.title }

Introduction to Active Record

Introduction to SQL

Rails Pub Nite

RailsConf

RubyConf 2020

=> [#<Article id: 3,..> #<Article id: 2,..>, #<Article id: 5,..>,

#<Article id: 1,..> , #<Article id: 4,..>]

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

109

Notice that when you call the order method, it returns an ActiveRecord::Relation

object, as you may have expected. As mentioned earlier, one feature of

ActiveRecord::Relation is that it allows you to chain calls to multiple methods before

sending the command to the database; so you can call all, followed by order, and some

other methods we’ll talk about in Chapter 6, to create more precise database queries.

Also, Active Record is smart enough to use lazy loading, a practice that only hits the

database when necessary—in this example, when you call the each method.

By default, any column is ordered in ascending order (e.g., 1–10 or a–z). If you want

to reverse this to get descending order, use the :desc modifier (similar to how you would

in SQL):

>> articles = Article.order(published_at: :desc)

=> [#<Article id: 3,..> #<Article id: 2,..>, #<Article id: 1,..>,

#<Article id: 4,..> , #<Article id: 5,..>]

>> articles.each {|article| puts article.title }

Introduction to Active Record

Introduction to SQL

RailsConf

RubyConf 2020

Rails Pub Nite

=> [#<Article id: 3,..> #<Article id: 2,..>, #<Article id: 1,..>,

#<Article id: 4,..> , #<Article id: 5,..>]

 Finding with Conditions

Although finding a record by its primary key is useful, it requires that you know the id

to begin with, which isn’t always the case. Sometimes you want to find records based

on other criteria. This is where conditions come into play. Conditions correspond to the

SQL WHERE clause. If you want to find a record by its title, you call the where method and

pass a value that contains either a hash of conditions or an SQL fragment.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

110

Here, you use a hash of conditions to indicate you want the first article with the title

RailsConf:

>> Article.where(title: 'RailsConf').first

=> #<Article id: 1, title: "RailsConf", body: "RailsConf is the official

 gathering for Rails devel...", published_at: "2020-01-31 00:00:00",

 created_at: "2020-01-31 23:12:09", updated_at: "2020-01-31 23:12:09",

 excerpt: nil, location: nil>

Because you use first, you get only one record (the first one in the result set, even

if there is more than one result). If you instead use all, you get back a collection, even if

the collection has only one item in it:

>> Article.where(title: 'RailsConf').all

=> #<ActiveRecord::Relation [#<Article id: 1, title: "RailsConf", body:

"RailsConf is the official gathering for Rails devel...", published_at:

"2020-01-31 00:00:00",

 created_at: "2020-01-31 23:12:09", updated_at: "2020-01-31 23:12:09",

 excerpt: nil, location: nil>]>

Notice the square brackets, and remember that they indicate an array. More often

than not, when you’re doing an all operation, you expect more than one record in

return. But all always produces an array, even if that array is empty:

>> Article.where(title: 'Unknown').all

=> #<ActiveRecord::Relation []>

 Updating Records
Updating a record is a lot like creating a record. You can update attributes one at a time

and then save the result, or you can update attributes in one fell swoop. When you

update a record, an SQL UPDATE statement is constructed behind the scenes. First, you

use a find operation to retrieve the record you want to update; next, you modify its

attributes; and finally, you save it back to the database:

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

111

>> article = Article.first

>> article.title = "Rails 6 is great"

>> article.published_at = Time.zone.now

>> article.save

=> true

This should look pretty familiar by now. The only real difference between this

process and the process of creating a new record is that instead of creating a brand-new

row, you fetch an existing row. You update the attributes the exact same way, and you

save the record the same way. Just as when you create a new record, when save operates

on an existing record, it returns true or false, depending on whether the operation was

successful.

When you want to update an object’s attributes and save it in a single operation, you

use the update_attributes method. Unlike when you create a new record with create,

because you’re updating a record, you need to fetch that record first. That’s where the

other subtle difference lies. Unlike create, which is a class method (it operates on the

class, not on an object), update_attributes is an instance method. Instance methods

work on objects or instances of a class. Here’s an example:

>> article = Article.first

>> article.update_attributes(title: "RailsConf2020", published_at: 1.day.ago)

=> true

 Deleting Records
You’re finally at the last component of CRUD: delete. When you’re working with

databases, you inevitably need to delete records. If a user cancels their order or if a book

goes out of stock or even if you have an error in a given row, you may want to delete it.

Sometimes you need to delete all rows in a table, and sometimes you want to delete only

a specific row. Active Record makes deleting rows every bit as easy as creating them.

There are two styles of row deletion: destroy and delete. The destroy style works

on the instance. It instantiates the object, which means it finds a single row first and then

deletes the row from the database. The delete style operates on the class, which is to say

it operates on the table rather than a given row from that table.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

112

 Using destroy

The easiest and most common way to remove a record is to use the destroy method,

which means the first thing you need to do is find the record you want to destroy:

>> article = Article.last

>> article.destroy

=> #<Article id: 5, title: "Rails Pub Nite", body: "Rails Pub Nite is

every 3rd

Monday of each month, e...", published_at: "2020-01-31 00:00:00",

created_at: "2020-01-31 23:36:07", updated_at: "2020-01-31 23:36:07",

excerpt: nil, location: nil>

If you’re interested, the SQL that Active Record generates in response to the destroy

operation is as follows:

DELETE FROM articles WHERE id = 5;

As a result, the article with the id of 5 is permanently deleted. But you still have the

object hanging around in the variable article, so how can it really be gone? The answer

is that although the object remains hydrated (retains all its attributes), it’s frozen. You can

still access its attributes, but you can’t modify them. Let’s see what happens if you try to

change the location:

>> article.location = 'Toronto, ON'

RuntimeError (Can't modify frozen hash)

It appears that the deleted article is now frozen. The object remains, but it’s read- only,

so you can’t modify it. Given this fact, if you’re going to delete the record, you don’t really need

to create an explicit Article object after all. You can do the destroy in a one- line operation:

>> Article.last.destroy

Here, the object instantiation is implicit. You’re still calling the destroy instance

method, but you’re not storing an Article object in a local variable first.

You can still do better. You can use the class method destroy, which does a find

automatically. As with find and create, you can use destroy directly on the class (i.e.,

you don’t create an object first). Because it operates on the table and not the row, you

need to help it by telling it which row or rows you want to target. Here’s how you delete

the article with the id 1:

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

113

>> Article.destroy(1)

=> [#<Article id: 1, title: "RailsConf", body: "RailsConf is the official

 gathering for Rails devel...", published_at: "2020-01-31 00:00:00",

 created_at: "2020-01-31 23:12:09", updated_at: "2020-01-31 23:12:09",

 excerpt: nil, location: nil>]

Sometimes you want to destroy more than one record. Just as with find, you can give

destroy an array of primary keys whose rows you want to remove. Use square brackets

([]) to indicate that you’re passing an array:

>> Article.destroy([2,3])

=> [#<Article id: 2, ..>, #<Article id: 3, ..>]

 Using delete
The second style of row deletion is delete. Every Active Record class has class methods

called delete and delete_all. The delete family of methods differs from destroy in

that they don’t instantiate or perform callbacks on the object they’re deleting. They

remove the row immediately from the database.

Just like find and create, you use delete and delete_all directly on the class (i.e.,

you don’t create an object first). Because the method operates on the table and not the

row, you need to help it by telling it which row or rows you want to target:

>> Article.delete(4)

=> 1

Here you specify a single primary key for the article you want to delete. The

operation responds with the number of records removed. Because a primary key

uniquely identifies a single record, only one record is deleted.

Just as with find, you can give delete an array of primary keys whose rows you want

to delete. Use square brackets ([]) to indicate that you’re passing an array:

>> Article.delete([5, 6])

=> 0

The return of the delete method in this case is 0, since we didn’t have records with

id’s 5 and 6 in our database. Zero records were deleted.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

114

Note Unlike find, which is capable of collecting any arguments it receives into
an array automatically, delete must be supplied with an array object explicitly.
so, although Model.find(1,2,3) works, Model.delete(1,2,3) fails with an
argument error (because it’s really receiving three arguments). to delete multiple
rows by primary key, you must pass an actual array object. the following works,
because it’s a single array (containing three items) and thus a single argument:
Model.delete([1,2,3]).

 Deleting with Conditions

You can delete all rows that match a given condition with the delete_by class method.

The following deletes all articles before a certain date:

>> Article.delete_by("published_at < '2011-01-01'")

>> 0

The return value of delete_by is the number of records deleted.

 When Good Models Go Bad
So far, you’ve been nice to your models and have made them happy by providing just

the information they need. But in Chapter 3 you provided validations that prevented

you from saving bad records to the database. Specifically, you told the Article model

that it should never allow itself to be saved to the database if it isn’t given a title and

body. Look at the Article model, as shown in Listing 5-1, to recall how validations are

specified.

Listing 5-1. The app/models/article.rb File

class Article < ApplicationRecord

 validates :title, :body, presence: true

end

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

115

You may have noticed in your generated scaffolding that you use a helper method

called errors.full_messages to print out a helpful error message. That helper isn’t

black magic; it’s a bit of code that asks the model associated with the form for its list of

errors (also referred to as the errors collection) and returns a nicely formatted block of

HTML to show the user.

Note You may have noticed that you call methods in ruby with a dot (.). For
instance, you say article.errors to get the errors collection back. However,
ruby documentation uses the # symbol along with the class name to let the
reader know that there is a method it can call on for an instance of that class.
For example, on the Article class, you can use the method article.title
as Article#title, because it’s something that acts on a particular article
but not the Article class itself. You’ve also seen that you can write the code
Article.count, because you don’t need to know about a particular @article,
but only Article objects in general. keep this convention in mind when you’re
reading ruby documentation.

The secret to this is that every Active Record object has an automatic attribute added

to it called errors. To get started, create a fresh Article object:

>> article = Article.new

=> #<Article id: nil, title: nil, body: nil, published_at: nil,

created_at: nil,

updated_at: nil, excerpt: nil, location: nil>

>> article.errors.any?

=> false

This seems odd: you know this new article should have errors, because it’s invalid—

you didn’t give it a title or a body. This is because you haven’t triggered the validations

yet. You can cause them to occur a couple of ways. The most obvious way is to attempt to

save the object:

>> article.save

=> false

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

116

Every time you’ve used save before, the model has happily chirped true back to you.

But this time, save returns false. This is because before the model allows itself to be

saved, it runs through its gauntlet of validations, and one or more of those validations

failed.

You would be right to guess that if you tried article.errors.any? again, it would

return true:

>> article.errors.any?

=> true

Let’s interrogate the errors collection a little more closely with the full_messages

method:

>> article.errors.full_messages

=> ["Title can't be blank", "Body can't be blank"]

Voilà! Look how helpful the model is being. It’s passing back an array of error

messages.

If there is only one attribute that you care about, you can also ask the errors

collection for a particular attribute’s errors:

>> article.errors.messages[:title]

=> "can't be blank"

Notice that because you tell it which attribute you’re looking for, the message returns

a slightly different result than before. What if you ask for an attribute that doesn’t exist or

doesn’t have errors?

>> article.errors.messages(:nonexistent)

=> []

You get back an empty array, which lets you know that you didn’t find anything.

Another helpful method is size, which, as you saw earlier, works with all arrays:

>> article.errors.size

=> 2

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

117

Saving isn’t the only way you can cause validations to run. You can ask a model

object if it’s valid?:

>> article.valid?

=> false

If you try that on a new object, the errors collection magically fills up with your

pretty errors.

 Summary
In this chapter, you’ve become familiar with using the console to work with models.

You’ve learned how to create, read, update, and destroy model objects. Also, you’ve

briefly looked into how to see the simple errors caused by the validations you set up on

your model in Chapter 3.

The next chapter discusses how to create relationships (called associations) among

your models, and you begin to see how Active Record helps you work with your data in

extremely powerful ways. It also expands on the concept of validations and shows how

you can do a lot more with validates. You’ll see that Rails provides a bevy of prewritten

validators and an easy way to write your own customized validators.

CHapter 5 WorkInG WItH a Database: aCtIve reCorD

119
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_6

CHAPTER 6

Advanced Active Record:
Enhancing Your Models
Chapter 5 introduced the basics of Active Record and how to use it. This chapter delves

more deeply into Active Record and teaches you how to enhance your models.

Model enhancement is a general term. It refers to endowing your models

with attributes and capabilities that go beyond what you get from subclassing

ActiveRecord::Base. A model contains all the logic that governs its citizenship in the

world of your application. In the model, you can define how it interacts with other

models, what a model should accept as a minimum amount of information for it to be

considered valid, and other abilities and responsibilities.

Models need to relate to one another. In the real world, bank accounts have

transactions, books belong to authors, and products have categories. These relationships are

referred to as associations, and Active Record makes them easy to work with. Models also

have requirements. For instance, you can’t have a transaction without an amount—it might

break your system if someone tried to have an empty transaction. So Active Record gives you

easy ways to tell a model what it should expect in order to be saved to the database.

This chapter will teach you how to programmatically enhance your models so they’re

more than just simple maps of your tables. To demonstrate the concepts, you build on

the blog application you started in Chapter 3, so keep it handy if you want to follow along

with the examples.

 Adding Methods
Let’s begin with a brief review of Active Record basics. At the simplest level, Active

Record works by automatically wrapping database tables whose names match the plural,

underscored version of any classes that inherit from ActiveRecord::Base. For example,

https://doi.org/10.1007/978-1-4842-5716-6_6#DOI

120

if you want to wrap the users table, you create a subclass of ApplicationRecord (which is

a subclass of ActiveRecord::Base) called User, like this:

class User < ApplicationRecord

end

That’s all you really need to have Active Record map the users table and get all the

basic CRUD functionality described in Chapter 5. But few models are actually this bare.

So far, you’ve left your model classes unchanged. That’s a good thing, and it speaks

to the power and simplicity of Active Record. However, it leaves something to be desired.

Most of the time, your models need to do a lot more than just wrap a table.

Note If you’re familiar with SQL, you’re probably feeling that Active Record
provides only simple case solutions and can’t handle complicated cases. That’s
entirely untrue. Although SQL is useful for highly customized database queries,
most Rails projects rarely need to touch SQL, thanks to some clever tricks in Active
Record.

The primary way in which you enhance models is by adding methods to them. This

is referred to as adding domain logic. With Active Record, all the logic for a particular

table is contained in one place: the model. This is why the model is said to encapsulate

all the domain logic. This logic includes access rules, validations, relationships, and,

well, just about anything else you feel like adding.

In addition to all the column-based reader and writer methods you get by wrapping

a table, you’re free to define your own methods on the class. An Active Record subclass

isn’t much different from a regular Ruby class; about the only difference is that you need

to make sure you don’t unintentionally overwrite any of Active Record’s methods (e.g.,

find, save, or destroy). For the most part, though, this isn’t a problem.

Let’s look at a simple example. You often need to format data, rather than accessing a

model attribute in its raw form. In the blog application, you want to be able to produce a

formatted, long title that includes the title of the article and its date. To accomplish this,

all you need to do is define a new instance method called long_title that performs the

concatenation of those attributes and produces a formatted string. Update your copy

of app/models/article.rb so that it matches the code shown in Listing 6-1 by adding the

long_title method definition.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

121

Listing 6-1. Custom long_title Method, in app/models/article.rb:

https://gist.github.com/nicedawg/0355af37c2e0375b004d4e0c12566b4b

class Article < ApplicationRecord

 validates :title, :body, presence: true

 def long_title

 "#{title} - #{published_at}"

 end

end

You’ve just created an instance method on the model; that is, you’ve told the Article

model that it’s now endowed with a new attribute called long_title. You can address

long_title the same way you would any other method on the class. Open an irb session

and try this on the console. From the terminal window, make sure you’re inside the blog

application directory, and then start up the Rails console with the following command:

$ rails console

This should drop you at a simple irb prompt with two right arrows and a blinking

cursor; this may look a bit different based on your environment. From here, you create a

new article and use it to call the long_title method:

>> Article.create title: 'Advanced Active Record', published_at: Date.today,

body: 'Models need to relate to each other. In the real world, ...'

=> #<Article id: 1, title: "Advanced Active Record", ...>

>> Article.last.long_title

=> "Advanced Active Record - 2020-02-03 00:00:00 UTC"

There is no difference between the methods Active Record creates and those you

define. Here, instead of asking the model for one of the attributes garnered from the

database column names, you define your own method called long_title, which does a

bit more than the standard title method.

The methods you add to your models can be as simple as returning true or false or

as complicated as doing major calculations and formatting on the object. The full power

of Ruby is in your hands to do with as you please.

Don’t worry if you don’t feel comfortable adding your own methods to models just

yet. The important part to note from this section is that Active Record models are regular

Ruby classes that can be augmented, modified, played with, poked, and turned inside

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/0355af37c2e0375b004d4e0c12566b4b

122

out with sufficient Ruby-fu. Knowing this is extremely helpful in being able to pull back

the curtain and understand the advanced features of Active Record.

FAT MODELS

Some might be nervous by the long_title method you just used. They may see it as a

violation of the MvC paradigm. They might ask, “Isn’t formatting code supposed to be in

the view?” In general, the answer is yes. however, it often helps to have models that act as

intelligent objects. If you ask a model for some information about itself, it’s natural to assume

that it can give you a decent answer that doesn’t require a large amount of work later on

to figure out what it means. So small formatted strings and basic data types that faithfully

represent the data in the model are good things to have in your code.

An intelligent model like this is often called fat. Instead of performing model-related logic in

other places (i.e., in controllers or views), you keep it in the model, thus making it fat. This

makes your models easier to work with and helps your code stay dRY.

A basic rule of thumb while trying to stay dRY is that if you find yourself copying and pasting a

bit of code, it may be worth your time to take a moment and figure out if there is a better way

to approach the problem. For instance, if you had kept the Article#long_title formatting

outside the model, you might have needed to repeat the same basic string-formatting

procedure every time you wanted a human-friendly representation of an article’s title. Then

again, creating that method is a waste of time if you’re going to use it in only one place in the

application and never again.

This is where programmer experience comes in. As you learn and mature in your Rails

programming, you’ll find it easier and easier to figure out where stuff is supposed to go. If

you’re always aiming for a goal of having the most maintainable and beautiful code you can

possibly write, your projects will naturally become easier to maintain.

Next, let’s look at another common form of model enhancement: associations. Active

Record’s associations give you the ability to define in simple terms how models relate to

and interact with one another.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

123

 Using Associations
It’s a lowly application that has only one table. Most applications have many tables, and

these tables typically need to relate to one another in one way or another. Associations

are a common model enhancement that let you relate tables to one another.

Associations are natural constructs that you encounter all the time in the real world:

articles have comments, stores have products, magazines have subscriptions, and so on.

In a relational database system, you relate tables using a foreign key reference in one table

to the primary key of another table.

Note The terms relationship and association can be used pretty much
interchangeably. however, when this book refers to associations, it generally
means the association on the Active Record side, as opposed to the actual foreign
key relationships at the database level.

Let’s take the example of articles and comments. In a situation where a given article

can have any number of comments attached to it, each comment belongs to a particular

article. Figure 6-1 demonstrates the association from the database’s point of view.

The example in Figure 6-1 uses a column named article_id in the comments table

to identify the related article in the articles table. In database speak, comments holds a

foreign key reference to articles.

By Rails convention, the foreign key column is the singular, lowercase name of the

target class with _id appended. So, for products that belong to a particular store, the

foreign key is named store_id; for subscriptions that belong to magazines, the foreign

key is named magazine_id; and so on. Here’s the pattern:

#{singular_name_of_parent_class}_id

Table 6-1 shows a few more examples, just to drive this concept home.

Figure 6-1. The relationship between the articles and comments tables

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

124

Whenever you need one table to reference another table, remember to create the

foreign key column in the table doing the referencing. In other words, the model that

contains the “belongs_to” needs to have the foreign key column in it. That’s all your table

needs before you can put Active Record’s associations to work.

 Declaring Associations
As you’ve probably come to expect by now, Active Record makes working with

associations easy. You don’t need to get down to the bare metal of the database very

often. As long as you understand the concept of primary and foreign keys and how to

create basic relationships in your tables, Active Record does the proverbial heavy lifting,

converting foreign key relationships into rich object associations. This means you get to

access associated objects cleanly and naturally using Ruby:

article.comments

store.products

magazine.subscriptions

After the relationships are defined in your database tables, you use a set of

macro- like class methods in your models to create associations. They look like this:

• has_one

• has_many

• belongs_to

• has_and_belongs_to_many

Table 6-1. Sample Foreign Key References

Model Table Foreign Key to Reference This Table

Article articles article_id

Person people person_id

Friend friends friend_id

Category categories category_id

Book books book_id

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

125

Here’s a quick example. The Message model declares a has_many relationship with

Attachment; Attachment returns the favor by declaring that each of its objects belongs to

a particular Message:

class Message < ApplicationRecord

 has_many :attachments

end

class Attachment < ApplicationRecord

 belongs_to :message

end

Given these instructions, Active Record expects to find a table called attachments

that has a field in it called message_id (the foreign key reference). It uses this association

to let you enter things like Message.first.attachments and get an array (or a collection)

of Attachment objects that belongs to the first Message in the database. Moreover, you

can work with your associations in both directions. So you can enter Attachment.first.

message to access the Message to which the first Attachment belongs. It sounds like a

mouthful, but when you get the hang of it, it’s quite intuitive.

Whenever you declare an association, Active Record automatically adds a set of

methods to your model that makes dealing with the association easier. This is a lot like

the way in which Active Record creates methods based on your column names. When

it notices you’ve declared an association, it dynamically creates methods that enable

you to work with that association. The following sections go through the different types

of associations and describe how to work with them. You also learn about the various

options you can use to fine-tune associations.

 Creating One-to-One Associations
One-to-one associations describe a pattern where a row in one table is related to exactly

one row in another table.

Suppose that in your blog application, you have users and profiles, and each

user has exactly one profile. Assume you have User and Profile models, and the

corresponding users and profiles tables have the appropriate columns. You can tell

your User model that it has one Profile and your Profile model that it belongs to a

User. Active Record takes care of the rest. The has_one and belongs_to macros are

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

126

designed to read like regular English, so they sound natural in conversation and are

easy to remember. Each represents a different side of the equation, working in tandem

to make the association complete.

Note part of the Rails philosophy about development is that the gap between
programmers and other project stakeholders should be bridged. using natural
language, such as has one and belongs to, in describing programmatic concepts
helps bridge this gap, providing a construct that everyone can understand.

 Adding the User and Profile Models

When you started the blog application, you decided to let anyone create new articles.

This worked fine when only one person was using the system; but you want this to be a

multiple-user application and let different people sign up, sign in, and start writing their

own articles separately from one another.

Let’s fire up the generator and create the User model:

$ rails generate model User email:string password:string

Just as you saw in Chapter 3, the model generator creates, among other

things, a model file in app/models and a migration in db/migrate. Open db/

migrate/20200204011416_create_users.rb, and you should see the now-familiar code

in Listing 6-2. (Remember that the timestamp in the migration file will differ.)

Listing 6-2. Migration to Create the users Table, db/migrate/20200204011416_
create_users.rb

class CreateUsers < ActiveRecord::Migration[6.0]

 def change

 create_table :users do |t|

 t.string :email

 t.string :password

 t.timestamps

 end

 end

end

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

127

This is standard migration fare. In the change definition, you use the create_table

method to create a new users table. The new table object is yielded to the block in the

variable, t, on which you call the string method to create each column. Along with the

standard email field, you specify a password field, which you use for authentication,

as explained in the “Reviewing the Updated Models” section later in this chapter. The

primary key, id, is created automatically, so there’s no need to specify it here.

As you probably noticed, the User model is extremely simple: it only contains

information that allows the user to authenticate into the application. Some users

may want to add a lot more detail about themselves and would love the ability to

enter personal information such as their birthday, a biography, their favorite color,

their Twitter account name, and so on. You can create a Profile model to hold such

information outside the scope of the User model. Just as you did for the User model, use

the generator again:

$ rails generate model Profile user:references name:string birthday:date

bio:text color:string twitter:string

You also have a migration file for the Profile model in db/

migrate/20200204013911_create_profiles.rb—feel free to take a peek. Notice the

existence of the foreign key for users in the profiles schema. Also recall that you don’t

need to specify primary keys in migrations because they’re created automatically.

Now, all you need to do is run the migrations and create the new tables using the

db:migrate Rails command. Run the migrations with the following command:

$ rails db:migrate

== CreateUsers: migrating ==

-- create_table(:users)

 -> 0.0019s

== CreateUsers: migrated (0.0020s) ======================================

== CreateProfiles: migrating ==

-- create_table(:profiles)

 -> 0.0027s

== CreateProfiles: migrated (0.0035s) ===================================

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

128

With the table and foreign keys in place, Listings 6-3 and 6-4 show how to declare

the one-to-one association on the User and Profile models, respectively. Please update

your User model in app/models/user.rb to match Listing 6-3. However, we won’t need to

update the Profile model to match Listing 6-4; the rails generate command added exactly

what we needed!

Listing 6-3. The User Model, app/models/user.rb: https://gist.github.

com/nicedawg/b66208334e6be63b24fcdf1d74eebf3b

class User < ApplicationRecord

 has_one :profile

end

Listing 6-4. The Profile Model, app/models/profile.rb: https://gist.

github.com/nicedawg/06e2f87d7159eb1af94a16cde5a9fe06

class Profile < ApplicationRecord

 belongs_to :user

end

The has_one declaration on the User model tells Active Record that it can expect to

find one record in the profiles table that has a user_id matching the primary key of

a row in the users table. The Profile model, in turn, declares that each of its records

belongs_to a particular User.

Telling the Profile model that it belongs_to :user is saying, in effect, that each

Profile object references a particular User. You can even go so far as to say that User

is the parent and Profile is the child. The child model is dependent on the parent and

therefore references it. Figure 6-2 demonstrates the has_one relationship.

Figure 6-2. The one-to-one relationship between users and profiles

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/b66208334e6be63b24fcdf1d74eebf3b
https://gist.github.com/nicedawg/b66208334e6be63b24fcdf1d74eebf3b
https://gist.github.com/nicedawg/06e2f87d7159eb1af94a16cde5a9fe06
https://gist.github.com/nicedawg/06e2f87d7159eb1af94a16cde5a9fe06

129

Let’s get inside a console session (rails console) and see how this comes together.

If you have a console session opened, run the reload! command in the console session

to make sure it loads the newly generated models. Follow along to create objects and

relate them to one another. First, create a user and a profile as follows:

>> reload!

Reloading...

>> user = User.create(email: "user@example.com", password: "secret")

=> #<User id: 1, email: "user@example.com", password: [FILTERED], created_

at: "2020-02-04 01:42:21", updated_at: "2020-02-04 01:42:21">

>> profile = Profile.create(name: "John Doe",

bio: "Ruby developer trying to learn Rails")

=> #<Profile id: nil, user_id: nil, name: "John Doe", birthday: nil, bio:

"Ruby developer trying to learn Rails", color: nil, twitter: nil, created_

at: nil, updated_at: nil>

Note The reload! method reloads the Rails application environment within your
console session. You need to call it when you make changes to existing code. It’s
exactly as if you had restarted your console session—all the variables you may
have instantiated are lost.

Although you’ve successfully created a user, look closely and you’ll see the profile

failed to save! (See how after calling Profile.create, a profile with a nil id was returned?)

What happened?

>> profile.errors

=> #<ActiveModel::Errors:0x00007ffd53a87958 @base=#<Profile id: nil, user_

id: nil, name: "John Doe", birthday: nil, bio: "Ruby developer trying to

learn Rails", color: nil, twitter: nil, created_at: nil, updated_at: nil>,

@messages={:user=>["must exist"]}, @details={:user=>[{:error=>:blank}]}>

The profile failed to save because its user is nil. The belongs_to association also adds

a validation to ensure it is present. We could change the Profile class to optionally belong

to a user—belongs_to :user, optional: true—but for our purposes, we don’t want profiles

to exist without a user.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

130

To successfully create the profile so that it is associated with the user, we can just

assign it and call save, like this:

>> profile.user = user

=> #<User id: 1, email: "user@example.com", password: [FILTERED], created_at:

"2020-02-04 01:42:21", updated_at: "2020-02-04 01:42:21">

>> profile.save

=> true

Assignment is assignment, whether it’s a name attribute to which you’re assigning

the value Joe or an association method to which you’re assigning an object. Also notice

that the profile’s user_id attribute is updated to the value of user.id: This is what

bonds both objects together. Now, when you ask the user object for its profile, it happily

responds with one:

>> user.profile

=> #<Profile id: 1, user_id: 1, name: "John Doe", birthday: nil, bio: "Ruby

developer trying to learn Rails", color: nil, twitter: nil, created_at:

"2020-02-04 01:52:51", updated_at: "2020-02-04 01:52:51">

That’s all there is to it. Although this is pretty good, you can do a bit better. You can create

and save the profile in one shot and have it perform the association automatically, like this:

>> user.profile.destroy

=> #<Profile id: 1, user_id: 1, name: "John Doe", birthday: nil, bio: "Ruby

developer trying to learn Rails", color: nil, twitter: nil, created_at:

"2020-02-04 01:52:51", updated_at: "2020-02-04 01:52:51">

>> user.create_profile name: 'Jane Doe', color: 'pink'

=> #<Profile id: 2, user_id: 1, name: "Jane Doe", birthday: nil, bio: nil,

color: "pink", twitter: nil, created_at: "2020-02-04 01:55:23", updated_at:

"2020-02-04 01:55:23">

Using the create_profile method to create a new profile initializes the Profile

object, sets its foreign key to user.id, and saves it to the database. This works for any

has_one association, no matter what it’s named. Active Record automatically generates

the create_#{association_name} method for you. So if you had an Employee model

set up with an association like has_one :address, you would get the create_address

method automatically.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

131

These alternatives for doing the same thing may seem confusing, but they’re really

variations on the same theme. In all cases, you’re creating two objects (the parent and

the child) and telling each about the other. Whether you choose to do this in a multistep

operation or all on one line is entirely up to you.

Earlier, you learned that declaring a has_one association causes Active Record

to automatically add a suite of methods to make working with the association easier.

Table 6-2 shows a summary of the methods that are added when you declare a has_one

and belongs_to relationship between User and Profile, where user is a User instance.

Although you’re using the User.has_one :profile example here, the rules work

for any object associated to another using has_one. Here are some examples, along with

sample return values:

user.profile

#=> #<Profile id: 2, user_id: 1, ...>

user.profile.nil?

#=> false

user.profile.destroy

#=> #<Profile id: 2, user_id: 1, ..,>

Table 6-2. Methods Added by the has_one Association in the User/Profile Example

Method Description

user.profile Returns the associated (Profile) object; nil is returned if

none is found.

user.profile=(profile) Assigns the associated (Profile) object, extracts the primary

key, and sets it as the foreign key.

user.profile.nil? Returns true if there is no associated Profile object.

user.build_profile(

attributes={})

Returns a new Profile object that has been instantiated with

attributes and linked to user through a foreign key but hasn’t

yet been saved.

user.create_profile(

attributes={})

Returns a new Profile object that has been instantiated with

attributes and linked to user through a foreign key and that

has already been saved.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

132

user.build_profile(bio: 'eats leaves')

#=> #<Profile id: nil, user_id: 1, ...>

user.create_profile(bio: 'eats leaves')

#=> #<Profile id: 3, user_id: 1, ...>

The has_one declaration can also include an options hash to specialize its behavior

if necessary. Table 6-3 lists the most common options. For a complete list of all options,

consult the Rails API documentation (https://api.rubyonrails.org/classes/

ActiveRecord/Associations/ClassMethods.html#method-i-has_one).

 Creating One-to-Many Associations
One-to-many associations describe a pattern where a row in one table is related to one

or more rows in another table. Examples are an Email that has many Recipients or a

Magazine that has many Subscriptions.

Up until now, your articles have been orphaned—they don’t belong to anyone. You

remedy that now by associating users with articles. In your system, each article belongs

to a user, and a user may have many articles. Figure 6-3 illustrates this association.

Table 6-3. Common has_one Options

Option Description Example

:class_name Specifies the class name of the association. used when

the class name can’t be inferred from the association

name.

has_one :profile,

class_name:

'Account'

:foreign_key Specifies the foreign key used for the association in

the event that it doesn’t adhere to the convention of

being the lowercase, singular name of the target class

with _id appended.

has_one :profile,

foreign_key:

'account_id'

:dependent Specifies that the associated object should be removed

when this object is. If set to :destroy, the associated

object is deleted using the destroy method. If set

to :delete, the associated object is deleted without

calling its destroy method. If set to :nullify, the

associated object’s foreign key is set to NULL.

has_one :profile,

dependent:

:destroy

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_one
https://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_one

133

 Associating User and Article Models

Just as you associated users and profiles, you want to have a similar relationship between

users and articles. You need to add a foreign key user_id in the articles table that

points to a record in the users table.

Fire up the migration generator:

$ rails g migration add_user_reference_to_articles user:references

Notice that we used rails g instead of rails generate. Some of the most commonly

used Rails commands have a shortcut—rails generate, rails server, rails console, rails

test, and rails dbconsole. We’ll generally use the full command in this book, but feel free

to use the shortcuts:

Open db/migrate/20200204020148_add_user_reference_to_articles.rb, and

update it by removing null: false so that it matches the code in Listing 6-5.

Listing 6-5. Migration to Add User to Articles 20200204020148_add_user_

reference_to_articles

class AddUserReferenceToArticles < ActiveRecord::Migration[6.0]

 def change

 add_reference :articles, :user, foreign_key: true

 end

end

We needed to remove null: false because our existing articles don’t yet have a user_id

and our migration would have failed.

Figure 6-3. The one-to-many relationship between users and articles

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

134

Now, all you need to do is run the migration using the db:migrate task. Run the

migration with the following command:

$ rails db:migrate

== AddUserReferenceToArticles: migrating ================================

-- add_column(:articles, :user_id, :integer)

 -> 0.0012s

== AddUserReferenceToArticles: migrated (0.0015s) =======================

With the foreign key in place, Listings 6-6 and 6-7 show how you declare the one-

to- many association in your Article and User models, respectively. Add these to the

relevant models.

Listing 6-6. The Article Model, belongs_to Declaration in app/models/article.rb:

https://gist.github.com/nicedawg/53289dd2be8683975f28283761f06fa0

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 def long_title

 "#{title} - #{published_at}"

 end

end

Listing 6-7. The User Model, has_many Declaration in app/models/user.rb:

https://gist.github.com/nicedawg/48f1cdf5917a3322347642e6ada25016

class User < ApplicationRecord

 has_one :profile

 has_many :articles

end

That’s all there is to it. This bit of code has endowed your Article and User models

with a lot of functionality.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/53289dd2be8683975f28283761f06fa0
https://gist.github.com/nicedawg/48f1cdf5917a3322347642e6ada25016

135

Note For has_one and has_many associations, adding a belongs_to on the
other side of the association is always recommended. The rule of thumb is that the
belongs_to declaration always goes in the class with the foreign key.

 Creating a New Associated Object

Your associations are in place; so let’s get back into the code to put what you’ve learned

to the test. Do this exercise on the console: either run rails console to start a new

console session or type reload! if you still have a console window open from the

previous section.

Let’s test whether the association between users and articles is set up correctly. If it

is, you should be able to ask the user object for its associated articles, and it should

respond with a collection. Even though you haven’t created any articles for this user yet,

it should still work, returning an empty collection:

>> reload!

Reloading...

=> true

>> user = User.first

=> #<User id: 1, email: "user@example.com", password: [FILTERED], created_

at: "2020-02-04 01:42:21", updated_at: "2020-02-04 01:42:21">

>> user.articles

=> #<ActiveRecord::Associations::CollectionProxy []>

Great! The has_many association is working correctly, and the User instance now has

an articles method, which was created automatically by Active Record when it noticed

the has_many declaration.

Let’s give this user some articles. Enter the following commands:

>> user.articles << Article.first

=> [#<Article id: 1, ..., user_id: 1>]

>> user.articles.size

=> 1

>> user.articles

=> [#<Article id: 1, ..., user_id: 1>]

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

136

By using the append (<<) operator, you attach Article.first onto your user object.

When you use << with associations, it automatically saves the new association. Some

things in Active Record don’t happen until you say save, but this is one of the examples

where that part is done automatically.

What did that do exactly? Let’s look into the article and find out:

>> Article.first.user_id

=> 1

See how this article’s user_id points to the user with an id of 1? This means you’ve

successfully related the two objects. You can even ask an Article instance for its user:

>> Article.first.user

=> #<User id: 1, email: "user@example.com", password: [FILTERED], created_

at: "2020-02-04 01:42:21", updated_at: "2020-02-04 01:42:21">

Voilà! Your models can really start to express things now. The has_many and

belongs_to declarations create more methods, as you did earlier with the long_title

method. Let’s look at what else these happy little helpers brought along to the party.

Table 6-4 shows a summary of the methods that are added when you declare a has_

many and belongs_to relationship between User and Article (user represents a User

instance).

Table 6-4. Methods Added by the has_many Association in the User and Article

Models

Method Description

user.articles Returns an array of all the associated articles. An empty array is

returned if no articles are found.

user.articles=(articles) Replaces the articles collection with the one supplied.

user.articles << article Adds the article to the user’s articles collection.

user.articles.

delete(articles)

Removes one or more articles from the collection by setting their

foreign keys to NULL.

user.articles.empty? Returns true if there are no associated Article objects for this

user.

(continued)

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

137

You’re using the User.has_many :articles example here, but the rules work for

any object associated with another using has_many. Here are some examples, along with

sample return values:

>> user.articles

=> [#<Article id: 1, ...>]

>> user.articles << Article.new(title: 'One-to-many associations',

body: 'One-to-many associations describe a pattern ..')

=> [#<Article id: 1, ...>, #<Article id: 2, ...>]

>> user.article_ids

=> [1, 2]

>> user.articles.first

=> #<Article id: 1, ...>

>> user.articles.clear

=> []

Method Description

user.articles.size Returns the number of associated Article objects for this

user.

user.article_ids Returns an array of associated article ids.

user.articles.clear Clears all associated objects from the association by setting their

foreign keys to NULL.

user.articles.find performs a find that is automatically scoped off the association;

that is, it finds only within items that belong to user.

user.articles.

build(attributes={})

Returns a new Article object that has been instantiated

with attributes and linked to user through a foreign key but

hasn’t yet been saved. here’s an example: user.articles.

build(title: 'Ruby 1.9').

user.articles.

create(attributes={})

Returns a new Article object that has been instantiated with

attributes and linked to user through a foreign key and has

already been saved. here’s an example: user.articles.

create(title: 'Hoedown').

Table 6-4. (continued)

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

138

>> user.articles.count

 => 0

>> Article.count

 => 2

>> user.articles.create title: 'Associations',

body: 'Active Record makes working with associations easy..'

=> #<Article id: 3, ...>

You can also pass in options to your association declaration to affect the way you

work with those associations. Table 6-5 lists some of the most common options.

There’s much more to has_many associations than can possibly be covered here, so

be sure to check out the Rails API documentation (https://api.rubyonrails.org/

classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_many) for

the full scoop.

Table 6-5. Common has_many Options

Option Description Example

:class_name Specifies the class name of the association. used

when the class name can’t be inferred from the

association name.

has_many :articles,

class_name: 'Post'

:foreign_key Specifies the foreign key used for the association in

the event that it doesn’t adhere to convention of being

the lowercase, singular name of the target class with

_id appended.

has_many :articles,

foreign_key:

'post_id'

:dependent Specifies that the associated objects should be

removed when this object is. If set to :destroy, the

associated objects are deleted using the destroy

method. If set to :delete, the associated objects are

deleted without calling their destroy method. If set

to :nullify, the associated objects’ foreign keys are

set to NULL.

has_many :articles,

dependent: :destroy

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_many
https://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_many

139

 Applying Association Options
It’s time to apply what you’ve learned to your domain model. Specifically, you use the

:order option to apply a default order to the User.has_many :articles declaration, and

you use the :dependent option to make sure when you delete a user, all their articles are

deleted as well.

 Specifying a Default Order

When you access a user’s articles, you want to make sure they come back in the order

in which they’ve been published. Specifically, you want the oldest to be at the bottom

of the list and the newest to be at the top. You can do this by configuring the has_many

association with a default order using the order method in a scope. (We’ll explain scopes

in detail later in this chapter.) Add a scope block to specify the default order of the has_

many :articles declaration, as shown in Listing 6-8.

Listing 6-8. A Default Order Added to has_many: https://gist.github.com/

nicedawg/68b6e0849dd05c1c70cb3cc076724bc4

class User < ApplicationRecord

 has_one :profile

 has_many :articles, -> { order 'published_at DESC' }

end

You give the name of the field that you want to order by, and then you say either

ASC (ascending) or DESC (descending) to indicate the order in which the results should

be returned. Because time moves forward (to bigger numbers), you want to make sure

you’re going back in time, so you use the DESC keyword here.

Note ASC and DESC are SQL keywords. You’re actually specifying an SQL
fragment here, as discussed in the “Advanced Finding” section later in this chapter.

You can also specify a secondary order by adding a comma between arguments.

Let’s say you want to sort by the title of the article after you sort by the date. If two articles

have been published on the same day, they are ordered first by the date and then by the

lexical order of the title. Listing 6-9 shows the article title added to the :order option.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/68b6e0849dd05c1c70cb3cc076724bc4
https://gist.github.com/nicedawg/68b6e0849dd05c1c70cb3cc076724bc4

140

Listing 6-9. Adding the Title to the Default Order for has_many: https://

gist.github.com/nicedawg/d2054b9db2cfbb105c41c60dd9134f4c

class User < ApplicationRecord

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' }

end

Notice that you use ASC for ordering on the title. This is because as letters go up in the

alphabet, their value goes up. So, to sort alphabetically, use the ASC keyword.

 Specifying Dependencies

Frequently, dependencies exist between models. For instance, in your blog application,

if you delete users, you want to make sure they don’t have articles in the system. Said

another way, an Article is dependent on its User. You can let Active Record take care

of this for you automatically by specifying the :dependent option to your association.

Listing 6-10 shows all the options to has_many :articles, including the :dependent

option.

Listing 6-10. The :dependent Option Added to has_many: https://gist.

github.com/nicedawg/820570d78eefefda528ef502de7f1492

class User < ApplicationRecord

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :destroy

end

By passing in the symbol :destroy, you declare not only that articles are dependent

but also that when the owner is deleted, you want to call the destroy method on every

related article. This ensures that any *_destroy callbacks on the Article instances are

called (callbacks are discussed later, in the “Making Callbacks” section). If you want to

skip the callbacks, you can use the :delete option instead of :destroy, which deletes

the records directly via SQL.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/d2054b9db2cfbb105c41c60dd9134f4c
https://gist.github.com/nicedawg/d2054b9db2cfbb105c41c60dd9134f4c
https://gist.github.com/nicedawg/820570d78eefefda528ef502de7f1492
https://gist.github.com/nicedawg/820570d78eefefda528ef502de7f1492

141

Let’s say you want to set the foreign key column (user_id) to NULL in the articles

table, instead of completely destroying the article. Doing so essentially orphans the

articles. You can do this by using the :nullify option instead of :destroy. If you don’t

use the :dependent option and you delete a user with associated articles, you break

foreign key references in your articles table. For this application, you want to keep the

:nullify option, as per Listing 6-11.

Listing 6-11. The :dependent :Option Set to :nullify: https://gist.github.

com/nicedawg/82417ace639cd900d89832a4057362fc

class User < ApplicationRecord

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

end

 Creating Many-to-Many Associations
Sometimes, the relationship between two models is many-to-many. This describes a

pattern where two tables are connected to multiple rows on both sides. You use this

in the blog application to add categories to articles. If you wanted to allow only one

category to be selected for a given article, you could use has_many. But you want to be

able to apply multiple categories.

Think about this for a minute: an article can have many categories, and a category

can have many articles—where does the belongs_to go in this situation? Neither

model belongs to the other in the traditional sense. In Active Record speak, this kind of

association is has_and_belongs_to_many (often referred to as habtm for short).

The has_and_belongs_to_many association works by relying on a join table that

keeps a reference to the foreign keys involved in the relationship. The join table sits

between the tables you want to join: articles and categories. Not surprisingly, then,

the join table in this case is called articles_categories. Pay particular attention to the

table name. It’s formed from the names of each table in alphabetical order, separated

by an underscore. In this case, the a in articles comes before the c in categories—hence,

articles_categories. Figure 6-4 illustrates this relationship.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/82417ace639cd900d89832a4057362fc
https://gist.github.com/nicedawg/82417ace639cd900d89832a4057362fc

142

Let’s start by adding the Category model. This is a simple matter of generating

the model, consisting of just a name column. Run the following command inside your

application root:

$ rails generate model Category name:string

Look at the generated migration in db/migrate/20200214004535_create_

categories.rb; it’s pretty familiar territory at this point. You need another migration to

create the join table. Do that now by running the following command:

$ rails generate migration CreateJoinTableArticlesCategories article

category

By naming our migration this way and passing the singular names of the models

involved, this gave the rails generate command a hint that we wanted to create a join

table and populated the resulting migration file with the commands we need.

Remember that when you use create_table inside a migration, you don’t need to

specify the primary key, because it’s created automatically. Well, in the case of a join

table, you don’t want a primary key. This is because the join table isn’t a first-class entity

in its own right. Creating tables without primary keys is the exception and not the rule,

so you need to explicitly tell create_table that you don’t want to create an id. It’s easy to

forget, so Rails has added a new migration method called create_join_table to take care

of that for you.

Take a look at Listing 6-12 to see how we’ll create a join table for our articles and

categories. Uncomment the t.index lines so that database indexes will be created which

will make related database queries more efficient.

Figure 6-4. The many-to-many relationship between articles and categories

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

143

Listing 6-12. The db/migrate/20200214004646_create_join_table_articles_
categories.rb: File

class CreateJoin TableArticlesCategories < ActiveRecord::Migration[6.0]

 def change

 create_join_table :articles, :categories do |t|

 t.index [:article_id, :category_id]

 t.index [:category_id, :article_id]

 end

 end

end

This migration will create the articles_categories table with the right fields to support

the associations. It also adds indexes to make sure that querying the database for an

article’s categories (or a category’s articles) is fast. Go ahead and run the migrations:

$ rails db:migrate

== 20200214004535 CreateCategories: migrating ============================

-- create_table(:categories)

 -> 0.0061s

== 20200214004535 CreateCategories: migrated (0.0063s) ===================

== 20200214004646 CreateJoinTableArticlesCategories: migrating ===========

-- create_join_table(:articles, :categories)

 -> 0.0051s

== 20200214004646 CreateJoinTableArticlesCategories: migrated (0.0052s)

================

With the Category model and the join table in place, you’re ready to let Active

Record in on your association. Open the Article and Category models and add the

has_and_belongs_to_many declarations to them, as shown in Listings 6-13 and 6-14,

respectively.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

144

Listing 6-13. Adding the has_and_belongs_to_many Declaration in the Article

Model app/models/article.rb: https://gist.github.com/nicedawg/

c4ddd9231b23014146f1e06efaee8999

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 def long_title

 "#{title} - #{published_at}"

 end

end

Listing 6-14. Adding the has_and_belongs_to_many Declaration in Category

Model app/models/category.rb:https://gist.github.com/nicedawg/

df770f7673069c0d2ba0b45b3d8cc54f

class Category < ApplicationRecord

 has_and_belongs_to_many :articles

end

 Seeding Data

As part of creating an application skeleton, Rails added a file called db/seeds.rb, which

defines some data you always need in your database. The seeds file contains Ruby code,

so you can use the classes and methods—including associations—available in your

models, such as create and update. Open it and create one user and a few categories so

that it looks like Listing 6-15.

Listing 6-15. The db/seeds.rb File: https://gist.github.com/nicedawg/9d4c4

a01b8453cddc58e46150d38c105

User.create email: 'mary@example.com', password: 'guessit'

Category.create [

 {name: 'Programming'},

 {name: 'Event'},

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/c4ddd9231b23014146f1e06efaee8999
https://gist.github.com/nicedawg/c4ddd9231b23014146f1e06efaee8999
https://gist.github.com/nicedawg/df770f7673069c0d2ba0b45b3d8cc54f
https://gist.github.com/nicedawg/df770f7673069c0d2ba0b45b3d8cc54f
https://gist.github.com/nicedawg/9d4c4a01b8453cddc58e46150d38c105
https://gist.github.com/nicedawg/9d4c4a01b8453cddc58e46150d38c105

145

 {name: 'Travel'},

 {name: 'Music'},

 {name: 'TV'}

]

That should do nicely. You can load your seed data using the Rails command

db:seed:

$ rails db:seed

If you need to add more default categories later, you can append them to the seeds

file and reload it. If you want to rerun the seed data, the trick lies in the fact that the

seeds file doesn’t know whether the records already in the database have to be cleaned

up; running rake db:seed again adds all records one more time, and you end up with

duplicate user and categories. You should instead call rails db:setup, which recreates

the database and adds the seed data as you may expect.

Let’s give this a test run. Get your console ready, reload!, and run the following

commands:

>> article = Article.last

=> #<Article id: 3, title: "Associations", ...>

>> category = Category.find_by name: 'Programming'

=> #<Category id: 1, name: "Programming", ..>

>> article.categories << category

=> [#<Category id: 1, name: "Programming", ..>]

>> article.categories.any?

=> true

>> article.categories.size

=> 1

Here, you automatically associate a category with an article using the << operator.

You can even do this from the category side of the association. Try the following:

>> category.articles.empty?

=> false

>> category.articles.size

=> 1

>> category.articles.first.title

=> "Associations"

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

146

You just did the opposite of the previous test: has_and_belongs_to_many works in

both directions, right? So you found your category and asked it for its first article titled

“Associations” because that’s what you associated in the other direction.

Using has_and_belongs_to_many is a very simple way to approach many-to-many

associations. However, it has its limitations. Before you’re tempted to use it for more

than associating categories with articles, note that it has no way of storing additional

information on the join. What if you want to know when or why someone assigns a

category to an article? This kind of data fits naturally in the join table. Rails includes

another type of association called has_many :through, which allows you to create rich

joins like this.

 Creating Rich Many-to-Many Associations
Sometimes, when you’re modeling a many-to-many association, you need to put

additional data on the join model. But because Active Record’s has_and_belongs_

to_many uses a join table (for which there is no associated model), there’s no model

on which to operate. For this type of situation, you can create rich many-to-many

associations using has_many :through. This is really a combination of techniques that

ends up performing a similar but more robust version of has_and_belongs_to_many.

The basic idea is that you build or use a full model to represent the join table. Think

about the blog application: articles need to have comments, so you create a Comment

model and associate it with Article in a one-to-many relationship using has_many

and belongs_to. You also want to be able to retrieve all the comments added to users’

articles. You could say that users have many comments that belong to their articles or

users have many comments through articles. Figure 6-5 illustrates this relationship.

Figure 6-5. The rich many-to-many relationship between comments and users,
through articles

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

147

Let’s generate the model and migration for the Comment model:

$ rails generate model comment article_id:integer name:string email:string

body:text

 invoke active_record

 create db/migrate/20200214010834_create_comments.rb

 create app/models/comment.rb

 invoke test_unit

 create test/unit/comment_test.rb

 create test/fixtures/comments.yml

Migrate by issuing the rails db:migrate command:

$ rails db:migrate

== 20200214010834 CreateComments: migrating =============================

-- create_table(:comments)

 -> 0.0106s

== 20200214010834 CreateComments: migrated (0.0109s) ====================

Update your models to reflect the one-to-many association between comments

and articles. Listings 6-16 and 6-17 show the updated Comment and Article models,

respectively.

Listing 6-16. The Comment Model in app/models/Comment.rb: https://gist.

github.com/nicedawg/1704eb1a760eb147d802b92d20d2ad29

class Comment < ApplicationRecord

 belongs_to :article

end

Listing 6-17. The Article Model in app/models/article.rb: https://gist.

github.com/nicedawg/016592081e5ea73a4170af60afa7043a

class Article < ApplicationRecord

 validates :title, :body, presence: true

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/1704eb1a760eb147d802b92d20d2ad29
https://gist.github.com/nicedawg/1704eb1a760eb147d802b92d20d2ad29
https://gist.github.com/nicedawg/016592081e5ea73a4170af60afa7043a
https://gist.github.com/nicedawg/016592081e5ea73a4170af60afa7043a

148

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 def long_title

 "#{title} - #{published_at}"

 end

end

Nothing is new here—what you implement is very similar to the users and articles

relationship you saw earlier, but instead of a user having many articles, an article has

many comments.

Let’s get back to the relationship between users and comments. You need to tell your

User model that a user has many comments through its articles. Basically, you use the

Article model as a join table between users and comments. You achieve the linking using

the has_many :through method. Listing 6-18 shows the updated User model.

Listing 6-18. The Updated User Model, has_many :through Declarations in app/

models/user.rb: https://gist.github.com/nicedawg/23d2377fd1ac4d87c992ac

c341c6b8ad

class User < ApplicationRecord

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

 has_many :replies, through: :articles, source: :comments

end

Notice that you rework how you name associations. One aspect of the Rails

philosophy is that you should always be questioning and refactoring your code to work

with best practices. In this incarnation, comments that users receive on their articles are

called replies.

As an added benefit, has_many :through allows you to easily have nice names

for your associations. The :source option lets you define the source name of the

association. In this case, the replies are the articles’ comments, so you set the :source

option accordingly.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/23d2377fd1ac4d87c992acc341c6b8ad
https://gist.github.com/nicedawg/23d2377fd1ac4d87c992acc341c6b8ad

149

Let’s play with this on the console to see how it works—don’t forget to reload!. You

first find the first user, find the user’s first article, and create a comment on it. Then, you

see that comment directly from the user object:

>> user = User.first

=> #<User id: 1, email: "user@example.com", ...>

>> user.replies.empty?

=> true

>> article = user.articles.first

=> #<Article id: 3, title: "Associations", ..., user_id: 1>

>> article.comments.create(name: 'Guest',

email: 'guest@example.com', body: 'Great article!')

=> #<Comment id: 1, article_id: 3, name: "Guest", ...>

>> user.replies

=> [#<Comment id: 1, article_id: 3, name: "Guest", ...>]

>> user.replies.size

=> 1

 Advanced Finding
Chapter 5 covered use of the find class method in Active Record. This section expands

on different find operations using the where method. Building advanced finder methods

is one of the most important things you do with your models.

 Using the where Method
The most basic condition style is the hash syntax. Active Record takes the Hash passed to

the where method and turns the keys into column names and the values into parameters

to match. The hash syntax is useful only if you’re trying to find an exact match. Run the

following command in a console window to try out the hash syntax:

>> Article.where(title: 'Advanced Active Record')

=> [#<Article id: 1, title: "Advanced Active Record", ...>]

The hash syntax works well for straightforward where operations where you use

only ANDs to join together the conditions (i.e., all conditions must match). However,

sometimes you need more flexibility than exact matches.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

150

 Using an SQL Fragment
To specify conditions, you can pass in an SQL fragment as a string that is sent directly to

the query. You need to have a pretty decent knowledge of SQL to use this kind of syntax;

but it provides a lot of flexibility, and you can create arbitrarily complex SQL fragments if

you’re an SQL ninja.

Try the same find operation as in the previous section, but use a pure SQL condition

fragment:

>> Article.where("title = 'Advanced Active Record'")

=> [#<Article id: 1, title: "Advanced Active Record", ...>]

Let’s try something more complicated that only SQL is able to do:

>> Article.where("created_at > '2020-02-04' OR body NOT LIKE '%model%'")

=> [#<Article id: 1, title: "Advanced Active Record", ...>, #<Article

id: 2, title: "One-to-many associations", ...>, #<Article id: 3, title:

"Associations", ...>]

Instead of using the = sign, you use the greater-than (>) symbol to make sure the

date occurs after February 4, 2020. This is followed by the SQL OR operator, which says

“if this first part isn’t a match, then try the right-hand side and give it a second chance at

matching.” Therefore, you check the right-hand side only if the left-hand side fails. If an

item fails the created_at match, you check to see if the body is NOT LIKE code. You can

think of OR as a more permissive joining operator. It only cares that one of the conditions

is a match. OR has a sister named AND, which requires that both conditions are true:

>> Article.where("created_at > '2020-02-04' AND body NOT LIKE '%model%'")

=> [#<Article id: 2, title: "One-to-many associations"...>, #<Article id:

3, title: "Associations", ...>]

You also use the SQL LIKE (modified using NOT, for negation) operator, which allows

you to make partial matches. Normally, when using =, SQL requires that the strings

match perfectly. However, LIKE is more permissive and allows partial matches when

used with the % wildcard. The % symbols are SQL wildcard characters that apply in LIKE

clauses. A % at the beginning of a pattern says that the pattern must match at the end of

the field (the beginning can be any sequence of characters); a % at the end means that the

pattern must match at the beginning, where the end can be any sequence of characters.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

151

Using a % on both sides of the pattern means that it must match anywhere in the field.

Using %model% means that the word model must occur somewhere (anywhere) in the

body of the article. In the previous example, you don’t want articles that have the word

model; therefore, an article with the sentence “I don’t have your match” is accepted as a

match.

As you can see, this usage has all the flexibility of SQL, but it also has SQL’s natural

limitations. For instance, you may need to find information based on what the user

passes into the application via the request parameters in your application (Chapter 8

covers request parameters). If you aren’t careful, those data can be very dangerous to

your application, because they are open to SQL injection attacks. In such an attack, a

user submits malicious code that tricks your database server into doing far more than

you intended. For more information about SQL injection, check out the Wikipedia article

at https://en.wikipedia.org/wiki/SQL_injection. Fortunately, Rails gives you a

way to avoid such threats by using the array condition syntax, which performs correctly

quoted replacements.

 Using an Array Condition Syntax
The array condition syntax gives you the ability to specify conditions on your database

calls in a safer way than using SQL syntax. Also, you don’t need to worry as much about

SQL specifics like quoting and other concerns, because it does automatic conversions

for you on the inputs you give it. This is how it protects against SQL injection—it ensures

that the substituted values are safely quoted, thereby preventing malicious users from

injecting arbitrary SQL into your queries.

The following example requires the use of a nice little Ruby method called Time.now.

Basically, it returns a Time object that is set to the current time. Let’s see if you can find

all the articles that were published before today:

>> Article.where("published_at < ?", Time.now)

=> [#<Article id: 1, title: "Advanced Active Record", ...>]

Instead of writing in the date, you put a ? in the spot where you’d normally write the

value you want to find. The where method takes the second element in the array, Time.

now, and replaces it where the first ? appears. Additionally, the array syntax automatically

takes your time and converts it into something your database likes. You can invoke the

to_sql method after the where method to inspect the issued SQL statement:

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://en.wikipedia.org/wiki/SQL_injection

152

>> Article.where("published_at < ?", Time.now).to_sql

=> "SELECT \"articles\".* FROM \"articles\" WHERE (published_at < '2020-02- 14

01:26:23.278875')"

You give it a Time object, and it turns the object into the format that pleases your

database. If you had passed it a string, it wouldn’t have converted. You can even pass

some information from another model:

>> Article.where("created_at = ?", Article.last.created_at)

=> [#<Article id: 3, title: "Associations", ...>]

That condition returns all the articles created at the same moment as the last article.

You can pass as many conditions as you want, as long as they occur in the same order as

the question marks:

>> Article.where("created_at = ? OR body LIKE ?", Article.last.created_at, 'model')

=> [#<Article id: 3, title: "Associations", ...>]

MONITORING THE LOGS

You can see the SQL statements issued by your application in the file log/development.

log. It’s often useful to monitor what the server is doing. You may have already noticed that

when you run rails server, it tells you about what is going on in your application. however,

different web servers (depending on what you’ve installed) give different outputs, some more

descriptive than others.

Fortunately, Rails prints all of its activities to a log file. If you look in your log directory, you

see log/development.log. This is the file where all the activities of your application are

output. If you’re running in production mode, the log file is log/production.log.

This file is written to live by your server. Sometimes it’s useful (especially on a live server)

to monitor the events occurring on your server. If you’re on a unIX system, you can run the

command tail -f log/development.log to get a live feed from your logs. If you’re on a

Windows system, you can find several applications that behave like tail with a quick google

search.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

153

during debugging, it can be useful to output messages to the log to see what’s going on with

your application. Almost anywhere in your application, you can type this:

Rails.logger.debug "This will only show in development"

Rails.logger.warn "This will show in all environments"

Both of these messages print directly to the log file and can be extremely useful for figuring

out what is happening with your server.

The main disadvantage with the array syntax is that it can become confusing to

remember the order of the elements you’re passing in for the conditions.

Instead of adding a list of things at the end of the array, you can pass in a hash and

change the question marks to actual named replacements. This can help you keep the

order of your arguments straight:

>> Article.where("title LIKE :search OR body LIKE :search",

{search: '%association%'})

=> [#<Article id: 2, title: "One-to-many associations", ...>,

#<Article id: 3, title: "Associations", ...>]

As you can see, you can reuse the same term in multiple places in your condition.

If you were using the regular array syntax, you’d have to pass the same value

'%association%' twice. This is especially useful if you have many, many conditions.

 Using Association Proxies
Association proxy is a fancy term for the ability to chain together multiple calls to Active

Record. You’ve been using this technique throughout the book, but it hasn’t received

special mention. Here is a basic example of association proxies:

>> User.first.articles.all

=> [#<Article id: 3, title: "Associations", ...>]

This code returns all the articles of the first user. The all method (off articles) is

automatically scoped to the user, which is to say it finds articles that belong to that user.

If you recall, articles is a has_many relationship on the User model.

Scoped finders are also more secure. Imagine a multiple-user system where data

owned by one user shouldn’t be accessible by another user. Finding an associated

object (say, an article) by its id doesn’t restrict it to articles owned by a particular user.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

154

You could pass in the article_id and the user_id as conditions, but that’s sloppy and

prone to error. The correct way to do this is to scope all find operations off the user in

question. For example, assuming you have a User object stored in the variable current_

user, current_user.articles.find(1) ensures that the article with id 1 is returned

only if it belongs to the current_user.

Anyone who has done database work will realize that this incredibly simple syntax

is far easier than the SQL queries that need to be created to achieve similar results.

If you play around with these chains, you can check out the log to see the SQL that’s

generated—be happy that you didn’t have to write it yourself!

This technique doesn’t just apply to finding. You can use it to automatically assign

ownership with build and create constructors by setting the appropriate foreign keys.

Consider the following example, which creates a new article for the current_user. It

automatically sets the article’s user_id to that of the current user:

current_user.articles.create(title: 'Private', body: ‘Body here..’)

This is much better than the alternative, which is to go through the Article model

directly and set the user_id as an attribute (Article.create(user_id: current_user.id).

As a rule, whenever you need to restrict find operations to an owner or if you’re assigning

ownership, you should use the power of the association proxy.

 Other Finder Methods
Active Record ships with other finder methods that complement the where method

and can be used on their own as well. Table 6-6 lists some of those methods with a brief

description and a quick example.

Table 6-6. Some Active Record Finder Methods

Method Description Example

where(conditions) Specifies the conditions in which the

records are returned as a WHERE SQL

fragment.

Article.where("title

= 'Advanced Active

Record'")

order Specifies the order in which the records

are returned as an ORDER BY SQL

fragment.

Article.order("published_

at DESC")

(continued)

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

155

You’ve used the where method before. Let’s take the rest for a spin:

>> Article.all

=> [#<Article id: 1, title: "Advanced Active Record", ...>,

#<Article id: 2, title: "One-to-many associations", ...>,

#<Article id: 3, title: "Associations", ...>]

>> Article.order("title ASC")

=> [#<Article id: 1, title: "Advanced Active Record", ...>,

#<Article id: 3, title: "Associations", ...>,

#<Article id: 2, title: "One-to-many associations", ...>]

>> Article.limit(1)

=> [#<Article id: 1, title: "Advanced Active Record", ...>]

>> Article.order("title DESC").limit(2)

=> [#<Article id: 2, title: "One-to-many associations", ...>,

#<Article id: 3, title: "Associations", ...>]

You first retrieve a list of articles with all; then, you retrieve all articles ordered

alphabetically by their title using the order method. After that, you retrieve a single

article using the limit method. Finally, you chain the limit method to order to retrieve

a couple of articles after sorting them. All methods listed in Table 6-6 are chainable;

when you chain finder methods to one another, Rails combines their specifics to form a

single query to the database.

Method Description Example

limit Specifies the number of records to be

returned as a LIMIT SQL fragment.

Article.limit(1)

joins Specifies associated tables to be joined

in as a JOIN SQL fragment.

Article.joins(:comments)

includes Specifies associated tables to be joined

and loaded as Active Record objects in a

JOIN SQL fragment.

Article.includes(

:comments)

Table 6-6. (continued)

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

156

 Default Scope
As you write applications, you may notice that you repeat certain conditions many

times throughout your code. For the blog application, it would make sense to display

categories in alphabetical order, as the user would expect. Rails provides a technique

called scope to encapsulate commonly used find operations. Rails doesn’t enforce a

default order; it lets the database take care of sorting the results, which in most cases is

done on the primary key id. Let’s look at how your Category records are returned now:

>> Category.all

=> [#<Category id: 1, name: "Programming", ...>, #<Category id: 2, name:

"Event", ...>,

#<Category id: 3, name: "Travel", ...>, #<Category id: 4, name: "Music", ..>,

#<Category id: 5, name: "TV", ...>]

As you can see, categories are returned according to their primary key id. Let’s make

sure categories are always listed alphabetically, regardless of the conditions you use for

the query. The code in Listing 6-19 tells the Category class that you always want records

to be ordered by the name field.

Listing 6-19. The default_scope Declaration in app/models/category.rb:

https://gist.github.com/nicedawg/f16cbf50672545b569db91995dc1ee6c

class Category < ApplicationRecord

 has_and_belongs_to_many :articles

 default_scope { order :name }

end

As you may expect, you can pass any finder method to default_scope. Let’s see the

order in which your categories are retrieved now:

>> reload!

Reloading...

>> Category.all

=> [#<Category id: 2, name: "Event", ...>, #<Category id: 4, name: "Music", ...>,

#<Category id: 1, name: "Programming", ...>, #<Category id: 5, name: "TV", ...>,

#<Category id: 3, name: "Travel", ...>]

As you can see, your categories are sorted alphabetically by default.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/f16cbf50672545b569db91995dc1ee6c

157

 Named Scope
The default scope is useful. But in most cases, the only code you want to have there is

default ordering for your application, because adding a condition to default_scope

would cause that condition to be applied every time. For queries that you run often, you

should create named scopes that make your code easier to read and maintain.

Let’s create two named scopes: the first one lists all the articles with a published_

at date and is named :published; the second scope lists all the articles without a

published_at date and is named :draft. You create both scopes using the scope

method, which takes the name of the scope as its first parameter and a finder method

call as its second. Listing 6-20 shows the updated Article model.

Listing 6-20. Named Scope Declarations in app/models/article.rb: https://

gist.github.com/nicedawg/322f265fd4499310098e37b80bc66fef

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 def long_title

 "#{title} - #{published_at}"

 end

end

As in a regular where method, you can use arrays as parameters. In fact, you can

chain finder methods with other named scopes. You define the recent scope to give

you articles recently published: first, you use the published named scope, and then you

chain to it a where call (Listing 6-21).

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/322f265fd4499310098e37b80bc66fef
https://gist.github.com/nicedawg/322f265fd4499310098e37b80bc66fef

158

Listing 6-21. Recent Named Scope Declaration in app/models/article.rb:

https://gist.github.com/nicedawg/aac8a3412e80ea6f3398dfc5817a2f14

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_date) }

 def long_title

 "#{title} - #{published_at}"

 end

end

Note Wondering what the strange -> { } syntax is which we use for scopes? It’s a
shorthand syntax for generating a lambda—a self-contained standalone method in
Ruby, which is executed only when you invoke it. You must use a lambda or some
other object that responds to call when defining a scope. By wrapping our code
in a lambda, we’re assured it will be reevaluated every time the scope is used.
Without using a lambda, it would only be evaluated once, meaning, for example,
calling Article.draft may end up returning stale data—including some articles
which are no longer drafts—and perhaps omitting new draft articles which were
created since the first usage of Article.draft.

To make scopes even more useful, you can define scopes that can receive

parameters, instead of hardcoding the values you want to query with. You need search

functionality that allows the end user to look up articles by title; so let’s add another

scope called where_title that accepts an argument and searches by it (Listing 6-22).

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/aac8a3412e80ea6f3398dfc5817a2f14

159

Listing 6-22. The where_title Named Scope Declaration in app/models/article.

rb: https://gist.github.com/nicedawg/271672430205b48c7ffb068582991ca8

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?", "%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

end

Now that you’ve added those scopes, let’s see them in action in a console session.

When you look at the results of running the methods, you get an English-like syntax

that makes the code easy to read and expand. Pay special attention to the line that uses

Article.draft.where_title("one"), which shows how you chain scopes to get the

exact data you want:

>> reload!

Reloading...

>> Article.published

=> [#<Article id: 1, title: "Advanced Active Record", ...>]

>> Article.draft

=> [#<Article id: 2, title: "One-to-many associations", ...>,

#<Article id: 3, title: "Associations", ...>]

>> Article.recent

=> [#<Article id: 1, title: "Advanced Active Record", ...>]

>> Article.draft.where_title("one")

=> [#<Article id: 2, title: "One-to-many associations", ...>]

>> Article.where_title("Active")

=> [#<Article id: 1, title: "Advanced Active Record", ...>]

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/271672430205b48c7ffb068582991ca8

160

 Applying Validations
It’s probably a safe bet that you don’t want every field in your tables to be optional.

Certain fields need to be required, terms of service agreements need to be accepted,

and passwords need to be confirmed. That’s just the way it is when you’re building web

applications, and Rails understands this. Consider this example of an Account model:

class Account < ApplicationRecord

 validates :login, presence: true

 validates :password, confirmation: true

 validates :terms_of_service, acceptance: true

end

Like associations, validations are sets of high-level macros that let you selectively

apply common validation requirements to your model’s attributes. In this section, you

create a full set of validations for your blog application, and you see firsthand how easy

it is to perform basic validations with Active Record. You start by applying some of the

built-in validations, and then you build a couple custom validation methods.

 Using Built-in Validations
Rails has myriad built-in validators, all of which are accessible through the validates

method. Here you will learn about some of the options the validates method accepts

as you apply them to your blog application. Check the API for details of all the Rails

validators (https://api.rubyonrails.org/classes/ActiveModel/Validations/

ClassMethods.html).

As a reference to get you started, you can pass two common options into any built-in

validator. These are described in Table 6-7.

Table 6-7. Default Options for All Validators

Option Description Example

:message Specifies the error message shown if validation fails. message: 'too long'

:on Specifies when this validation happens. The default is

:save. other options are :create and :update.

on: :create

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://api.rubyonrails.org/classes/ActiveModel/Validations/ClassMethods.html
https://api.rubyonrails.org/classes/ActiveModel/Validations/ClassMethods.html

161

 Validating That a Value Has Been Entered

You can use the :presence option to make sure a user has entered something into a field.

This is very useful in many cases. You have those validations in the Article model for

the title and body fields, as shown in Listing 6-23.

Listing 6-23. The Article Model, Validating Presence in app/models/article.rb

https://gist.github.com/nicedawg/869fe075987f4a8f0d20a1bb1ac1632c

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_

date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?",

"%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

end

The default message is “can’t be blank.”

 Validating That a Value Is Unique

Often, you want to ensure that a certain field is unique. The :uniqueness option

validates whether the value of the specified attribute is unique across the system. You

use this method in the User model to make sure each email is unique, as shown in

Listing 6-24.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/869fe075987f4a8f0d20a1bb1ac1632c

162

Listing 6-24. The validates_uniqueness_of Method in app/models/user.rb

class User < ApplicationRecord

 validates :email, uniqueness: true

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

 has_many :replies, through: :articles, source: :comments

end

When the record is created, a check is performed to ensure no record exists in the

database with the given value for the specified attribute email (that maps to a column).

When the record is updated, the same check is made, disregarding the record itself. The

default error message is “#{value} has already been taken.”

The :scope option can also validate whether the value of the specified attributes

is unique based on multiple parameters. For example, you can use it to ensure that a

teacher is on the schedule only once per semester for a particular class:

class Schedule < ApplicationRecord

 valdates :teacher_id, uniqueness: { scope: [:semester_id, :class_id] }

end

 Validating Length or Size

Sometimes you want to validate the length, or size, of a field entry. You can do this by

using the :length option. You use this method in the User model to specify a valid

number of characters for an email address, as shown in Listing 6-25. The option for

specifying a size range is :within.

Listing 6-25. The validates_length_of Method in app/models/user.rb

class User < ApplicationRecord

 validates :email, uniqueness: true

 validates :email, length: { in: 5..50 }

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

163

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

 has_many :replies, through: :articles, source: :comments

end

If you want to ensure only the minimum or maximum, you can use the :minimum or

:maximum option. Table 6-8 lists the most common :length validator’s options.

 Validating the Format of an Attribute

The :format option checks whether a value is in the correct format. Using this method

requires familiarity with regular expressions (regex) or being able to steal other people’s

regular expressions. The classic example (and the one you need) is email. Update the

validates method as shown in Listing 6-26.

Table 6-8. Options for Validating :length

Option Description

:minimum Specifies the minimum size of the attribute.

:maximum Specifies the maximum size of the attribute.

:is Specifies the exact size of the attribute.

:in Specifies the valid range (as a Ruby Range object) of values acceptable for the

attribute.

:allow_nil Specifies that the attribute may be nil; if so, the validation is skipped.

:too_long Specifies the error message to add if the attribute exceeds the maximum.

:too_short Specifies the error message to add if the attribute is below the minimum.

:wrong_length Specifies the error message to add if the attribute is of the wrong size.

:message Specifies the error message to add if :minimum, :maximum, or :is is violated.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

164

Listing 6-26. Update validates :format Method in app/models/user.rb:

https://gist.github.com/nicedawg/7814013e0aa05613ea1e8f6a0b6ba89f

class User < ApplicationRecord

 validates :email, uniqueness: true

 validates :email, length: { in: 5..50 }

 validates :email, format: { with: /\A[^@][\w.-]+@[\w.-]+[.][a-z]{2,4}\z/i }

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

 has_many :replies, through: :articles, source: :comments

end

Don’t be put off by how complicated this looks. You pass in the :with option and a

regex object to say what patterns you want to match.

Tip If you want to learn more about using regular expressions, you can find many
tutorials and books on the subject. one good reference is nathan good’s Regular
Expression Recipes (Apress, 2005).

 Validating Confirmation

Whenever a user changes an important piece of data (especially the password), you

may want the user to confirm that entry by typing it again. This is the purpose of the

:confirmation validation helper. When you use this helper, you create a new virtual

attribute called #{field_name}_confirmation. Add this to the User model for password

confirmation, as shown in Listing 6-27.

Listing 6-27. The validates :confirmation Method in app/models/user.rb:

https://gist.github.com/nicedawg/d5398b7f716bfa919a233e6cb68b6925

class User < ApplicationRecord

 validates :email, uniqueness: true

 validates :email, length: { in: 5..50 }

 validates :email, format: { with: /\A[^@][\w.-]+@[\w.-]+[.][a-z]{2,4}\z/i }

 validates :password, confirmation: true

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/7814013e0aa05613ea1e8f6a0b6ba89f
https://gist.github.com/nicedawg/d5398b7f716bfa919a233e6cb68b6925

165

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

 has_many :replies, through: :articles, source: :comments

end

The password attribute is a column in the users table, but the password_

confirmation attribute is virtual. It exists only as an in-memory variable for validating

the password. This check is performed only if password_confirmation isn’t nil and runs

whenever the object is saved.

 Other Validations

There is one other important validation helper, :acceptance, which validates the

acceptance of a Boolean field.

 Building Custom Validation Methods
In the blog application, you’d like to make sure no one creates a comment for an

article that hasn’t been published yet. First, you need to create a method so you can

ask an Article whether its published_at field is null by using the present? method,

which returns true if a value exists and false otherwise. This method is useful

outside validations, because you may want to indicate on the administration interface

later whether an article has been published. Let’s add that method now and call it

published?. Add the code shown in Listing 6-28 to the Article model.

Listing 6-28. Adding the published? Method in app/models/article.rb: https://

gist.github.com/nicedawg/9751e165bf7106c97044f4b133d1e322

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/9751e165bf7106c97044f4b133d1e322
https://gist.github.com/nicedawg/9751e165bf7106c97044f4b133d1e322

166

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?", "%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

 def published?

 published_at.present?

 end

end

This gets you a step closer to your goal. When building validations, Active Record

gives you nice objects called errors to use. Whenever you want to add a validation error

to the list of errors, you just type errors.add(column_name, error_message). So let’s

implement a method called article_should_be_published in the Comment class that

uses this functionality, as shown in Listing 6-29.

Listing 6-29. Adding the article_should_be_published Method in app/models/

comment.rb

class Comment < ApplicationRecord

 belongs_to :article

 def article_should_be_published

 errors.add(:article_id, 'is not published yet') if article && !article.

published?

 end

end

This checks whether you should apply the error by evaluating the if statement. If

that if statement is true, you want to add an error into the errors object. Note that

before you test whether the article is published, you make sure article isn’t nil. This is

so your test doesn’t throw an error. If article is nil, that should be handled by another

validator: the validates_presence_of method.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

167

How do you tell Active Record that this method should be run before a save? You

use the validate class method and pass it a symbol with the name of the method. At the

top of your Comment class, add the code shown in Listing 6-30. Note that we also expect

comments to have values for name, email, and body; so we add a presence validation call.

Listing 6-30. The validate Method in app/models/comment.rb

class Comment < ApplicationRecord

 belongs_to :article

 validates :name, :email, :body, presence: true

 validate :article_should_be_published

 def article_should_be_published

 errors.add(:article_id, 'is not published yet') if article && !article.

published?

 end

end

This advises Active Record to pay attention to your new article_should_be_

published method. In Chapter 16, you write tests to make sure this is working. But you

can also go to the console—if you have it open already, don’t forget to reload!—and try

to create an invalid object to see if it reports errors for you. The easiest way to get to errors

in an Active Record object is with comment.errors.full_messages, as shown here:

>> article = Article.draft.first

=> #<Article id: 2, title: "One-to-many associations", ...>

>> comment = article.comments.create name: 'Dude',

email: 'dude@example.com', body: 'Great article!'

=> #<Comment id: nil, article_id: 2, name: "Dude", email: "dude@example.com",

body: "Great article!", created_at: nil, updated_at: nil>

>> comment.errors.full_messages

=> ["Article is not published yet"]

 Making Callbacks
You often want to have certain things happen during the lifecycle of the model.

Certain actions need to happen during certain events pertaining to a particular model.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

168

For instance, what if you want to send an email to your administrator whenever

someone cancels an account? Or perhaps you want to make sure to create a new

model because some other model was also created. Sometimes, certain actions in the

life of a model should execute associated actions.

To implement this, Active Record has callbacks. Six callbacks are commonly used in

Active Record models:

• before_create

• after_create

• before_save

• after_save

• before_destroy

• after_destroy

As you can see, the names of the Rails callbacks describe their purpose. When

you create a method with any of these names in your model, the method is called

automatically by the model during the time the name suggests. For instance, if you make

a before_save method, that method is called right before the model object is saved.

Any callback that starts with before_ can stop the execution chain if it returns false.

For instance, if you define before_create, you ensure that this model object will never

be created:

def before_create

 false

end

This can be a gotcha later if you’re doing something like an assignment of false to a

variable. If you’re ever confused why a model won’t save, check your before_ filters.

In the blog application, you’d like to make sure that when a user creates a comment,

an email is automatically sent to the article author. Although you don’t send an email

here, this chapter goes over the steps required to put together code to eventually send

the email in Chapter 12. To set this up, you add an after_create method to the Comment

class that will eventually have the code to send an email. Add the method shown in

Listing 6-31 to the Comment model.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

169

Listing 6-31. Adding after_create Method in app/models/comment.rb

class Comment < ApplicationRecord

 belongs_to :article

 validates :name, :email, :body, presence: true

 validate :article_should_be_published

 def article_should_be_published

 errors.add(:article_id, "is not published yet") if article

 && !article.published?

 end

 def after_create

 puts "We will notify the author in Chapter 12"

 end

end

You use the code you want to be executed directly in the code of the after_create

method. This is nice and simple, but you should probably use the pattern as you did

for validate in Listing 6-30, where you pass in a symbol that references the method to

run when the validation is performed. This helps keep the code readable and easier to

augment in the future, because you can supply an arbitrary number of methods to run

on a callback, separated by a comma. Name the method email_article_author, and tell

Active Record to run it after a record is created, as shown in Listing 6-32.

Listing 6-32. The email_article_author Method Specified as an after_create

Callback in app/models/comment.rb: https://gist.github.com/nicedawg/03868

d69e4b318cfcd73d87fe495dd23

class Comment < ApplicationRecord

 belongs_to :article

 validates :name, :email, :body, presence: true

 validate :article_should_be_published

 after_create :email_article_author

 def article_should_be_published

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/03868d69e4b318cfcd73d87fe495dd23
https://gist.github.com/nicedawg/03868d69e4b318cfcd73d87fe495dd23

170

 errors.add(:article_id, 'is not published yet') if article && !article.

published?

 end

 def email_article_author

 puts "We will notify #{article.user.email} in Chapter 12" if article.

user

 end

end

Active Record provides many more callbacks than are mentioned here, but those

listed at the beginning of this section are the ones you’ll find yourself using often. Some

of the others are used in extremely rare cases (for instance, after_initialize, which

is called after an object is initialized). These callbacks can help you with just about

anything you need to do during the lifecycle of a model. They’re part of smart models,

which know how to deal with their own birth, life, and death. See https://guides.

rubyonrails.org/active_record_callbacks.html for more information.

 Updating the User Model
You still need to do a little work on your User model. You can apply many of the

techniques described in this chapter, such as custom methods to allow you to perform

user authentication and validation methods to make sure your data stay clean.

When you created the user migration (Listing 6-2), you added a field called

password. This field stores a plain-text password, which, if you think about it, isn’t very

secure. It’s always a good idea to encrypt any sensitive data so they can’t be easily read

by would-be intruders. You deal with the encryption in the User model itself, but the first

thing you do is rename the field in the database from password to hashed_password. This

is so you can create a custom accessor called password with which to set the password

while maintaining a field to store the encrypted version in the database. The plain-text

password is never saved.

To accomplish this, you create a migration. From the terminal, issue the following

command to create the new migration:

$ rails generate migration rename_password_to_hashed_password

Next, fill in the migration as shown in Listing 6-33.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://guides.rubyonrails.org/active_record_callbacks.html
https://guides.rubyonrails.org/active_record_callbacks.html

171

Listing 6-33. Migration to Rename password to hashed_password in db/

migrate/20200214024558_rename_password_to_hashed_password.rb: https://

gist.github.com/nicedawg/1b40a825d44fb4a99393fec8884f4043

class RenamePasswordToHashedPassword < ActiveRecord::Migration[6.0]

 def change

 rename_column :users, :password, :hashed_password

 end

end

Run the migration using the rails db:migrate command, as follows:

$ rails db:migrate

== 20200214024558 RenamePasswordToHashedPassword: migrating ==============

-- rename_column(:users, :password, :hashed_password)

 -> 0.0220s

== 20200214024558 RenamePasswordToHashedPassword: migrated (0.0222s)

==========

Next, update your User model so it looks like that in Listing 6-34. You program all the

user authentication methods you need for allowing users to log in. Let’s look at the code

first and then see in detail what you’ve done.

Listing 6-34. Current User Model in app/models/user.rb: https://gist.github.

com/nicedawg/fd5a29e943c06b7e93824a0b71cfd16c

require 'digest'

class User < ApplicationRecord

 attr_accessor :password

 validates :email, uniqueness: true

 validates :email, length: { in: 5..50 }

 validates :email, format: { with: /\A[^@][\w.-]+@[\w.-]+[.][a-z]{2,4}\z/i }

 validates :password, confirmation: true, if: :password_required?

 validates :password, length: { in: 4..20 }, if: :password_required?

 validates :password, presence: true, if: :password_required?

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/1b40a825d44fb4a99393fec8884f4043
https://gist.github.com/nicedawg/1b40a825d44fb4a99393fec8884f4043
https://gist.github.com/nicedawg/fd5a29e943c06b7e93824a0b71cfd16c
https://gist.github.com/nicedawg/fd5a29e943c06b7e93824a0b71cfd16c

172

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

 has_many :replies, through: :articles, source: :comments

 before_save :encrypt_new_password

 def self.authenticate(email, password)

 user = find_by email: email

 return user if user && user.authenticated?(password)

 end

 def authenticated?(password)

 self.hashed_password == encrypt(password)

 end

 protected

 def encrypt_new_password

 return if password.blank?

 self.hashed_password = encrypt(password)

 end

 def password_required?

 hashed_password.blank? || password.present?

 end

 def encrypt(string)

 Digest::SHA1.hexdigest(string)

 end

end

Note The ShA1 hashing algorithm used in this example is weak and was only
used for an example. For production websites, you should take a look at the bcrypt
gem (https://github.com/codahale/bcrypt-ruby).

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://github.com/codahale/bcrypt-ruby

173

Whenever you store something sensitive like a password, you should encrypt it. To

encrypt the password in your User model, you use a simple algorithm called a hash that

creates a random-looking string from the provided input. This hashed output can’t be

turned back into the original string easily, so even if someone steals your database, they

will have a prohibitively difficult time discovering your users’ passwords. Ruby has a

built-in library called Digest that includes many hashing algorithms.

Let’s go through the additions to the User model:

• require 'digest': You start by requiring the Digest library you

use for encrypting the passwords. This loads the needed library and

makes it available to work within your class.

• attr_accessor :password: This defines an accessor attribute,

password, at the top of the class body. It tells Ruby to create reader

and writer methods for password. Because the password column

doesn’t exist in your table anymore, a password method isn’t created

automatically by Active Record. Still, you need a way to set the

password before it’s encrypted, so you make your own attribute to

use. This works like any model attribute, except that it isn’t persisted

to the database when the model is saved.

• before_save :encrypt_new_password: This before_save callback

tells Active Record to run the encrypt_new_password method before

it saves a record. That means it applies to all operations that trigger a

save, including create and update.

• encrypt_new_password: This method should perform encryption

only if the password attribute contains a value, because you don’t

want it to happen unless a user is changing their password. If the

password attribute is blank, you return from the method, and the

hash_password value is never set. If the password value isn’t blank,

you have some work to do. You set the hashed_password attribute to

the encrypted version of the password by laundering it through the

encrypt method.

• encrypt: This method is fairly simple. It uses Ruby’s Digest library,

which you included on the first line, to create an SHA1 digest of

whatever you pass it. Because methods in Ruby always return the last

thing evaluated, encrypt returns the encrypted string.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

174

• password_required?: When you perform validations, you want to

make sure you’re validating the presence, length, and confirmation

of the password only if validation is required. And it’s required only if

this is a new record (the hashed_password attribute is blank) or if the

password accessor you created has been used to set a new password

(password.present?). To make this easy, you create the password_

required? predicate method, which returns true if a password is

required or false if it’s not. You then apply this method as an :if

condition on all your password validators.

• self.authenticate: You can tell this is a class method because it’s

prefixed with self (it’s defined on the class itself). That means you

don’t access it via an instance; you access it directly off the class,

just as you would find, new, or create (User.authenticate, not

@user = User.new; @user.authenticate). The authenticate

method accepts an email address and an unencrypted password.

It uses a dynamic finder (find_by_email) to fetch the user with

a matching email address. If the user is found, the user variable

contains a User object; if not, it’s nil. Knowing this, you can return

the value of user if, and only if, it isn’t nil and the authenticated?

method returns true for the given password (user && user.

authenticated?(password)).

• authenticated?: This is a simple predicate method that checks to

make sure the stored hashed_password matches the given password

after it has been encrypted (via encrypt). If it matches, true is

returned.

Let’s play with these new methods from the console so you can get a better idea of

how this comes together:

>> reload!

Reloading...

=> true

>> user = User.first

=> #<User id: 1, email: "user@example.com", ..>

>> user.password = 'secret'

=> "secret"

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

175

>> user.password_confirmation = 'secret'

=> "secret"

>> user.save

=> true

>> user.hashed_password

=> "e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4"

>> User.authenticate('user@example.com', 'secret')

=> #<User id: 1, email: "user@example.com", ...>

>> User.authenticate('user@example.com', 'secret2')

=> nil

>> second_user = User.last

=> #<User id: 2, email: "mary@example.com", ...>

>> second_user.update(password: 'secret',

password_confirmation: 'secret')

=> true

>> User.authenticate('mary@example.com', 'secret')

=> #<User id: 2, email: "mary@example.com", ...>

When you ask the User model to authenticate someone, you pass in the email

address and the plain-text password. The authenticate method hashes the given

password and then compares it to the stored (hashed) password in the database. If the

passwords match, the User object is returned, and authentication was successful. When

you try to use an incorrect password, nil is returned. In Chapter 8, you write code in

your controller to use these model methods and allow users to log in to the site. For now,

you have a properly built and secure backend for the way users authenticate.

With the validation in the User model, the db/seeds.rb file also needs to be updated

to make sure it follows the rules expected in the model. While we are at it, we also add

some code to create a few articles. Update your db/seeds.rb file so that it looks like

Listing 6-35.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

176

Listing 6-35. Current Seeds File in db/seeds.rb: https://gist.github.com/nic

edawg/86d1950f400c39eadd23067a3f26bd5e

user = User.create email: 'mary@example.com', password: 'guessit',

password_confirmation: 'guessit'

Category.create [

 {name: 'Programming'},

 {name: 'Event'},

 {name: 'Travel'},

 {name: 'Music'},

 {name: 'TV'}

]

user.articles.create([

 {

 title: 'Advanced Active Record',

 body: "Models need to relate to each other. In the real world, ..",

 published_at: Date.today,

 },

 {

 title: 'One-to-many associations',

 body: "One-to-many associations describe a pattern ..",

 published_at: Date.today

 },

 {

 title: 'Associations',

 body: "Active Record makes working with associations easy..",

 published_at: Date.today

 },

])

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

https://gist.github.com/nicedawg/86d1950f400c39eadd23067a3f26bd5e
https://gist.github.com/nicedawg/86d1950f400c39eadd23067a3f26bd5e

177

 Reviewing the Updated Models
You’ve made a lot of changes to your models, so let’s make sure we’re on the same

page before you move on. Look at the Article, Category, and Comment models in

Listings 6- 36, 6-37, and 6-38, respectively, and make sure yours match.

Listing 6-36. Current Article Model in app/models/article.rb

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?", "%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

 def published?

 published_at.present?

 end

end

Listing 6-37. Current Category Model in app/models/category.rb

class Category < ApplicationRecord

 has_and_belongs_to_many :articles

 default_scope { order :name }

end

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

178

Listing 6-38. Current Comment Model in app/models/comment.rb

class Comment < ApplicationRecord

 belongs_to :article

 validates :name, :email, :body, presence: true

 validate :article_should_be_published

 after_create :email_article_author

 def article_should_be_published

 errors.add(:article_id, 'is not published yet') if article && !article.

published?

 end

 def email_article_author

 puts "We will notify #{article.user.email} in Chapter 12"

 end

end

 Summary
After reading this chapter, you should have a complete understanding of Active Record

models. The chapter covered associations, conditions, validations, and callbacks at

breakneck speed. Now the fun part starts. In the next chapter, you get to use all the

groundwork established in this chapter to produce the web interface for the data

structures you’ve created. This is when you get to reap the benefits of your hard work.

ChApTeR 6 AdvAnCed ACTIve ReCoRd: enhAnCIng YouR ModeLS

179
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_7

CHAPTER 7

Action Pack: Working
with Routes, Controllers,
and Views
When you type a URL into your browser’s address bar and press Enter, a few things

happen behind the scenes. First, the domain name is translated into a unique address by

which the server that hosts the application can be identified. The request is then sent to

that server, which begins a chain of events that culminates in a response. The response

is usually, but not always, in the form of an HTML document, which is essentially a text

document full of special code that your browser understands and can render visually

on your screen. At this point, the request cycle is complete, and the browser waits for

further input from you. If you click a link somewhere on the page or type a new URL in

the address bar, the cycle begins all over again: the request is sent, the server processes

it, and the server sends back the response.

When you make a request to a Rails application, this request cycle is the

responsibility of a component of Rails called Action Pack. The Action Pack library is an

integral component of the Rails framework and one that you need to be familiar with if

you intend to master Rails.

This chapter begins with an overview of Action Pack. Then, you get to work using it

in your sample blog application.

Note If you need to get the code at the exact point where you finished Chapter 6,
download the source code zip file from the book’s page on www.apress.com and
extract it on your computer.

https://doi.org/10.1007/978-1-4842-5716-6_7#ESM
http://www.apress.com

180

 Action Pack Components
You’ve been introduced to the MVC pattern, but if you need a refresher, here it is. The

model is your application’s world, most often represented by database objects like

articles, comments, and subscribers. The controller is the grand orchestrator, dealing

with requests and issuing responses. The view is the code that contains instructions for

rendering visual output for a browser, like HTML.

Armed with this refresher, you may be able to guess what roles are played by Action

Pack. This isn’t a test, so here’s the answer: Action Pack is the controller and the view.

The controller performs the logic, and the view renders the template that is given back

to the requesting browser. Not surprisingly, two of the modules that make up the Action

Pack are named accordingly: Action Controller and Action View.

Action Pack has another important component: Action Dispatch. A typical Rails

app has multiple controllers—each of which handles requests for a particular area of

concern. (For example, in previous chapters, we built ArticlesController, which returns

responses for requests specific to articles.) How does Rails know which controller should

handle a particular request? Action Dispatch, among other things, handles routing—

which decides which controller should handle a given request.

At this point, you may be wondering why the router, view, and controller are

wrapped up in a single library, unlike models, which have a library of their own. The

answer is subtle and succinct: routes, controllers, and views are very closely related. The

sections that follow paint a more complete picture of both the role and the relationship

of controllers and views, how they work, and how they work together to create and

control the interface of a Rails application.

 Action Controller
Controllers orchestrate your application’s flow. Every time a user requests a page,

submits a form, or clicks a link, that request is handled—in one way or another—by a

controller. When you’re programming your application, you spend a lot of time building

controllers and giving them instructions on how to handle requests.

The concept of controllers can sometimes be difficult for newcomers to grasp.

Even if you’ve built web applications before, say in ASP (Active Server Pages) or PHP

(PHP Hypertext Preprocessor), you may not be used to this form of separation, where

the mechanics of flow are controlled by a separate entity and not embedded in the pages

themselves.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

181

Let’s look at the example of the CD player in a car to illustrate the concept of

controllers. The player is required to respond to certain events, such as the user pressing

the play button, fast-forwarding, or rewinding a track. When you push a button, you

expect something to happen—you’ve made a request, and you wait for the subsequent

response.

If your CD player were a Rails application, the instructions for what to do when a

certain event takes place, such as pressing the eject button, would be contained in a

controller. If you were to sketch it on paper, it might look something like this:

• CD Player

• Play

• Stop

• Fast-forward

• Rewind

• Eject

These events, or actions, describe what the player should be capable of doing.

Obviously, each of these actions would need to be programmed to do something with

the disk inside the player. When someone presses Eject, you would first call on the

stop action (if the disk is playing) and then arrange for the player to spit out the disk.

You would code all the instructions for dealing with an eject event into the controller—

specifically, inside the eject action. The same would apply for play, fast-forward, and

rewind.

It’s worth noting that this type of logic has nothing to do with the CD itself, nor does

it have anything to do with the music on the CD. If this were a Rails application, the CD

would be the model. It can be used independently of the player. In fact, it can be used in

all sorts of players, not just the one in your car.

The stereo in your car is probably capable of more than just playing CDs. Most

stereos have a radio receiver built in as well. The radio would have its own set of

events that would likewise need to be handled. These actions might include things

like changing stations, setting presets, and switching between AM and FM. To keep

things well organized, you would probably want to group these actions inside their own

controller, separate from the CD controller. After all, the radio and the CD player do

different things.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

182

When you’re dealing with a Rails application, it’s not much different. You separate

the things that you need your application to do with an object from the object itself.

Even when you’re not dealing directly with an object (adjusting the volume on your car

stereo has little to do with either the CD in the player or the station on the radio), you still

handle the event inside a controller.

Each controller in Rails is designed as a Ruby class. Without getting too technical,

Listing 7-1 shows how the CD player example would look if it were a Ruby class.

Listing 7-1. CDPlayer Class

class CDPlayer

 def play

 end

 def stop

 end

 def fast_forward

 end

 def rewind

 end

 def eject

 end

end

Inside the CDPlayer class, you define a method for each action, or each thing you

want your CD player to be able to do. So, if you were to send the message “play” to an

instance of the CDPlayer class, it would know how to handle it (of course, because the

play method is empty in this example, nothing would happen). On the other hand, if you

sent the message “pause,” Ruby would raise an exception and tell you that the method

wasn’t found. If you wanted CDPlayer objects to respond to that message, you would

need to add a method called (you guessed it) pause.

All the methods in this class are public, which means they can be invoked by anyone.

You don’t need to do anything special to a method to make it public. Unless otherwise

declared, all methods in a Ruby class are public by default. If you were to mark an action

as private, though, it could be used only internally by the class. For example, if the stop

method were private, it would raise a NoMethodError if you called it from outside the

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

183

CDPlayer class. However, the eject method is free to call on stop, because it does so

internally. Although the usefulness of this feature will become apparent as you continue

to learn about controllers, consider this: if your CD player needed to display the time

remaining for a given track, it might need to perform a few calculations to figure that out.

You might create a method for doing these internal calculations, but would you want that

method to be accessible from the outside? Would you have a button called Calculate on

your player?

It’s time for a working definition: Action Controllers are Ruby classes containing one

or more public methods known as actions. Each action is responsible for responding to

a request to perform some task. A typical controller is most often a collection of actions

that relates to a specific area of concern. For example, consider the blog application

you’ve been building in the previous chapters. The controller that manages articles

has the class name ArticlesController and has action methods for listing, creating,

reading, updating, and deleting articles.

The example of the CD player worked well to illustrate the basic concept of

controllers, but it won’t take you much further when dealing with web applications.

If you were really dealing with a CD player, you would press Play, the disc would start

playing, and that would be the end of it. But because Rails was specifically designed for

building web applications, it makes a fair number of assumptions about what you want

your actions to do when they’re finished firing. Chief among these is the rendering of a

view.

Imagine that you’re reading a list of posts on someone’s blog. You click the title of

a post, and you expect to be taken to a new screen that shows you just that post. You

requested an action (show), and in response, you receive a new screen. This happens

all the time in the world of web applications: when you click a link, you expect to go to a

new page.

In Rails, it’s the general case that when actions have completed their work, they

respond by rendering a view. The concept of actions rendering views is so common

that Rails has internalized it as a convention: unless otherwise stated, when an action

is finished firing, it renders a view. How does Rails know what view to render if you

don’t tell it? It looks for a view whose name matches that of the requested action. This

should give you some insight as to why Action Controller and Action View are bundled

together in Action Pack. Because of the way controller actions relate to views, a few other

mechanisms facilitate their communication, all of which are covered shortly.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

184

 Action View
The Action View library is another important part of Action Pack. Given that controllers

are responsible for handling the request and issuing a response, views are responsible

for rendering the output of a response in a way a browser (or any other user agent) can

understand. Let’s say you request the index action from the ArticlesController. After

performing the logic to retrieve a list of articles, the controller hands off to the view,

which formats the list of articles to make them look pretty. The controller then collects

the results of the render, and the HTML is sent back to the browser, thus completing the

request cycle.

Although the controller and the view are separate entities, they need to

communicate with each other. The primary mechanism by which they do this is through

shared variables. These shared variables are called instance variables and are easy to

spot in Ruby because they’re prefixed with the @ symbol. Keep this in mind as you look

at the view example in Listing 7-2, which uses an instance variable called @articles to

produce an articles listing.

Listing 7-2. An Example View

<html>

 <body>

 <% @articles.each do |article| %>

 <%= article.title %>

 <% end %>

 </body>

</html>

Even without knowing any Ruby, you should be able to guess what this code does: it

iterates over the collection of articles stored in the variable @articles and prints the title

of each between HTML list item () tags. If @articles contained three articles whose

titles were One, Two, and Three, respectively, the preceding code would be compiled to

the following:

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

185

<html>

 <body>

 One

 Two

 Three

 </body>

</html>

You may wonder where the variable @articles came into being. If you guessed in

the controller, you would be right. The controller sets up instance variables that the view

can access. In this case, the controller created a variable called @articles, and the view

was given automatic access to it. Notice that the view doesn’t perform any logic to fetch

the list of articles; it relies on the controller to have set up the variable and performs the

display logic necessary to turn the collection into a browser-ready HTML list.

 Embedded Ruby
The code you see mixed into the HTML markup is Ruby. Because templates that are

capable of dealing only with static HTML wouldn’t be very useful, Action View templates

have the benefit of being able to use Embedded Ruby (ERb) to programmatically

enhance them.

Using ERb, you can embed Ruby into your templates and give them the ability to

deal with data from the controller to produce well-formed HTML representations. ERb

is included in the Ruby Standard library, and Rails makes extensive use of it. You trigger

ERb by using embeddings such as <% %> and <%= %> in your template files to evaluate or

print Ruby code, respectively. If you’ve ever worked with ASP, JSP (Java Server Page), or

PHP, this style of embedding should be familiar to you.

In the example in the preceding section, the loop is constructed within evaluation

embedding tags (<% %>), and the article’s title is printed using output embedding tags

(<%= %>). Pay close attention to the subtle difference between the two embedding types:

output embedding includes an equals sign; regular embedding doesn’t. When you use

output embedding, you’re effectively saying print the results of the Ruby code when it’s

evaluated. Regular embedding doesn’t print results; it evaluates whatever is between

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

186

the tags and goes on its merry way. If you mistakenly omit the equals sign, no errors are

raised, but nothing is printed either. You have a set of empty list tags.

Note Following the Model behavior, rails is modular and can be used with other
templating libraries. a popular alternative is the haml (http://haml-lang.com)
template language used by many rails developers.

 Helpers
The terms of the MVC are fairly strict in the way they advocate the separation of

components. Controllers really shouldn’t concern themselves with the generation of

view code, and views shouldn’t concern themselves with anything but the simplest of

logic. Although it’s possible to use ERb to execute arbitrary Ruby code inside a view, and

although controllers are certainly capable of generating markup, it’s generally considered

in violation of the MVC pattern to do so. This is where helpers come in to play.

Action Pack’s helpers do exactly what their name implies: they help views by

providing a convenient location to encapsulate code that would otherwise clutter the

view and violate the terms of the MVC. They offer a middle ground between controllers

and views and help to keep your application organized and easy to maintain.

If you think about it, ERb tags really aren’t the best place for performing

complex logic, and templates can quickly become unwieldy when creating markup

programmatically. For this reason, Action Pack includes a large suite of built-in helpers

for generating all sorts of HTML fragments—from creating forms and formatting dates

to making hyperlinks and image tags. And when the built-in helpers aren’t enough,

you can write your own. Each controller gets its own helper module that’s mixed in

automatically, ready to lend your templates a hand when they need it.

 Routing
All the information pertaining to which controller and action to call on comes in the

form of the request URL. Action Pack includes a specialized component called routing,

which is responsible for dissecting the incoming URL and delegating control to the

appropriate controller and action.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

http://haml-lang.com

187

Every request that comes into your web application originates in the form of a

URL. The routing system allows you to write the rules that govern how each URL is

picked apart and handled.

A traditional URL contains the path to a file on the server, relative to the server’s

home directory. Here’s an example:

http://example.com/articles/show.asp?id=1037

You can tell a lot from this URL. First, you know the server technology being used is

Microsoft’s ASP. Given that, you also know that this URL resolves to the show.asp script,

which is inside the /articles directory. In this case, there is no URL rewriting going on;

the mapping of the URL to the script that handles it is one-to-one.

The problem with this kind of mapping is that you have no control over the URL. The

URL is coupled to the script. What if you want to invoke the show.asp script but want the

URL to read articles/detail.asp instead of show.asp? Or better yet, what if you don’t

want to expose the underlying script implementation (ASP) at all and use just articles/

detail? There’s no way. The lack of flexibility in this kind of URL mapping is a problem.

If you ever need to change the name of the script being invoked, you instantly break

all the URL references. This can be a major pain if you need to update all your code,

especially if your pages are indexed by search engines.

Action Pack’s routing solves this problem by decoupling the URL from the underlying

program implementation. In Rails, the URL is related to the specific resource being

requested, and it can be formatted to correctly identify that resource without having

to conform to the name of the script that does the handling. When thought of in this

way, URLs become part of the interface of an application, unrelated to the files that are

ultimately invoked to process a request.

There are myriad reasons why a routing system is a good idea. Here are just a few of

them:

• Decoupled URLs can convey meaning, becoming part of the

interface.

• Clean, readable URLs are more user-friendly and easier to remember.

• URLs can be changed without affecting the underlying

implementation.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

188

Of course, like most things in Rails, the routing system is open to configuration;

and one of the great benefits of routes is that because they’re decoupled, they can be

customized to create meaningful URLs without much effort. This chapter teaches you

how to build and customize routes for your application, understand the default routes

that Rails creates for you, create named routes, and use routes when creating links and

redirects in your code.

 RESTful Resources
Rails adapted RESTful design as a convention in Rails 1.2 onward. Representational

State Transfer (REST) is a principle used mainly over the HTTP protocol to offer a better

interface for client-server operations. This section first discusses the REST concept and

then explains how Rails implemented it through RESTful controllers and resources.

The REST principle is based on working with information in the form of resources.

Each piece of information is dealt with as a resource, each resource has a unique

interaction point for every action that can be performed on it, and each interaction point

(action) is normally represented using a URL and a request method.

For example, think of a blog, which is a collection of information resources. Every

article is a resource, and every action you perform on it, such as read, edit, or delete, has

its own interaction point, mainly identified by a URL and a request method.

HTTP protocol, which is the main web protocol you normally use in browsers, has

several request methods. These are the primary ones used in RESTful design:

• POST: Normally used to submit forms and create new resource data

• GET: Mainly used to request a page to view a resource or more

• PATCH/PUT: Used to modify a specific resource

• DELETE: Used to delete a resource

Do those methods remind you of anything? If you’re thinking of CRUD, then you’re

right. Taking the main database operations create, read, update, and delete (CRUD) in

REST design and tying them up with HTTP’s main methods gives you what’s called a

RESTful web service.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

189

RESTful web services are commonly used in APIs (referred to as REST APIs) by

associating every CRUD method with its corresponding HTTP method:

• POST/Create: Creates a resource

• GET/Read: Requests a specific resource or group of resources

• PATCH/PUT/Update: Edits attributes of a resource

• DELETE/Delete: Deletes a resource

Rails implemented RESTful design for controllers by introducing the concept of

resources. Every model in your application is dealt with via a controller as a resources

set, and that RESTful controller has certain methods that handle your regular operations

on that model. We’ll examine that in depth after you understand the Action Pack request

cycle.

 Action Pack Request Cycle
The entire request-to-response process is called the Action Pack request cycle. The

request cycle consists of the following steps:

 1. Rails receives a request from the outside world (usually a

browser).

 2. Routing picks apart the request to determine the controller and

action to invoke.

 3. A new controller object is instantiated, and an action method is

called.

 4. The controller interacts with a model (usually performing a CRUD

operation in a database with an ActiveRecord model, but not

necessarily).

 5. A response is sent back to the browser, in the form of either a

render or a redirect.

Figure 7-1 illustrates the process.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

190

Not long ago (and still today), developers used to construct server pages. Such a

page had a bunch of code at the top of an otherwise static page, just above the opening

HTML tag. The markup was littered with different sorts of code: it wasn’t unusual to see

the database being accessed, forms being processed, sessions being set, and all manner

of logic being performed in line. The web server was responsible for controlling the

application—one page redirecting to another, running the code, and then dumping the

results to the screen. For example, consider this poorly written PHP code:

<?php

 // articles.php

 require_once("db.inc.php");

 require_once("header.inc.php");

 $result = mysql_query("SELECT * FROM articles") or die(mysql_error());

?>

Figure 7-1. The Action Pack request cycle

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

191

<table>

 <tr>

 <th>Title</th>

 <th>Excerpt</th>

 <?php

 if($logged_in) {

 echo "<th>Actions</th>";

 }

 ?>

 </tr>

 <?php

 while($a = mysql_fetch_array($result)) {

 echo "<tr>";

 echo "<td>" . $a['title'] .

"</td>";

 echo "<td>" . $a['excerpt'] . "</td>";

 if ($logged_in) {

 echo "<td>";

 echo "<td>Edit</td>";

 echo "<td>Delete</td>";

 echo "</td>";

 }

 echo "</tr>";

 }

 ?>

</table>

<?php

 require_once("footer.inc.php");

?>

This isn’t even that bad of an example! We won’t get into the multitude of reasons

why this is a bad idea, except to say that it presents the problem of coupling. In this

scenario, the business logic and the view are mashed together, making the code more

difficult to maintain and debug. ASP and PHP pages are notable offenders, and if

you’re coming from either of these camps, the concept of separating concerns may be

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

192

foreign at first. Here’s a way to think about it that may help. Imagine taking the code

and logic from the top of each page and sticking it in one place, leaving only the HTML

behind. Then, instead of using the web server to invoke each page as you would with

a static site, have the web server call on a single dispatcher, which finds the code you

want to execute and calls it. The code it invokes—the file that contains the processing

logic extracted from the server page—is called the controller. Instead of logic being

divided among pages, it’s divided into actions.

The single biggest advantage of this pattern is that the processing logic is decoupled

from the view and safely contained in one place. As you can see, it’s a lot easier to

work this way. The interplay between actions is considerably easier to visualize and

understand when it isn’t spread out over a host of locations. Your server pages become

lightweight views, left to handle only the simplest of instructions, if any.

 A Controller Walk-Through
Instead of boring you with more theory about controllers, views, and MVC, let’s dig in

and start writing some real-world code. You’ll continue building your blog application,

examining the finer points and the places where convention wins out over configuration.

Along the way, this section touches on some of the most essential controller and view

concepts. By the end of this walk-through, you should have a complete grasp of how

the Rails request cycle works and a working example to refer to and expand on in the

subsequent chapters. The purpose of this walk-through isn’t to examine each and every

aspect of Action Pack in detail, but rather to give you a practical overview of how the

components—routes, controllers, helpers, views, layouts, and partials—work together to

control your application and construct its interface.

 Setting Up Routes
Links and URLs are important in web applications. They serve as the entry point to the

application and contain all the information required to route an incoming request to the

controller and action that will handle it. Before you get into the meat of understanding

controllers and their actions, you need to spend a few minutes learning how to get from

request to response. It all starts with routing.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

193

 Routing Basics

In Rails, all the rules for mapping URLs to controllers are a matter of configuration. You

find the routes.rb file in the config directory.

Routing priority is based on the order in which routes exist in routes.rb, so that the

first route defined has the highest priority. If an incoming URL matches the first route

defined, the request is sent along, and no other routes are examined.

Here’s an example that matches a specific pattern and sets the controller and action

in response:

get '/teams/home', to: 'teams#index'

This route matches a URL like http://example.com/teams/home and routes the

request to the index action on the teams controller. The names of the controller and

action are separated by the # symbol. You can also set arbitrary parameters when using

the route. For example, let’s say you want to set a parameter called query that you can

access and use in your controller:

get '/teams/search/:query', to: 'teams#search'

This route matches a URL like http://example.com/teams/search/toronto, routing

the request to the teams controller and the search action. The third segment in the URL

is assigned to the :query parameter and passed to the search action, because you specify

:query as an inline variable.

Routes can be complex, and it’s possible to apply conditions and other forms of

logic to them. For the most part, though, you can get a lot of mileage from the general

cases outlined here. The Rails API documentation (https://guides.rubyonrails.org/

routing.html) contains details on using the more complex routing features.

 Named Routes

One of the coolest things about routing in Rails is a feature known as named routes. You

can assign a name to a given route to make referring to it in code easier. You still define

the route the same way as a regular route, but you need a new hash pair, where the key is

:as and the value is the name of the route.

For example, let’s take the search route defined in the previous section and turn it

into a named route:

get '/teams/search/:query', to: 'teams#search', as: 'search'

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

http://example.com/teams/home
http://example.com/teams/search/toronto
https://guides.rubyonrails.org/routing.html
https://guides.rubyonrails.org/routing.html

194

With this definition in place, Rails creates helper methods that allow you to reference

this particular route using its name: search_url and search_path. The *_url variant

returns a full URL including the protocol and hostname (http://example.com/teams/

search), whereas the *_path variant returns just the path (/teams/search).

Later in this chapter, we’ll cover redirection methods and hyperlink generation

helpers. For now, note that you can use them with named routes:

link_to "Search", search_path

outputs

Search

Named routes are shorter, DRYer, and impervious to changes made at the routing

level. So if you change the controller name from teams to cities, you don’t need to

update links that use the named route; for the unnamed version, you do.

 RESTful Routes and Resources

Earlier, we said that RESTful design information is dealt with in the form of resources.

Rails makes it easy for you to do that: for every action in your controller, you have an

associated named route to call.

Resources are configured in the routes.rb file using the resources method. If you

look at the routes file in your blog application, you see resources :articles at the

top: it was added when you generated the articles scaffold in Chapter 3. The resources

:articles method defines the following named routes for the articles controller:

article_path => /articles/:id

articles_path => /articles

edit_article_path => /articles/:id/edit

new_article_path => /articles/new

The resources method generated four named routes for you; but when you open

the ArticlesController, you have seven actions (Table 7-1). How can you access the

remaining actions? Remember that when you learned about REST earlier, you saw

that every operation is identified by both a URL and a request method. Using different

request methods with the generated named routes, Rails routes them to the appropriate

controller actions.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

http://example.com/teams/search
http://example.com/teams/search

195

Note You can list all the available routes in your application by running the rails
routes command from the terminal. You can also view a list of routes by going to
http://localhost:3000/rails/info in your browser while you have your
rails server running in development mode.

By following the REST convention, instead of defining a named route for every

action, you use the resources method in your routes file. To give some examples, if you

want to access the index action in your articles controller, you go to /articles in your

browser; the default request method when you type a URL in your browser is GET. What if

you want to create a new article? You can do that by submitting a form to /articles with

the default request method for forms, POST. To get a specific article, type /articles/:id,

where :id is your article id. It’s that simple.

 Configuring Routes for the Blog Application

Let’s configure the routes to be used in your blog application. You haven’t built all the

controllers and actions yet (you do that next), but that shouldn’t stop you from getting

the routes in place.

You can handle an empty request for the root of your application’s domain using the

root method. In the blog application, you want the root URL (http://localhost:3000)

Table 7-1. Articles Named Routes

Request Method Named Routes Parameters Controller Action

GET articles_path index

POST articles_path article attributes create

GET new_article_path new

GET edit_article_path Id edit

GET article_path Id show

PATCH article_path Id and article attributes update

PUT article_path Id and article attributes update

DELETE article_path Id destroy

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

196

to connect to the list of articles. To accomplish this, you add a root declaration to your

routes file and make it the first route. Make sure your config/routes.rb file looks like

Listing 7-3 (note that all comments have been deleted).

Listing 7-3. The config/routes.rb File: https://gist.github.com/nicedawg/

3439fa09dc9be1f791271542308878fc

Rails.application.routes.draw do

 root to: "articles#index"

 resources :articles

end

Now, visit the root URL of your project (http://localhost:3000). You should see

the articles listing, just like on http://localhost:3000/articles. Now that we have

some routes defined, let’s move back to the articles controller and try to understand its

actions and templates.

 Revisiting the Scaffold Generator
You generated a scaffold for your articles in Chapter 3, and this scaffold generated a

RESTful controller for the Article model in addition to all the required templates. The

generator also added the resources declaration to your route.rb file. Listing 7-4 shows

the ArticlesController that your scaffold generated.

Listing 7-4. The ArticlesController app/controllers/articles_controller.rb

class ArticlesController < ApplicationController

 before_action :set_article, only: [:show, :edit, :update, :destroy]

 # GET /articles

 # GET /articles.json

 def index

 @articles = Article.all

 end

 # GET /articles/1

 # GET /articles/1.json

 def show

 end

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

https://gist.github.com/nicedawg/3439fa09dc9be1f791271542308878fc
https://gist.github.com/nicedawg/3439fa09dc9be1f791271542308878fc

197

 # GET /articles/new

 def new

 @article = Article.new

 end

 # GET /articles/1/edit

 def edit

 end

 # POST /articles

 # POST /articles.json

 def create

 @article = Article.new(article_params)

 respond_to do |format|

 if @article.save

 format.html { redirect_to @article, notice: 'Article was

successfully created.' }

 format.json { render :show, status: :created, location: @article }

 else

 format.html { render :new }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /articles/1

 # PATCH/PUT /articles/1.json

 def update

 respond_to do |format|

 if @article.update(article_params)

 format.html { redirect_to @article, notice: 'Article was

successfully updated.' }

 format.json { render :show, status: :ok, location: @article }

 else

 format.html { render :edit }

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

198

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

 # DELETE /articles/1

 # DELETE /articles/1.json

 def destroy

 @article.destroy

 respond_to do |format|

 format.html { redirect_to articles_url, notice: 'Article was

successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_article

 @article = Article.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def article_params

 params.require(:article).permit(:title, :location, :excerpt, :body,

:published_at)

 end

end

This may look like a lot of code to swallow, but in reality it’s simple. The scaffold

generator creates the articles controller with the default seven actions discussed earlier

for RESTful controllers: index, show, new, edit, create, update, and destroy.

Before your action renders a view, you arrange for it to set an instance variable that

the view can use. To refresh your memory, an instance variable is a special kind of Ruby

variable that is unique to a given instance of a class, serving as a way for an object to

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

199

maintain its state. Because views are, in essence, extensions of the controller object, they

can access its instance variables directly (although not without some behind-the-scenes

Ruby magic that Rails takes care of for you). For all intents and purposes, however, you

can consider instance variables to be shared between controllers and views.

You can store any Ruby object in an instance variable, including strings, integers,

models, hashes, and arrays. If you reexamine each action in the articles controller, notice

that it always starts by setting an instance variable to be called later in that action’s view.

Let’s take the index method as an example (Listing 7-5).

Listing 7-5. The Index Action in app/controllers/articles_controller.rb

 # GET /articles

 # GET /articles.json

 def index

 @articles = Article.all

 end

You define and set an instance variable named @articles, which holds the array of

all your articles.

Let’s step back a bit. When you call the index method by typing the URL (http://

localhost:3000/articles) into your browser—don’t forget to start your local server

using the rails server command—the request goes first to your routes file, where it’s

forwarded to the controller. Then, the controller responds to this request by setting an

instance variable and rendering something back to the browser.

What the controller renders is based on what has been requested. Normally, it’s an

HTML page request, but it can also be an XML or an Ajax request. It’s the responsibility

of the respond_to method to define how to respond to each of those requests. In the

index action, you accept two formats: HTML, where Rails renders the index template

using the path (/articles), and JSON (JavaScript Object Notation), where Rails renders

the articles in JSON format using the path (/articles.json). In this case, the respond_

to method is implicit, which means that since we didn’t need to change any options, it

will just use the defaults. You will see the respond_to method actually used when we

look at later actions.

Try that in the browser. Visit http://localhost:3000/articles to see the list of

articles you know and saw earlier, and visit http://localhost:3000/articles.json to

see the result shown in Figure 7-2.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

200

GET AN API FOR FREE

using restful controllers in rails gives you the ability to have an apI for your application. an

apI is a set of functions that enables other applications to talk to your application. on the Web,

this is normally done using Json, and rest is one of the main architectures used for that.

With rails and its restful controllers, defining your apI is a seamless process; basically, you

just need to tell your controller to respond to Json requests, and you have an apI. What’s

neat in rails is that the scaffold generator adds the Json part by default to all your controller

actions, providing you with an apI for free. rails also supports XMl, but Json is the default.

 Rendering Responses
When an action has completed, it attempts to render a template of the same name.

That’s the case with the index action just discussed: it renders the index.html.erb

template by default. The same applies to edit, new, and show actions. But sometimes you

want to render something else.

If you look at the create and update actions, notice that if the @article.save

succeeds, you redirect to the saved @article show page with a friendly message.

However, if the save fails, you want to render the new or the edit template. If you didn’t

explicitly render those templates, the actions would fall through to their default behavior

and attempt to render their default create and update templates, which don’t exist.

Typically, the first argument to render is a string or symbol indicating which

template to render (e.g., render :edit when the update action in our ArticlesController

fails to save would cause the articles/edit.html.erb to be rendered). However, the

render method offers various ways to render output inline—that is, without a template.

Figure 7-2. Output of http://localhost:3000/articles.json

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

201

For example, render json: @article.errors results in the article’s errors being sent back

to the browser in JSON format, with no template file involved. In addition to json, the

render method supports several other inline-render modes, including :plain, :html,

:nothing, :inline, :xml, and :js. For more information on different ways to

use the render method, visit the following link when you’re ready: https://

guides.rubyonrails.org/layouts_and_rendering.html#using-render

 Redirecting
It may not sound like it, but a redirection is a response. Redirects don’t happen on

the server side. Instead, a response is sent to your browser that tells it to perform a

redirection to another URL. The specifics of issuing a redirect aren’t something you need

to worry about, though, because Rails provides a specialized method to take care of the

internals. That method is called redirect_to, and it’s one you’ll find yourself using a lot,

so it’s a good idea to get familiar with it.

The redirect_to method usually takes a URL as a parameter, which in most cases

is represented by one of your routes. Let’s say that you want to redirect the user to

the articles’ index page, and the path you use is articles_path—a route added by

resources :articles in config/routes.rb; so you execute redirect_to(articles_

path). If you look at the destroy action, the user is redirected to articles_url after an

article is deleted.

As you can see from the create and update actions, redirect_to can also take an

object as a parameter, in which case it redirects to a path that represents that object. This

means Rails uses a convention to translate objects to their show action named route. In

this case, redirect_to(@article) is a shortcut equivalent to redirect_to(article_

path(id: @article)).

WHAT MAKES A CLASS AN ACTION CONTROLLER?

If you’re the curious sort (and, of course, you are), you may wonder how

ArticlesController, a seemingly normal ruby class, becomes a full-fledged action

Controller. Well, if you look closely, you’ll notice that ArticlesController inherits from

another class: ApplicationController. to get a better picture of what’s going on, let’s

take a peek at the ApplicationController class in app/controllers/application_

controller.rb:

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

https://guides.rubyonrails.org/layouts_and_rendering.html#using-render
https://guides.rubyonrails.org/layouts_and_rendering.html#using-render

202

class ApplicationController < ActionController::Base

end

the mystery is quickly solved. the simple controller becomes an action Controller

by subclassing the ApplicationController class, itself a subclass of

ActionController::Base. this is an example of inheritance and is common in object-

oriented programming. When one class subclasses another, it inherits all the behavior and

methods of the parent. In the case of the articles controller, it inherits all the capabilities of the

ApplicationController. likewise, ApplicationController inherits all the capabilities

of its parent, ActionController::Base. the ActionController::Base class effectively

endows your articles controller with its special abilities.

ApplicationController is the base from which all the controllers you make inherit.

Because it’s the parent of all controllers in your application, it’s a great place to put methods

that you want accessible in every controller.

By looking at the articles controller, you now understand the basic conventions and

common concepts of how a RESTful controller normally behaves. You have seven default

actions, and in every one of them you do the following:

• Set an instance variable to be used later in the rendered action or

template.

• Handle the response using the respond_to method to either do a

render or redirect_to another path, depending on the behavior you

want to achieve.

 Understanding Templates
The next step is to look at the actions’ templates. Look in the app/views/articles

directory, and you see eight templates:

• _article.json.jbuilder

• _form.html.erb

• edit.html.erb

• index.html.erb

• index.json.jbuilder

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

203

• new.html.erb

• show.html.erb

• show.json.jbuilder

The basic convention of Action Pack is as follows: templates are organized by

controller name, and a template with the same name as the action being invoked is

rendered automatically. You don’t need to wire up anything. Merely by requesting an

action from a controller, Rails renders the corresponding template in that controller’s

directory inside app/views/ that has the same name.

Let’s try an example. Make sure your local web server is running (rails server),

and open http://localhost:3000/articles/ in your browser. You see the articles

index page shown in Figure 7-3.

The articles listing is actually rendered from app/views/articles/index.html.erb,

which follows the convention discussed earlier. It’s the articles controller, so it goes to

the articles directory in app/views. After determining which controller to invoke, Rails

proceeds to instantiate it and calls its index method. Its default response after running

the index action is to perform a render. Rails looks for a template named index.html.

erb in the app/views/articles directory and loads it. The same applies to the show

action: the show.html.erb template is rendered.

Figure 7-3. Output of http://localhost:3000/articles

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

204

At this point, the request cycle is complete. If you refresh your browser, the cycle

begins anew, and the same result is rendered. Notice how all the internals are taken care

of for you. All you need to do is create an appropriately named route, controller, action,

and view, stick them in the right place, and request the URL in your browser. Rails takes

care of making sure everything is knit together properly.

Before you go any further, use your browser’s View Source command to see the

HTML that was produced. If you know anything about HTML (and chances are you do),

you’ll quickly realize that some additional HTML code has been rendered around the

code in index.html.erb; it came from a layout. Most web pages have headers, footers,

sidebars, and other page elements that, when styled, make the page look pretty. Rails has

a built-in facility for dealing with page layouts.

 Working with Layouts
Rails uses layouts to interpolate the output of an individual template into a larger

whole—a reversal of the common pattern of including a shared header and footer on

every page (which, if you’ve done any work in languages like PHP and ASP, is all too

familiar). When you created this blog application, Rails created a default layout file and

placed it in app/views/layouts/application.html.erb. The application.html.erb

layout is applied to all controllers. However, if you like your layout to apply to a specific

controller, you can create a layout file named after the controller you want. For example,

a layout that applies only to the articles controller should be created in app/views/

layouts/articles.html.erb. That’s the way it works in Rails. Just as an action tries to

render itself using a view that matches its name, a controller attempts to use a layout that

matches its name.

Note layouts always default to the most specific declaration. If your controller
inherits from ApplicationController and doesn’t specify a layout directly,
rails will look for a layout named after your controller first. If that layout isn’t found,
it will look for a layout declaration on ApplicationController, and if that isn’t
found, it will look for a layout named application. In other words, layout declaration
follows normal class inheritance.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

205

Open the file app/views/layouts/application.html.erb in your editor. You should

see something like the file shown in Listing 7-6.

Listing 7-6. The app/views/layouts/application.html.erb File

<!DOCTYPE html>

<html>

 <head>

 <title>Blog</title>

 <%= csrf_meta_tags %>

 <%= csp_meta_tag %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-

track': 'reload' %>

 <%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

 </head>

 <body>

 <%= yield %>

 </body>

</html>

At rendering time, the layout yields the results of the template fragment’s execution

in place. See the <%= yield %> bit that’s highlighted in bold? That’s the important part.

Wherever you put the yield keyword is where your content goes.

One more thing to note: Rails is all about convention over configuration. Here,

the convention is that a layout with the name application.html.erb is automatically

applied to all templates unless an alternate is specified. This means that if you change

the name of the layout as it stands, it won’t be automatically applied. If you want to apply

a different layout to a given controller, you can either have a layout named after the

controller or specify it in the controller using the class method layout:

class ExampleController < ApplicationController

 layout 'my_layout' # Will use a layout in app/views/layouts/my_layout.

html.erb

end

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

206

COMMON LAYOUT CONVENTIONS

a few conventions apply to working with layouts:

• a layout named application.html.erb is applied automatically unless a

more specific candidate exists or is explicitly specified in the controller.

• a layout that matches the name of a controller is automatically applied if

present. Controller-specific layouts take precedence over the application-level

layout.

• You can use the layout directive at the class level in any controller (i.e., not

inside an action) to set the layout for the entire controller: layout 'my_

layout'.

• You can include a layout for a specific action with an explicit call to render

inside the action: render layout: 'my_layout'.

• sometimes, you want to render an action without a layout. In that case, you can

pass false in place of the layout name: render layout: false.

In practice, you usually use application.html.erb and rarely take advantage of the

controller-specific layout functionality. on the occasions when you need to use a different

layout for a particular controller, use the layout directive.

 Looking at the Article Form
Let’s look at the new template in action. The new action has a single purpose: to initialize

and display the form for creating a new article. The actual creation of a new Article

object is the responsibility of the Article model (remember the discussions of the

model in Chapters 5 and 6), but it’s orchestrated by the controller. Moreover, it needs

data (like a title and body), which it must procure from somewhere. The edit action isn’t

any different, except that it finds and displays a form of an existing Article object rather

than a new one.

You can extract this information from HTML form elements placed in the view and

handled in the controller. Open new.html.erb and edit.html.erb, which look like

Listings 7-7 and 7-8, respectively.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

207

Listing 7-7. Content of app/views/articles/new.html.erb

<h1>New Article</h1>

<%= render 'form', article: @article %>

<%= link_to 'Back', articles_path %>

Listing 7-8. Content of app/views/articles/edit.html.erb

<h1>Editing Article</h1>

<%= render 'form', article: @article %>

<%= link_to 'Show', @article %> |

<%= link_to 'Back', articles_path %>

Notice the similarity between the templates, especially the render 'form' part

highlighted in bold. The render method renders a partial named form in this context.

The upcoming section “Staying DRY with Partials” discusses partials in more depth; for

now, let’s focus on the content of the template in app/views/articles/_form.html.erb

(Listing 7-9).

Listing 7-9. Content of app/views/articles/_form.html.erb

<%= form_with(model: article, local: true) do |form| %>

 <% if article.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(article.errors.count, "error") %> prohibited this

article from being saved:</h2>

 <% article.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

208

 <div class="field">

 <%= form.label :title %>

 <%= form.text_field :title %>

 </div>

 <div class="field">

 <%= form.label :location %>

 <%= form.text_field :location %>

 </div>

 <div class="field">

 <%= form.label :excerpt %>

 <%= form.text_field :excerpt %>

 </div>

 <div class="field">

 <%= form.label :body %>

 <%= form.text_area :body %>

 </div>

 <div class="field">

 <%= form.label :published_at %>

 <%= form.datetime_select :published_at %>

 </div>

 <div class="actions">

 <%= form.submit %>

 </div>

<% end %>

Notice how instead of including the actual markup for form fields (like <input> or

<select> tags), you use form helpers for each of your fields. Visit the article’s new page at

http://localhost:3000/articles/new in your browser, and you’ll see that the helpers

function to produce a nicely formatted HTML form. Use your browser’s View Source

command to look at the HTML that was generated. Here’s part of the generated HTML:

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

209

 <h1>New Article</h1>

<form action="/articles" accept-charset="UTF-8" method="post"><input

type="hidden" name="authenticity_token" value="Yc+I0EOM4OdEefg/+BFZErrmAcRV

WbZfNuTwG6a4MAFbIvJJlc9Xni51jjXYLlqYqYLrD+/K/vNvWZV+CfGxXA==" />

 <div class="field">

 <label for="article_title">Title</label>

 <input type="text" name="article[title]" id="article_title" />

 </div>

 <div class="field">

 <label for="article_location">Location</label>

 <input type="text" name="article[location]" id="article_location" />

 </div>

 <div class="field">

 <label for="article_excerpt">Excerpt</label>

 <input type="text" name="article[excerpt]" id="article_excerpt" />

 </div>

 <div class="field">

 <label for="article_body">Body</label>

 <textarea name="article[body]" id="article_body"></textarea>

 </div>

 ...

 <div class="actions">

 <input type="submit" name="commit" value="Create Article" data-disable-

with="Create Article" />

 </div>

</form>

Note the way in which Rails formats the name attribute of each form element:

model[attribute]. This helps when it comes to parsing the parameters from the form,

as you’ll see shortly. If you manually create your form elements (which you need to do

sometimes), you can use this naming convention to make sure your form values are easy

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

210

to parse in the controller. Most of the time, though, you use form helpers when working

with forms, especially when you’re dealing with Active Record objects. Let’s spend some

time discussing form helpers.

 Using Form Helpers
One of the best things about working with templates in Rails is the presence of helpers.

Rails comes with a bunch of helper methods that take the tedium out of generating the

bits of HTML that your views need. Let’s face it, nothing is more of a drag to build than

HTML forms. Fortunately, Rails understands the plight of the web developer all too well

and provides a suite of easy ways to build forms.

Two basic varieties of form helpers are available:

• FormHelper: Active Record–aware tag helpers for creating forms that

hook into models.

• FormTagHelper: Helpers that output tags. They aren’t integrated with

Active Record. The names of these helpers are suffixed with _tag.

The FormHelper type is aware of Active Record objects assigned to the template; the

FormTagHelper (note the Tag) type isn’t. The advantage of the Active Record–aware,

FormHelper, helpers is that they know how to populate themselves with data and can

automatically be highlighted in the event of validation errors from the model. But not

every form element you make corresponds directly to a model attribute. That’s where the

FormTagHelper group comes in handy. These have no special relationship with Active

Record; they just output form tags.

In your article’s form template (Listing 7-9), you use six helpers: form_with, label,

text_field, text_area, datetime_select, and submit.

The form_with helper is of the FormHelper variety. It creates an HTML form tag

using its parameters (model: article, local: true, in this case) and places everything

in the do..end block inside the resulting form. It also produces and sets a form local

variable to the form block. The form local variable, in this case called f, is aware of the

Article object and uses its attributes’ names and values when calling the other form

helpers: label, text_field, text_area, datetime_select, and submit.

By default, forms use the HTTP POST method. If you want to use a different method,

you need to specify it manually using the :method option (e.g., method: "get"). If you

recall, POST is the request method you used for the create action in your RESTful-

designed controller.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

211

HTTP VERBS

the http protocol defines several request methods, the most popular of which are GET and

POST. Both are methods for requesting a web page; the difference is in how the request is

sent. GET is the simpler of the two. It includes all the information about the request as part of

the url. POST sends information invisibly, which is to say as part of the request header and

not part of the url. so you can’t type a POST request into your browser’s location bar. every

time you request a web page via the location bar in your browser, you’re using GET. When you

submit a form, say, to register on a website, the form is usually submitted via a POST.

how do you know when to use each? the best way to think of this is to consider GET a read

method. It should never do anything destructive, such as modifying a database record. POST,

on the other hand, can be thought of as a write method. When you need to create data, use

POST. PATCH is used when you need to update a record partially, for instance, only changing

your email address. PUT is used to update a record completely. there has been a lot of

controversy over these verbs on the Internet, but they are effectively used interchangeably in

rails. the DELETE verb is used to destroy a record.

a small note: Most browsers only support the GET and POST verbs. rails gets around this by

using an actual POST request but inserting hidden form fields specifying which actual verb to

use. rails automatically removes this field and converts the request into the specified type.

once the request has reached the controller, it will appear as the intended verb.

remember that you should never put a state-changing action behind a GET request. For more

information, see www.w3.org/2001/tag/doc/whenToUseGet.html.

The label helper is a FormHelper method that outputs an HTML label tag for the

provided attribute. Here’s an example of the output for :title:

<label for="article_title">Title</label>

The text_field helper is of the FormHelper variety, meaning that it corresponds

to Active Record objects. It creates an HTML input tag whose type is set to "text" and

assigns it a name and an ID that match the given object and method (title in this case).

Here’s what the rendered output looks like:

<input type="text" name="article[title]" id="article_title" />

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

http://www.w3.org/2001/tag/doc/whenToUseGet.html

212

The text_area helper is also of the FormHelper variety. It’s similar to text_field,

except it returns a text area instead of a text input. Here’s what the HTML output looks

like for the body field:

<textarea name="article[body]" id="article_body"></textarea>

The datetime_select helper is a FormHelper that outputs a set of HTML select tags

to input a date and time value.

The submit helper is a FormHelper that creates an input element whose type is set

to "submit". It accepts the name of the submit button as its first argument. If you don’t

provide a name to the submit method, it generates a name based on the @article object.

For example, in the New Article form, the generated name is Create Article, whereas

in the Edit Article form, the name is Update Article. Here’s the HTML output from

the example:

<input type="submit" name="commit" value="Create Article" data-disable-

with="Create Article" />

All these helpers (and, to be sure, most helpers in Rails) accept a hash of options as

their last argument to customize the resulting HTML. For example, to give your title

field a class of large, you type f.text_field :title, class: 'large', which adds the

class attribute to the output:

<input class="large" type="text" name="article[title]" id="article_title" />

You can pass arbitrary options in this way, all of which end up as attributes on

the resulting tag. For example, to apply an inline style attribute, you can use style:

'background: #fab444'. Here’s a list of some of the most common FormHelper helpers:

• text_field

• hidden_field

• password_field

• file_field

• text_area

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

213

• check_box

• radio_button

All these methods can be suffixed with _tag to create standard HTML tags (with no

Active Record integration).

For a full list of FormHelper and FormTagHelper methods, consult the Rails API,

where you can find a complete reference along with usage examples:

• https://api.rubyonrails.org/classes/ActionView/Helpers/

FormHelper.html

• https://api.rubyonrails.org/classes/ActionView/Helpers/

FormTagHelper.html

Now, back to your form. Let’s see what happens when you submit it. (Make sure your

server is still running.) Click the Create Article button, and you see the screen shown in

Figure 7-4.

Figure 7-4. New article form with validation errors

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

https://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html
https://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html
https://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html
https://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html

214

What happened? Well, as the message says, Rails couldn’t create an article for you.

Of course it couldn’t—you set validation rules in your Article model to prevent the

creation of a new Article object with an empty title or body field. But let’s look at the

output from the server running in the command prompt and see what happened:

Started POST "/articles" for ::1 at 2020-02-22 14:40:13 -0600

Processing by ArticlesController#create as HTML

 Parameters: {"authenticity_token"=>"UzFLTMzE6SOnFXLUbbpUlSwAxJ2

tJeAVkFRmSunZXEbKH4f/IQ0VhxyGnUBNkcCrDrqJClaFpzLi4o7U3nb3Yg==",

"article"=>{"title"=>"", "location"=>"", "excerpt"=>"", "body"=>"",

"published_at(1i)"=>"2020", "published_at(2i)"=>"2", "published_

at(3i)"=>"22", "published_at(4i)"=>"20", "published_at(5i)"=>"40"},

"commit"=>"Create Article"}

 Rendering articles/new.html.erb within layouts/application

 Rendered articles/_form.html.erb (Duration: 5.2ms | Allocations: 3887)

 Rendered articles/new.html.erb within layouts/application (Duration:

5.6ms | Allocations: 3979)

[Webpacker] Everything's up-to-date. Nothing to do

Completed 200 OK in 28ms (Views: 12.4ms | ActiveRecord: 0.0ms |

Allocations: 10155)

See the section titled Parameters in the preceding code? You may recognize this as a

Ruby hash. This hash contains all the form values you submitted. Notice that there’s an

entry for the button name (commit), called Create Article, and for authenticity_token,

which is used for security in Rails to prevent anonymous form posts. The article

portion of the hash looks like this:

"article"=>{"title"=>"", "location"=>"", "excerpt"=>"", "body"=>"",

"published_at(1i)"=>"2020", "published_at(2i)"=>"2", "published_

at(3i)"=>"22", "published_at(4i)"=>"20", "published_at(5i)"=>"40"}

If you’re thinking that this looks a lot like the options hashes you passed to Article

objects when you were working with Active Record on the console, you’re right. Rails

automatically turns form elements into a convenient hash that you can pass into your

models to create and update their attributes. In the sections that follow, you’ll put this

feature to use in the next action, create. First, let’s take a deeper look at params.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

215

 Processing Request Parameters
Request parameters—whether they originate from requests of the GET or POST variety—

are accessible via the params hash. To be specific, params is a method that returns a

Hash-like ActionController::Parameters object so you can access it using hash

semantics. Hashes in Ruby are similar to arrays but are indexed by arbitrary keys—unlike

arrays, which are indexed by number. (If you need a quick review of the Hash object, flip

to Chapter 4 for a Ruby primer.)

The value of any request variable can be retrieved by its symbolized key. So, if there’s

a variable called id in the request parameters, you can access it with params[:id]. Just

to drive this concept home, let’s look at a sample URL and display the params hash that it

populates. Point your browser to http://localhost:3000/articles?title=rails&body

=great and check the server output. You should see something similar to this:

Parameters: {"title"=>"rails", "body"=>"great"}

 Revisiting the Controller
With an understanding of params under your belt, let’s go back to your controller.

The create action is the target of the form submission. The method code shown in

Listing 7-10 is from the articles controller, just under the new method.

Listing 7-10. The Create Action in app/controllers/articles_controller.rb

POST /articles

POST /articles.json

def create

 @article = Article.new(article_params)

 respond_to do |format|

 if @article.save

 format.html { redirect_to @article, notice: 'Article was successfully

created.' }

 format.json { render :show, status: :created, location: @article }

 else

 format.html { render :new }

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

216

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

end

Let’s walk through this. First, you initialize a new Article object with whatever

attributes come in via the article_params method. You can imagine that taking raw

input from the user and putting it directly into your model without filtering it could be

dangerous. Imagine that you were letting users sign up using the User#create action. If

you had an attribute on the User model called admin that determined whether or not the

user had admin access to the system, a user could just add that parameter in themselves

and make themselves an admin. You can see how vital it is that we filter the parameters

now! Let’s take a look at the article_params method:

 # Never trust parameters from the scary internet, only allow the white list

through.

def article_params

 params.require(:article).permit(:title, :location, :excerpt, :body,

:published_at)

end

The syntax for this is simple. We are telling Rails that we require the article param

and permit title, location, excerpt, body, and published at. Any other params will be

filtered out before they get to the model. If you try to just pass params[:article] to the new

or create method, an error will be returned. This feature is called “strong parameters.”

After we pass the filtered params to the new method, we attempt to save the model.

If the save is successful, you use a facility that Rails provides called the flash to set a

message—by passing the :notice option to redirect_to—before redirecting to the show

action on the same articles controller. The flash is a special kind of storage mechanism

provided by Rails for convenience. It encapsulates the pattern of wanting to set a message

on one action and have that message persist to the next, only to disappear after that action

is rendered. This is useful for providing user feedback, as you do here to say “Article was

successfully created.” If you look at the show article file in app/views/articles/show.

html.erb, you have access to the notice variable, allowing the message to be displayed:

<p class="notice"><%= notice %></p>

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

217

The flash message you set is available to the controller and action you redirect to

(the show action on the articles controller). There are two special flash cases, notice

and alert, which you can use just as you did in the previous example by passing them as

arguments to redirect_to.

Note When you pass notice: "Article was successfully created"
to redirect_to, it’s identical to calling flash[:notice] = "Article was
successfully created" in a separate line. also, when you retrieve, in any view
template, the message using notice, you could as well use flash[:notice].
so you can use any named key when calling flash because it’s implemented as a
ruby hash. You store values in it based on a key. the key can be anything you like:
you can use any symbol, such as flash[:warning] =, in your controller and
later retrieve it in your views using the same flash[:warning] call.

If the save fails, you render the new action again so that any errors can be corrected.

 Displaying Error Messages in Templates
Let’s try submitting the form empty one more time to explore it again. Sure enough, the

form doesn’t save. Notice that you’re still on the same screen and that the form elements

are highlighted in red, as shown in Figure 7-4.

If you look at the HTML source, you see that the input and label tags are

surrounded by div elements with the class name field_with_errors:

<div class="field_with_errors">

 <label for="article_title">Title</label>

</div>

<div class="field_with_errors">

 <input type="text" value="" name="article[title]" id="article_title">

</div>

Rails does this automatically for any fields that fail validation. You can use these

classes to style invalid elements.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

218

Note the style rules that turn the invalid fields red are generated by the scaffold
generator and are in app/assets/stylesheets/scaffolds.scss.

The formatted list of errors that appears at the top of the page is rendered using the

following code snippet, which is a part of app/views/articles/_form.html.erb:

 <% if article.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(article.errors.count, "error") %> prohibited this

article from being saved:</h2>

 <% article.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

Now that you understand this, let’s submit the form with valid data. If all goes

according to plan, the new article should be created, and you’re redirected to that

article’s show action, where you see the friendly notice message you set. Notice that

if you refresh the page using your browser’s Refresh button, the notice message

disappears.

 The edit and update Actions
The edit and update actions look almost identical to the new and create actions.

The main difference is that instead of instantiating a new Article object, you

fetch an existing one. This happens with a callback called before_action. This is

similar to the Active Record callbacks we looked at in Chapter 6. In this case, the

set_article method is called before the show, edit, update, and destroy actions

are run. The set_article method loads the article using the id passed in params.

This allows your code to stay DRY by keeping you from typing that line multiple

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

219

times throughout the controller. It works exactly as if the code from the set_article

method were typed at the very beginning of your action.

Looking at our action again, we used Active Record’s update method to update all

the Article attributes with those from the article_params method. If the update fails,

update returns false, and your if statement takes the else path (Listing 7-11).

Listing 7-11. The Update Action in app/controllers/articles_controller.rb

PATCH/PUT /articles/1

PATCH/PUT /articles/1.json

def update

 respond_to do |format|

 if @article.update(article_params)

 format.html { redirect_to @article, notice: 'Article was successfully

updated.' }

 format.json { render :show, status: :ok, location: @article }

 else

 format.html { render :edit }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

end

 Revisiting the Views
Let’s get back to the views. If you look at the new and edit templates, you can’t help but

notice they render almost the same HTML: only the header and navigation are slightly

different. Remember from the RESTful discussion that the HTTP request methods for

create and update should be POST and PUT, respectively. Rails once more takes care of

that for you. You’re rendering the same app/view/articles/_form.html.erb partial,

but Rails knows the request method to use based on the @article variable passed to the

form_with helper.

Try editing one of the articles. The URL should be something like http://

localhost:3000/articles/1/edit; it looks similar to the new form, but with the record

information already populated (Figure 7-5).

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

220

Thanks to the form_with helper, the form fields are populated with their respective

@article attributes. If you try to submit this form and look at the output from the server

running on the command prompt, you’ll see the following:

Started PATCH "/articles/1" for ::1 at 2020-02-22 15:10:55 -0600

Processing by ArticlesController#update as HTML

 Parameters: {"authenticity_token"=>"QDD9QBMIUikwWl6NgIqpl2kjuRH0wcZiMqL+

ltl/bTcK3MQC/SnjANd0MlLIrHAhPFwDgVyYtX7ZYgCvqqYpWw==", "article"=>

{"title"=>"RailsConf2020", "location"=>"", "excerpt"=>"", "body"=>

"RailsConf is the official gathering for Rails developers..", "published_

at(1i)"=>"2020", "published_at(2i)"=>"2", "published_at(3i)"=>"18",

"published_at(4i)"=>"01", "published_at(5i)"=>"17"}, "commit"=>

"Update Article", "id"=>"1"}

 Article Load (0.3ms) SELECT "articles".* FROM "articles" WHERE

"articles"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]

 ↳ app/controllers/articles_controller.rb:67:in `set_article'
 (0.1ms) begin transaction

 ↳ app/controllers/articles_controller.rb:44:in `block in update'

Figure 7-5. Editing an existing article

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

221

 Article Update (0.6ms) UPDATE "articles" SET "location" = ?, "excerpt" = ?,

 "published_at" = ?, "updated_at" = ? WHERE "articles"."id" =

? [["location", ""], ["excerpt", ""], ["published_at", "2020-02-18

01:17:00"], ["updated_at", "2020-02-22 21:10:55.483973"], ["id", 1]]

 ↳ app/controllers/articles_controller.rb:44:in `block in update'
 (3.5ms) commit transaction

 ↳ app/controllers/articles_controller.rb:44:in `block in update'
Redirected to http://localhost:3000/articles/1

Completed 302 Found in 12ms (ActiveRecord: 4.4ms | Allocations: 3742)

Notice the bold line: the update action of the articles controller was called as

expected. Rails recognized that the article variable passed to form_with wasn’t a new

record; therefore, it called the update action for you. This is yet another example of

convention over configuration in Rails.

 Staying DRY with Partials
A typical web application is rife with view code and often suffers from a lot of needless

duplication. The HTML forms for adding and modifying articles are good examples of

forms that are very similar. Wouldn’t it be nice if there were a way to reuse the common

elements from one form in more than one place? That’s where partial templates come in.

Partial templates, usually referred to as partials, are similar to regular templates,

but they have a more refined set of capabilities. Partials are used quite often in a typical

Rails application, because they help cut down on duplication and keep the code well

organized. They follow the naming convention of being prefixed with an underscore,

thus distinguishing them from standard templates (which are meant to be rendered on

their own).

Rather than creating two separate forms, Rails keeps your code DRY by using a single

partial and including it from both the new and edit templates. Let’s look at the code from

new.html.erb and edit.html.erb, shown in Listings 7-12 and 7-13, respectively.

Listing 7-12. The app/views/articles/new.html.erb File

<h1>New Article</h1>

<%= render 'form', article: @article %>

<%= link_to 'Back', articles_path %>

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

222

Listing 7-13. The app/views/users/edit.html.erb File

<h1>Editing Article</h1>

<%= render 'form', article: @article %>

<%= link_to 'Show', @article %> |

<%= link_to 'Back', articles_path %>

Let’s take a closer look at the render method. When referencing the partial in the

render method, you don’t include the leading underscore:

<%= render 'form', article: @article %>

We see that two arguments are passed to the render method. The first argument is a

string, and the second argument is a hash. (Have you noticed that Rails is a big fan of the

options hash?)

The first argument is the partial’s name. Upon seeing this, the render method

searches the current directory for a file named _form.html.erb. Notice that you don’t

need to include the leading underscore or the file extension when specifying the partial’s

name; Rails knows to look for a file in the same directory as the calling template with a

leading underscore.

The second argument, article: @article, assigns the value of @article to a local

variable in the partial named article. This isn’t strictly necessary—the form partial

could have referenced @article directly instead of the article local variable. However,

the scaffold generator chose to populate local variables in the template because many

consider this a best practice; doing so minimizes the scope of the @article instance

variable and arguably makes the partial more reusable. The next section explains in

more detail.

 Local Variable Assignment in Partials

The render method accepts a hash of local variables as part of the options hash. This is

an example of what a render partial with local variables looks like:

<%= render 'header', title: 'My Blog' %>

Any number of local variables can be assigned this way, and any object can be set as

the value. In the preceding example, the partial has access to the local variable title.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

223

 Rendering an Object Partial

Following the same convention of local variable assignment in partials, Rails makes it

easier to render a partial that represents a specific object. For example, suppose you have

the following render call in your code:

<%= render @article %>

Rails looks for a partial in app/views/articles/_article.html.erb and

automatically assigns a local variable called article. It’s a shortcut for

<%= render 'articles/article', article: @article %>

 Rendering a Collection of Partials

Another common pattern of rendering partials renders a collection of objects. Rails has a

convention for rendering collections where you pass the collection as the first argument

of the render method; Rails automatically loops across this collection and renders the

partial of every object inside that array accordingly. Here’s an example:

 <%= render @articles %>

This behaves exactly like the previous call, but it performs more magic under the

hood. For example, if the @articles array contains different Active Record objects, such

as two articles and two comments, the render call renders the right partial template

for each of those objects. It renders /app/views/comments/_comment.html.erb for the

comment objects and /app/views/articles/_article.html.erb for the Article objects.

It is roughly equivalent to (but more performant than) the following:

<% @articles.each do |object| %>

 <%= render object %>

<% end %>

 Summary
This chapter covered a lot of ground. It began with a general introduction to the

components that compose Action Pack, the Rails library responsible for the controller

and the view. Then, it launched into a controller walk-through, where you visited your

scaffold-generated controller. In doing so, you learned about routes, what happens when

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

224

you generate a scaffold, how actions relate to views, and how to work with layouts. You

were introduced to Rails’ form helpers, and you learned how easily forms integrate with

Active Record objects. The chapter also introduced partials, and you learned how to

keep your templates DRY and easy to maintain.

This chapter gave you your first taste of Rails outside the model. You now have a

complete understanding of how Rails divides its concerns and a firsthand look at MVC

in action. You started by modeling your domain in Chapters 5 and 6, and now you’ve

completed the first iteration of building a web application around your domain.

You should be proud of yourself. At this stage, you know a lot about Rails.

The next chapter builds on this knowledge, starting with more advanced topics

like building a controller from scratch, sessions, and state and sprucing up the

application with some CSS.

Chapter 7 aCtIon paCk: WorkIng WIth routes, Controllers, and VIeWs

225
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_8

CHAPTER 8

Advanced Action Pack
Now that you have a very good understanding of how the components of Action Pack

work, it’s time to dig a little deeper. You start by generating the users controller from

scratch, writing its actions, and creating its templates. Then you’ll add some functionality

to the blog application: you allow users to leave comments when reading an article and

make sure only logged-in users have access to adding and editing content. Finally, you

give your application some styling so it looks better and more like a real application.

Note If you need to get the code at the exact point where you finished Chapter 7,
download the source code zip file from the book’s page on www.apress.com and
extract it on your computer.

 Generating a Controller
It’s time to create your first controller from scratch. If you haven’t noticed already, Rails

ships with generators for most common tasks, and controllers are no exception. The

syntax for the controller generator is as follows:

$ rails g controller ControllerName [actions] [options]

As a minimum, the controller generator takes the name of the controller as an

argument, which you can specify using either CamelCase (sometimes called MixedCase)

or snake_case. The generator also takes an optional list of actions to generate. For every

action you specify, you’ll get an empty method stub in the controller and a template in

app/views/#{controller_name}. To see a list of all available options, you can run the

rails g controller command without arguments.

https://doi.org/10.1007/978-1-4842-5716-6_8#ESM
http://www.apress.com

226

Tip The help output for the controller generator contains sample usage and
options that you’re sure to find interesting. All of the generators (and most UNIX
commands, for that matter) respond to the --help argument (or variations
thereof), so you’re encouraged to try it whenever you’re issuing a system
command.

Generate the users controller using the following command:

$ rails g controller users

 create app/controllers/users_controller.rb

 invoke erb

 create app/views/users

 invoke test_unit

 create test/controllers/users_controller_test.rb

 invoke helper

 create app/helpers/users_helper.rb

 invoke test_unit

 invoke assets

 invoke scss

 create app/assets/stylesheets/users.scss

Let’s talk about the controller name we provided to the generator—users. The

controller generator accepts this name in either “CamelCased” or “under_scored”

format. In this case, “users” or “Users” would have resulted in the UsersController

being generated. If we wanted to generate a controller that dealt with resources with a

compound name, like UserFavoritesController, we would pass either “UserFavorites” or

“user_favorites” to the generator.

Take the time to read the output of the generator so you get a sense of all the files that

were just created. Notice where the templates are located: in the app/views directory,

inside a subdirectory named after the controller. In this case, because your controller is

called users, your templates go in app/views/users. Open the newly minted controller

file in app/controllers/users_controller.rb and take a look (Listing 8-1).

ChApTer 8 AdvANCed ACTIoN pACk

227

Listing 8-1. Users Controller in app/controllers/users_controller.rb

class UsersController < ApplicationController

end

Tip Most of the time, our controllers handle interactions with a collection
of things, so we reflect that by using a plural name. however, sometimes
our controller handles interactions with a singleton resource—like the
SessionController we’ll add later in this chapter—and is named with a singular
name to reflect. Take care to name things appropriately!

As you can see, all the generator gives you is an empty stub. If you want your users

controller to do anything useful, you’ll need to add a few actions and give it something to

do. Let’s add the actions you need to the controller now. Edit users_controller.rb so

that it looks like the code in Listing 8-2.

Listing 8-2. Updated app/controllers/users_controller.rb: https://gist.

github.com/nicedawg/d7074c119699fa9e274321ce9b406424

class UsersController < ApplicationController

 before_action :set_user, only: [:show, :edit, :update, :destroy]

 def new

 @user = User.new

 end

 def create

 @user = User.new(user_params)

 if @user.save

 redirect_to articles_path, notice: 'User successfully added.'

 else

 render action: :new

 end

 end

 def edit

 end

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/d7074c119699fa9e274321ce9b406424
https://gist.github.com/nicedawg/d7074c119699fa9e274321ce9b406424

228

 def update

 if @user.update(user_params)

 redirect_to articles_path, notice: 'Updated user information

successfully.'

 else

 render action: 'edit'

 end

 end

 private

 def set_user

 @user = User.find(params[:id])

 end

 def user_params

 params

 end

end

You add four actions: new, create, edit, and update. The actions you add look very

similar to the ones you saw in the articles controller in Chapter 7. The main difference

is that you aren’t using the respond_to block; therefore, Rails directly renders the default

erb templates. Let’s create those templates: Listings 8-3 and 8-4 show the new and edit

templates, respectively.

Listing 8-3. New User Template in app/views/users/new.html.erb: https://

gist.github.com/nicedawg/67735ea8d8b9f91373e8ff25785b6f29

<h1>New User</h1>

<%= render 'form', user: @user %>

<%= link_to 'Back', articles_path %>

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/67735ea8d8b9f91373e8ff25785b6f29
https://gist.github.com/nicedawg/67735ea8d8b9f91373e8ff25785b6f29

229

Listing 8-4. Edit User Template in app/views/users/new.html.erb: https://

gist.github.com/nicedawg/c6aec25865a2b91395b6b4917a0282c9

<h1>Editing User</h1>

<%= render 'form', user: @user %>

<%= link_to 'Back', articles_path %>

In both the new and edit templates, you render a form partial, which is expected to

be in app/views/users/_form.html.erb. Create the form partial and make sure it looks

like the code in Listing 8-5.

Listing 8-5. User Form Partial in app/views/users/new.html.erb: https://

gist.github.com/nicedawg/3bbe6f0f25443bcf8bc86dd03d30ef39

<%= form_with(model: user, local: true) do |form| %>

 <% if user.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(user.errors.count, "error") %> prohibited this user

from being saved:</h2>

 <% user.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :email %>

 <%= form.text_field :email %>

 </div>

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/c6aec25865a2b91395b6b4917a0282c9
https://gist.github.com/nicedawg/c6aec25865a2b91395b6b4917a0282c9
https://gist.github.com/nicedawg/3bbe6f0f25443bcf8bc86dd03d30ef39
https://gist.github.com/nicedawg/3bbe6f0f25443bcf8bc86dd03d30ef39

230

 <div class="field">

 <%= form.label :password %>

 <%= form.password_field :password %>

 </div>

 <div class="field">

 <%= form.label :password_confirmation %>

 <%= form.password_field :password_confirmation %>

 </div>

 <div class="actions">

 <%= form.submit %>

 </div>

<% end %>

You use the same form helpers discussed in Chapter 7: text_field for text input and

password_field for password inputs. Before you go to the browser to try what you’ve

created, you need to add users as a resource in your routes file. Edit config/routes.rb

so it looks like the code in Listing 8-6.

Listing 8-6. Adding Users to routes.rb in config/routes.rb: https://gist.

github.com/nicedawg/22aac8a5ceca489fb82e7df4c00abb98

Rails.application.routes.draw do

 root to: "articles#index"

 resources :articles

 resources :users

end

To see it all in action, try adding a new user by visiting http://localhost:3000/

users/new. The form should look like Figure 8-1.

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/22aac8a5ceca489fb82e7df4c00abb98
https://gist.github.com/nicedawg/22aac8a5ceca489fb82e7df4c00abb98

231

When you try to actually create a user, you should receive an error message Active

Model::ForbiddenAttributesError. It helpfully highlights the line in the code where

the error occurred. Line 9 is where the params actually are added to the user. What

happened? If you recall back in Chapter 7, when the scaffold generated the articles

controller for us, it was very specific about what params should and shouldn’t be sent. In

our controller, we’re just passing params into it. We need to specify which parameters are

acceptable so nefarious users can’t hack our system. Modify the user_params method to

look like this:

UsersController in app/controllers/users_controller.rb

def user_params

 params.require(:user).permit(:email, :password, :password_confirmation)

end

Run the server again, and retry the user creation. Now you can create a new user, and

you can also edit that user if you have the user’s ID. In fact, right now anyone can create

and edit users; but shortly, you’ll change the edit and update actions’ implementation

to make sure only users can edit their own profile.

Figure 8-1. Adding a new user

ChApTer 8 AdvANCed ACTIoN pACk

232

 Nested Resources
You added support for comments earlier, but only at the model level. You didn’t

implement a controller or view for the Comment model, and that’s what you’ll do now.

Comments are interesting because they're a little different from our other models

so far. Comments depend on a particular article; they never exist on their own because

they’re conceptually meaningless if they’re not tied to an article. If we created routes for

comments just like we did for articles and users, we would need to take extra steps to

ensure that an article id was present for every type of article URL. We could do that, but

Rails gives us an easier way.

Instead of defining comments as standalone resources, as we did for articles,

we’ll define them as nested resources of articles. Go to the routes file and update the

resources :article call to look like the code in Listing 8-7.

Listing 8-7. Adding Comments to routes.rb in config/routes.rb: https://

gist.github.com/nicedawg/5fba18cfbb76e40c21b915b5ae7323e2

Rails.application.routes.draw do

 root to: "articles#index"

 resources :articles do

 resources :comments

 end

 resources :users

end

To define a nested resource, you use the resources method passed inside a block

to the parent resource. Notice how resources :comments is passed as a block to the

resources :articles call; therefore, comments become a nested resource of articles.

The named routes for nested resources are different from standalone ones; they’re built

on top of a singular articles named route, requiring an article ID every time they’re

called. Table 8-1 lists the generated named routes for comments.

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/5fba18cfbb76e40c21b915b5ae7323e2
https://gist.github.com/nicedawg/5fba18cfbb76e40c21b915b5ae7323e2

233

Every time you call comment named routes, you must provide an article ID. Let’s

generate the comments controller and see how you take care of that:

$ rails g controller comments

 create app/controllers/comments_controller.rb

 invoke erb

 create app/views/comments

 invoke test_unit

 create test/controllers/comments_controller_test.rb

 invoke helper

 create app/helpers/comments_helper.rb

 invoke test_unit

 invoke assets

 invoke scss

 create app/assets/stylesheets/comments.scss

Of the default seven actions for which Rails generates named routes, you need only

two for comments: create and destroy. You don’t need index, new, and show actions

because comments are listed, shown, and added from the article’s show page. You don’t

Table 8-1. Comments’ Named Routes

Request Method Nested Named Routes Parameters Controller Action

GET article_comments_path Article Id index

POST article_comments_path Article Id, record hash create

GET new_article_comment_path Article Id new

GET edit_article_comment_path Id, article Id edit

GET article_comment_path Id, article Id Show

PUT/PATCH article_comment_path Id, article Id, and

record hash

update

DELETE article_comment_path Id, article Id destroy

ChApTer 8 AdvANCed ACTIoN pACk

234

want to support editing or updating a comment, so you don’t need edit or update either.

Listing 8-8 shows how the comments controller looks with only those two actions.

Listing 8-8. Comments Controller in app/controllers/comments_controller.

rb: https://gist.github.com/nicedawg/3c7aa2c1f8c4c4e37f8398360989b06f

class CommentsController < ApplicationController

 before_action :load_article

 def create

 @comment = @article.comments.new(comment_params)

 if @comment.save

 redirect_to @article, notice: 'Thanks for your comment'

 else

 redirect_to @article, alert: 'Unable to add comment'

 end

 end

 def destroy

 @comment = @article.comments.find(params[:id])

 @comment.destroy

 redirect_to @article, notice: 'Comment deleted'

 end

 private

 def load_article

 @article = Article.find(params[:article_id])

 end

 def comment_params

 params.require(:comment).permit(:name, :email, :body)

 end

end

Notice the before_action call at the beginning of the controller; it runs the method

load_article before all the actions in your comments controller. That’s all you’ll need to

know for now. We’ll explain more about controller callbacks shortly.

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/3c7aa2c1f8c4c4e37f8398360989b06f

235

The load_article method does a simple task: it finds the article from the passed

article_id and assigns it to the @article instance variable. Remember that you always

have the article_id in your parameters because it’s always included in your nested

named routes. With load_article in before_action, you’ll always have @article

loaded and accessible in your comments controller’s actions and templates.

Also notice how you find and assign @comment: you do so using @article.comments.

This way, you’ll make sure you’re dealing only with @article comments and you don’t

create or delete comments from another article.

Now let’s update the views and create some templates. As mentioned earlier, you list,

show, and add new comments from the article’s show page; so let’s update the article

show page, make it a little nicer, and then add new code to display comments. Listing 8-9

shows how app/views/articles/show.html.erb looks after the update.

Listing 8-9. Updated Article Show Template in app/views/articles/show.html.

erb: https://gist.github.com/nicedawg/d344d9d0dca5f16021189c36ecbff1ac

<%= render @article %>

<h3>Comments</h3>

<div id="comments">

 <%= render @article.comments %>

</div>

<%= render 'comments/new' %>

That’s a lot of cleaning. First, you extract the displaying attributes into a partial

named app/views/articles/_article.html.erb, which you call using render

@article. One of the benefits of creating a partial is that you can use it in other pages,

such as the articles’ index page, which you’ll implement shortly.

Notice that the flash notice is removed from the article show template. To make sure

the flash message shows in any view template, you move it to the application layout in

app/views/layouts/application.html.erb (Listing 8-10).

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/d344d9d0dca5f16021189c36ecbff1ac

236

Listing 8-10. Updated Application Layout Template in app/views/layouts/

application.html.erb: https://gist.github.com/nicedawg/529d79051a3c480

741a78284b092c5dd

<!DOCTYPE html>

<html>

 <head>

 <title>Blog</title>

 <%= csrf_meta_tags %>

 <%= csp_meta_tag %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-

track': 'reload' %>

 <%= javascript_pack_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <%= content_tag :p, notice, class: 'notice' if notice.present? %>

 <%= content_tag :p, alert, class: 'alert' if alert.present? %>

 <%= yield %>

 </body>

</html>

Then you list comments using the collection render on @article.comments. To

refresh your memory, this loops through the article comments, rendering the app/

views/comments/_comment.html.erb partial for every comment.

Finally, you render the app/views/comments/new.html.erb template.

None of the files mentioned have been created yet. Let’s do that now. Create app/

views/articles/_article.html.erb, app/views/comments/_comment.html.erb,

and app/views/comments/_new.html.erb, as shown in Listings 8-11, 8-12, and 8-13,

respectively.

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/529d79051a3c480741a78284b092c5dd
https://gist.github.com/nicedawg/529d79051a3c480741a78284b092c5dd

237

Listing 8-11. Article Partial in app/views/articles/_article.html.erb:

https://gist.github.com/nicedawg/46a0343e2d0d3625741738ab5c3dbbbd

<div class="article">

 <h3>

 <%= link_to article.title, article %>

 <%= link_to 'Edit', edit_article_path(article) %>

 <%= link_to 'Delete', article, confirm: 'Are you sure?', method:

:delete %>

 </h3>

 <%= article.body %>

</div>

Listing 8-12. Comment Partial in app/views/comments/_comment.html.erb:

https://gist.github.com/nicedawg/88cc01d2470fff4bd968c876de8af76c

<div class="comment">

 <h3>

 <%= comment.name %> <<%= comment.email %>> said:

 <%= link_to 'Delete', article_comment_path(article_id: @article, id:

comment), confirm: 'Are you sure?', method: :delete %>

 </h3>

 <%= comment.body %>

</div>

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/46a0343e2d0d3625741738ab5c3dbbbd
https://gist.github.com/nicedawg/88cc01d2470fff4bd968c876de8af76c

238

Listing 8-13. New Comment Template in app/views/comments/_new.html.erb:

https://gist.github.com/nicedawg/5fb70bd189c6fa14257539898abbd8e6

<%= form_with(model: @article.comments.new, url: article_comments_path

(@article), local: true) do |form| %>

 <div class="field">

 <%= form.label :name %>

 <%= form.text_field :name %>

 </div>

 <div class="field">

 <%= form.label :email %>

 <%= form.text_field :email %>

 </div>

 <div class="field">

 <%= form.label :body %>

 <%= form.text_area :body %>

 </div>

 <div class="actions">

 <%= form.submit 'Add' %>

 </div>

<% end %>

The article and comment partials are pretty straightforward; aside from the markup,

you display the attributes and link to actions.

The new comment form calls form_with and passes a new comment object as the

model, configures the form action to send its values to the path to create a comment, and

sets local: true so that this form isn’t sent via Ajax. (We’ll change this in the next chapter

and explain further.)

Now that you’ve created the missing templates and added the required code to the

controller, let’s go to the browser and see how it looks in the article show page. Run

your server, go to your browser, and click your way through to an article; you should see

something very similar to Figure 8-2.

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/5fb70bd189c6fa14257539898abbd8e6

239

Try adding a few comments and see how the form behaves. Congratulations! You just

added comment support to your blog application using nested resources. Now that you

have comments and users in the system, let’s add some authorization logic to make sure

only logged-in users can create and update articles.

 Sessions and the Login/Logout Logic
The whole point of having users in your blog application is to allow them to create their

own articles. But you also need to be able to recognize them when they create an article.

Web applications normally do that by using sessions. Let’s talk a little more about that

before you implement it in your application.

Figure 8-2. Article show page with a new comment form

ChApTer 8 AdvANCed ACTIoN pACk

240

 Lying in State
HTTP is stateless. The web server has no idea that it has talked to your browser before;

each request is like a blind date. Given this tidbit of information, you may wonder how

you can stay logged in to a given site. How can the application remember you’re logged

in if HTTP is stateless? The answer is that you fake state.

You’ve no doubt heard of browser cookies. In order to simulate state atop HTTP, Rails

uses cookies. When the first request comes in, Rails sets a cookie on the client’s browser.

The browser remembers the cookie locally and sends it along with each subsequent

request. The result is that Rails is able to match the cookie that comes along in the

request with session data stored on the server.

 Using the Session
Secure in the knowledge that Rails will take care of all the low-level details of sessions for

you, using the session object couldn’t be easier. The session is implemented as a hash,

just like flash. We should come clean here—flash is a session in disguise (you can

think of it as a specialized session due to its autoexpiring properties). Not surprisingly

then, the flash and session interfaces are identical. You store values in the session

according to a key:

session[:account_id] = @account.id

session[:account_id] # => 1

session['message'] = "Hello world!"

session['message'] # => "Hello world!"

 Session As a Resource
Now that you understand sessions, you can go back to your main task: allowing users

to log in and log out. You create a session when the user logs in and clear (destroy) it

when they’re done. Of course, you do that in a RESTful way, by treating the session as a

resource:

ChApTer 8 AdvANCed ACTIoN pACk

241

Start by generating a sessions controller:

$ rails g controller sessions

 create app/controllers/sessions_controller.rb

 invoke erb

 create app/views/sessions

 invoke test_unit

 create test/controllers/sessions_controller_test.rb

 invoke helper

 create app/helpers/sessions_helper.rb

 invoke test_unit

 invoke assets

 invoke scss

 create app/assets/stylesheets/sessions.scss

Now define this as a resource in your routes file in config/routes.rb, as shown in

Listing 8-14.

Listing 8-14. Adding session to routes.rb in config/routes.rb: https://

gist.github.com/nicedawg/da300c005c68dcd19a0f749b37c01db5

Rails.application.routes.draw do

 root to: "articles#index"

 resources :articles do

 resources :comments

 end

 resources :users

 resource :session

end

Notice that you define session as a resource and not resources, because you never

deal with a set of sessions at once. You never list sessions in an index or anything like

that—you just need to create or destroy a single session at a time.

Let’s step back and try to explain the difference between resource and resources

definitions. The main benefit you get from defining resources in your routes file is the

named routes that are generated for you. In the case of a single resource definition,

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/da300c005c68dcd19a0f749b37c01db5
https://gist.github.com/nicedawg/da300c005c68dcd19a0f749b37c01db5

242

you get different named routes: none of them are pluralized, all are singular, and there’s

no index action. Rails maps six actions instead of the seven in a resources definition.

Table 8-2 provides a quick comparison between resources named routes and resource

named routes.

Note Although a singular name is used for the resource, the controller name is
still taken from the plural name, so sessions_controller is the controller for
the session resource in this case.

To avoid confusion, let’s map this in your mind; to log in, you need to create a session;

to log out, you clear that session. You use new_session_path as your login path, and the

new template is your login page. POSTing the form in the new session page to session_

path creates the session. Finally, submitting a DELETE request to session_path clears that

session, performing a logout. Now, let’s map it in the routes file, as shown in Listing 8-15.

Listing 8-15. Adding session to routes.rb in config/routes.rb: https://

gist.github.com/nicedawg/2da8a9c657f646e5d74a0a9a69ab34a4

Rails.application.routes.draw do

 root to: "articles#index"

 resources :articles do

 resources :comments

 end

Table 8-2. Named Routes: resources vs. resource

Request Method resources Named Routes resource Named Routes Controller Action

GET articles_path Not available index

POST articles_path session_path create

GET article_path session_path show

PATCH/PUT article_path session_path update

DELETE article_path session_path destroy

GET edit_article_path edit_session_path edit

GET new_article_path new_session_path new

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/2da8a9c657f646e5d74a0a9a69ab34a4
https://gist.github.com/nicedawg/2da8a9c657f646e5d74a0a9a69ab34a4

243

 resources :users

 resource :session

 get "/login", to: "sessions#new", as: "login"

 get "/logout", to: "sessions#destroy", as: "logout"

end

You basically define two named routes, login_path and logout_path, which are

more meaningful than new_session_path and session_path when referring to those

actions.

 Logging In a User
As you did for Active Record resources, in the create action, you first check the validity

of the resource—in this case through authentication—and you save the state if all is

good. If the validity check fails, you return the user to the login page with an error

message. In this controller, you never save a record to the database—you save a session

object. Listing 8-16 shows the create action.

Listing 8-16. The create Method in app/controllers/sessions_controller.

rb: https://gist.github.com/nicedawg/430d678348add4c767c5910fe2f41664

class SessionsController < ApplicationController

 def create

 if user = User.authenticate(params[:email], params[:password])

 session[:user_id] = user.id

 redirect_to root_path, notice: "Logged in successfully"

 else

 flash.now[:alert] = "Invalid login/password combination"

 render :new

 end

 end

end

First, you use the authenticate class method from the User model to attempt a

login (see Listing 6-37 in Chapter 6). Remember that authenticate returns a User

object if the authentication succeeds; otherwise, it returns nil. Therefore, you can

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/430d678348add4c767c5910fe2f41664
https://doi.org/10.1007/978-1-4842-5716-6_6#6-37

244

perform your conditional and your assignment in one shot using if user = User.

authenticate(params[:email], params[:password]). If the assignment takes place,

you want to store a reference to this user so you can keep the user logged in—a perfect

job for the session:

session[:user_id] = user.id

Notice that you don’t need to store the entire User object in session. You store just

a reference to the user’s ID. Why not store the entire User object? Well, think about this

for a minute: what if the user is stored in session and later changes their login? The old

login would remain in the session and would therefore be stale. This can cause problems

if the underlying User model changes. Your entire object could become stale, potentially

causing a NoMethodError when accessing attributes that didn’t exist on the model at the

time it was placed in session. The best bet is to just store the id.

With a reference to the logged-in user safely stored in session, you can redirect to

the root path, corresponding to the articles controller.

If the assignment doesn’t take place and the User.authenticate method returns

nil, you know the provided login and password are invalid, and you return to the login

page with an alert message using flash.now. RESTfully speaking, the login page is where

you enter the new session information, so it’s basically the new action.

Note flash.now differs from the regular flash call by setting a flash message
that is only available to the current action. If you recall, regular flash makes
messages available after a redirect.

But wait: you don’t have a new action yet. Don’t you need to define it first? The truth

is you don’t need to initialize anything there—all you need is its template. By having

the template, Rails automatically renders that template when it doesn’t find the action

definition. Let’s create the new template, as shown in Listing 8-17.

ChApTer 8 AdvANCed ACTIoN pACk

245

Listing 8-17. The new Session Template in app/views/sessions/new.html.erb:

https://gist.github.com/nicedawg/90549294bbafab30319a0bbf8f993994

<h1>Login</h1>

<%= form_with(url: session_path, local: true) do |form| %>

 <div class="field">

 <%= form.label :email %>

 <%= form.text_field :email %>

 </div>

 <div class="field">

 <%= form.label :password %>

 <%= form.password_field :password %>

 </div>

 <div class="actions">

 <%= form.submit "Login" %>

 </div>

<% end %>

Notice that we didn’t pass a model to form_with as we did earlier with Active

Record objects; that’s because session isn’t an Active Record object. You also submit to

session_path because it’s a resource, not resources, as explained earlier.

 Logging Out a User
The user is logged in when a session is created, so in order to log out the user, you

need to clear that session. You do so in the destroy action. The destroy action is fairly

straightforward. You clear the session by using the reset_session method that comes

with Rails, which does exactly as it says: it resets the session by clearing all the values in

it. After you clear the session, you redirect back to the login_path, which is your login

screen.

Another way to do this is to specifically clear the user_id key from the session hash,

but it’s safer for the logout in particular to clear all the session values. Listing 8-18 shows

how the sessions controller looks after you add the destroy method.

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/90549294bbafab30319a0bbf8f993994

246

Listing 8-18. Updated Sessions Controller in app/controllers/sessions_

controller.rb: https://gist.github.com/nicedawg/7393e33a4850121b04ceb7

4a58f11203

class SessionsController < ApplicationController

 def create

 if user = User.authenticate(params[:email], params[:password])

 session[:user_id] = user.id

 redirect_to root_path, notice: "Logged in successfully"

 else

 flash.now[:alert] = "Invalid login/password combination"

 render :new

 end

 end

 def destroy

 reset_session

 redirect_to root_path, notice: "You successfully logged out"

 end

end

Go ahead and try it. Create a user by going to http://localhost:3000/users/new.

Then log in by visiting the login path at http://localhost:3000/login (Figure 8-3).

Finally, if you want to log out, go to http://localhost:3000/logout.

Don’t worry about remembering all the URLs. You can link to them when you update

your application layout.

Figure 8-3. Login page

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/7393e33a4850121b04ceb74a58f11203
https://gist.github.com/nicedawg/7393e33a4850121b04ceb74a58f11203

247

 Improving Controllers and Templates
Chapter 7 and earlier parts of this chapter covered generating controllers, creating

templates and layouts, and DRYing up with partials. Let’s take this a step forward: first,

you update article views, and then you add callbacks to some of your controllers, making

sure some actions require authorization.

 Cleaning Up the Articles Index Page
The current articles’ index page uses a table markup to list articles. If you’ve ever visited

a blog, you know you’ve never seen one like that; so let’s change the table markup and

loop to a friendlier markup that uses the article’s partial in app/views/articles/_

article.html.erb. Listing 8-19 shows the updated articles index.

Listing 8-19. Updated Articles Index in app/views/articles/index.html.erb:

https://gist.github.com/nicedawg/88db1b679cdfb2b87801d92ebe60adce

<h1>Articles</h1>

<div id="articles">

 <%= render @articles %>

</div>

<%= link_to 'New Article', new_article_path %>

Caution Be careful with reusing partials. In some cases, you may prefer to keep
separate files. You reuse the article partial here just to simplify things.

Visit your root path at http://localhost:3000. If all goes right, you should see

something similar to Figure 8-4. That looks like a real blog!

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/88db1b679cdfb2b87801d92ebe60adce

248

 Adding Categories to the Article Form
In Chapter 6, you added categories to the Article model, but neither your controller nor

your templates know about this yet. Let’s remedy that now, starting with the article form.

Add the code shown in bold in Listing 8-20 to the form partial in app/views/articles/_

form.html.erb.

Listing 8-20. Modified app/views/articles/_form.html.erb: https://gist.

github.com/nicedawg/266fab84c1ab59ff72713267d129cd7f

<%= form_with(model: article, local: true) do |form| %>

 <% if article.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(article.errors.count, "error") %> prohibited this

article from being saved:</h2>

 <% article.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

Figure 8-4. Blog-like home page

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/266fab84c1ab59ff72713267d129cd7f
https://gist.github.com/nicedawg/266fab84c1ab59ff72713267d129cd7f

249

 </div>

 <% end %>

 <div class="field">

 <%= form.label :title %>

 <%= form.text_field :title %>

 </div>

 <div class="field">

 <%= form.label :location %>

 <%= form.text_field :location %>

 </div>

 <div class="field">

 <%= form.collection_check_boxes(:category_ids, Category.all, :id,

:name) do |b| %>

 <% b.label { b.check_box + b.text } %>

 <% end %>

 </div>

 <div class="field">

 <%= form.label :excerpt %>

 <%= form.text_field :excerpt %>

 </div>

 <div class="field">

 <%= form.label :body %>

 <%= form.text_area :body %>

 </div>

 <div class="field">

 <%= form.label :published_at %>

 <%= form.datetime_select :published_at %>

 </div>

 <div class="actions">

 <%= form.submit %>

 </div>

<% end %>

ChApTer 8 AdvANCed ACTIoN pACk

250

To offer articles the chance to be part of one or more categories, you show all the

categories as checkboxes. But how do you associate those checkboxes with the article?

Remember that Chapter 6 talked about the methods that each association adds to

your model when you use them. In the case of the Article model, the has_and_belong_

to_many :categories association adds the category_ids method, which returns an

array of the associated category IDs; it also adds the category_ids=(category_ids)

method, which replaces the current associated categories with the ones supplied.

Knowing that, look back at the new code added to the form: we use the form helper

method collection_check_boxes, which takes a few arguments and a block, which we’ll

now explain.

The first argument, :category_ids, is the attribute on the Article object which we

ultimately want to set.

The second argument declares all possible values, so we use Category.all to get the

list of all categories known to our app.

The third argument controls how to find the value from a category object in order to

store in the article. We use :id, because we want to store the category id.

The last argument declares how to find the text we want to use as a label for a

particular checkbox. In this case, we use :name, because the Category model has a name

attribute which would be helpful here.

Lastly, this method takes a block which lets us customize how each checkbox is

rendered. We want to wrap each checkbox inside a label and add descriptive text, both

for aesthetics and usability, so we supply a block which receives a special builder object,

and we indicate we want a label tag whose contents are the checkbox and the textual

description of the option.

Whew! That’s a lot to remember. But don’t worry about remembering all of this. Just

knowing that helper methods like this exist is good enough; when the need arises, you

can find the documentation.

The only thing left to do is go back to the articles controller and make sure Rails

knows that you want to allow categories to be saved to the article. Otherwise, it would

just discard this information and never save it to the article.

ChApTer 8 AdvANCed ACTIoN pACk

251

Listing 8-21. Modified app/controllers/articles_controller.rb

 ...

 # Never trust parameters from the scary internet, only allow the white

list through.

 def article_params

 params.require(:article).permit(:title, :location, :excerpt, :body,

:published_at, category_ids: [])

 end

 ...

That’s it! Now that you have category integration for articles, try adding a new article;

you should see a form similar to that in Figure 8-5.

Fill in the mandatory fields, select a couple of categories, and submit the form. Check

the parameters output in your rails server window. You should see something similar

to the following output, depending on the values you entered—pay attention to the

category array:

Figure 8-5. Updated article form with category checkboxes

ChApTer 8 AdvANCed ACTIoN pACk

252

 Parameters: {"authenticity_token"=>"gjav8j17XIaz5jItg6hJ5wPWSBJ

HLexXuotWEjtEA9JFdEcXHR+ql5JoW2/F5mp1Nm5eUlmBqY/xW7Q1Lu3g4w==",

"article"=>{"title"=>"Advanced Active Record", "location"=>"",

"category_ids"=>["", "2", "1"], "excerpt"=>"", "body"=>"Models

need to relate to each other. In the real world, ..", "published_

at(1i)"=>"2020", "published_at(2i)"=>"2", "published_at(3i)"=>"24",

"published_at(4i)"=>"00", "published_at(5i)"=>"00"}, "commit"=>"Update

Article", "id"=>"1"}

If you try to edit the article you just created, you’ll see that your categories are

selected, and you can modify them like any other article attribute. The category_ids=

method that the has_and_belong_to_many association added for you does all the magic

behind the scenes.

 Using Filters
Filters provide a way for you to perform operations either before or after an action is

invoked. There’s even an around filter that can wrap the execution of an action. Of the

three, the before action is the most commonly used, so this section focuses on it.

All the code you place in before_action is run before the action in question is called.

Pretty simple, really. But there’s a catch: if before_action returns false, the action isn’t

executed. We often use this to protect certain actions that require a login. If you have an

events controller and you want the new and create actions to remain open (anyone can

access them), but you want to restrict all other actions to logged-in users, you can do so

using filters:

class EventsController < ApplicationController

 before_action :authenticate, except: [:new, :create]

end

This causes the authenticate method to be run before every action except those

listed. Assume the authenticate method is defined in the application_controller

controller and is therefore available to every other controller in the system. If the

authenticate method returns false, the requested action isn’t executed, thereby

protecting it from unauthorized visitors.

ChApTer 8 AdvANCed ACTIoN pACk

253

You can also use the :only modifier to specify that the filter is to run for only the

given actions. You can write the preceding example more concisely as follows:

before_action :authenticate, only: :destroy

Without the :only or :except modifier, the filter runs for all actions.

Controller inheritance hierarchies share filters downward, but subclasses can also

add or skip filters without affecting the superclass. Let’s say you apply a global filter to

the application_controller, but you have a particular controller that you want to be

exempt from filtration. You can use skip_before_action, like this:

class ApplicationController < ActionController::Base

 before_action :authenticate_with_token

end

class PublicController < ApplicationController

 # We don't want to check for a token on this controller

 skip_before_action :authenticate_with_token

end

Filters are a fairly involved topic, and we’ve only scratched the surface here. Still,

you’ve seen the most common usage pattern: protecting actions. For more information

about filters, including usage examples, check out the Rails guide at https://guides.

rubyonrails.org/action_controller_overview.html#filters.

 Requiring Authentication with Filters
In your blog application, you want to protect blog creation and modification, restricting

access to registered users. To do this, you use callbacks that call specific methods and

check for the user_id session you set on user login. Recall that any methods you add

to the application_controller are available to all other controllers (because it’s the

superclass of all controllers).

Open the application_controller in app/controllers/application_controller.

rb and add the protected methods that enforce your authentication requirement, as

shown in Listing 8-22.

ChApTer 8 AdvANCed ACTIoN pACk

https://guides.rubyonrails.org/action_controller_overview.html#filters
https://guides.rubyonrails.org/action_controller_overview.html#filters

254

Listing 8-22. Modified app/controllers/application_controller.rb:

https://gist.github.com/nicedawg/5f003af093d7db2c9829b85a8a7a4bc5

class ApplicationController < ActionController::Base

 helper_method :current_user, :logged_in?

 def current_user

 return unless session[:user_id]

 @current_user ||= User.find_by(id: session[:user_id])

 end

 def authenticate

 logged_in? || access_denied

 end

 def logged_in?

 current_user.present?

 end

 def access_denied

 redirect_to(login_path, notice: "Please log in to continue") and return

false

 end

end

First, we call the helper_method method and pass two symbolized names of

methods. This allows view templates to use the current_user and logged_in? methods in

addition to other subclasses of ApplicationController. You can use this to show or hide

administrative controls (such as adding or editing a given article). Having current_user

around also proves useful in templates, allowing you to access information about users,

such as their email addresses.

The current_user method acts like an accessor for the currently logged-in user.

Because it returns a User object, you can call instance methods of User on it, such as

current_user.email. The authenticate method is your filter method (the one you call

from individual controllers). It checks whether there is a currently logged-in user via

logged_in? (which, in turn, checks that there is actually a User returned by current_

user) and calls access_denied if there isn’t; access_denied redirects to the login_path

in the sessions controller with a notice message in the flash.

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/5f003af093d7db2c9829b85a8a7a4bc5

255

Let’s apply the filter to the articles controller now. You also apply a filter to the

users controller to restrict who can edit user profiles.

 Applying Filters to Controllers
You apply filters using a declarative syntax. In this case, you’ll want to check that a user is

authenticated before you process a protected action, so you use before_filter. Add the

filter to the articles controller, just inside the class body, as shown in Listing 8-23.

Listing 8-23. Before Filter Added in app/controllers/articles_controller.

rb: https://gist.github.com/nicedawg/c386e3c50471bb719219aaaae3eda463

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show]

 #...

end

Notice how you’re able to selectively apply the filter to specific actions. Here, you

want every action to be protected except index and show. The :except modifier accepts

either a single value or an array. You’ll use an array here. If you want to protect only a

few actions, you can use the :only modifier, which, as you would expect, behaves the

opposite of :except.

You’ll also want to use a filter in the users controller. Right now, anyone can

edit a user as long as they know the user’s ID. This would be risky in the real world.

Ideally, you want the edit and update actions to respond only to the currently logged-

in user, allowing that user to edit their profile. To do this, instead of retrieving User.

find(params[:id]), you retrieve current_user and apply a filter to protect the edit and

update actions. Listing 8-24 shows the latest version of the users controller.

Listing 8-24. Before Filter Added in app/controllers/users_controller.rb:

https://gist.github.com/nicedawg/0f9ce611a62054eadc97e621ca694ffc

class UsersController < ApplicationController

 before_action :authenticate, only: [:edit, :update]

 before_action :set_user, only: [:show, :edit, :update, :destroy]

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/c386e3c50471bb719219aaaae3eda463
https://gist.github.com/nicedawg/0f9ce611a62054eadc97e621ca694ffc

256

 def new

 @user = User.new

 end

 def create

 @user = User.new(user_params)

 if @user.save

 redirect_to articles_path, notice: 'User successfully added.'

 else

 render :new

 end

 end

 def update

 if @user.update(user_params)

 redirect_to articles_path, notice: 'Updated user information

successfully.'

 else

 render :edit

 end

 end

 private

 def set_user

 @user = current_user

 end

 def user_params

 params.require(:user).permit(:email, :password, :password_confirmation)

 end

end

Try it. If you attempt to add, edit, or delete an article, you’re asked to log in

(Figure 8- 6).

ChApTer 8 AdvANCed ACTIoN pACk

257

We probably don’t want to allow any visitor to our blog to delete comments;

therefore, authorization code is required in the comments controller. First, you add a

before_action to authorize users before calling the destroy action. Next, in the destroy

action, you find the article, making sure it belongs to the current user by using current_

user.articles.find. Then, you find the comment on that article; and finally, you

destroy it. Listing 8-25 shows the updated code, in bold, for the comments controller.

Listing 8-25. Authorization Before Deleting a Comment in

app/controllers/comments_controller.rb: https://gist.github.com/

nicedawg/b0eb7eaded453697002741b7a7d2ece3

class CommentsController < ApplicationController

 before_action :load_article, except: :destroy

 before_action :authenticate, only: :destroy

 def create

 @comment = @article.comments.new(comment_params)

 if @comment.save

 redirect_to @article, notice: 'Thanks for your comment'

 else

 redirect_to @article, alert: 'Unable to add comment'

 end

 end

Figure 8-6. Authentication required

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/b0eb7eaded453697002741b7a7d2ece3
https://gist.github.com/nicedawg/b0eb7eaded453697002741b7a7d2ece3

258

 def destroy

 @article = current_user.articles.find(params[:article_id])

 @comment = @article.comments.find(params[:id])

 @comment.destroy

 redirect_to @article, notice: 'Comment deleted'

 end

 private

 def load_article

 @article = Article.find(params[:article_id])

 end

 def comment_params

 params.require(:comment).permit(:name, :email, :body)

 end

end

 Adding Finishing Touches
You’re almost finished with your work in this chapter. Only a few tasks remain. You need

to spruce up your templates a bit and make them a little cleaner. You also need to make

it possible for article owners to edit and delete their articles. Finally, you want to update

the layout and apply some CSS styles to make things look pretty. Ready? Let’s get started!

 Using Action View Helpers
One of the ways you can clean up your templates is with helpers. Rails ships with a

bevy of formatting helpers to assist in displaying numbers, dates, tags, and text in your

templates. Here’s a quick summary:

• Number helpers: The NumberHelper module provides methods for

converting numbers into formatted strings. Methods are provided

for phone numbers, currency, percentages, precision, positional

notation, and file size. See https://api.rubyonrails.org/classes/

ActionView/Helpers/NumberHelper.html for more information.

ChApTer 8 AdvANCed ACTIoN pACk

https://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html
https://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html

259

• Text helpers: The TextHelper module provides a set of methods

for filtering, formatting, and transforming strings that can reduce

the amount of inline Ruby code in your views. See https://api.

rubyonrails.org/classes/ActionView/Helpers/TextHelper.html

for more information.

• URL helpers: Rails provides a set of URL helpers that makes

constructing links that depend on the controller and action (or

other parameters) ridiculously easy. For more information, see

 https://api.rubyonrails.org/classes/ActionView/Helpers/

UrlHelper.html and https://api.rubyonrails.org/classes/

ActionController/Base.html.

A very handy URL helper is link_to, which you’ve used several times already. It

creates a hyperlink tag of the given name using a URL constructed according to the

options hash given. It’s possible to pass a string instead of an options hash to get a

link tag that points to any URL. Additionally, if nil is passed as a name, the link itself

becomes the name. Here’s the fine print:

link_to(name, options={}, html_options={})

This generates an HTML anchor tag using the following parameters:

• The first argument is the link’s name.

• The second argument is the URL to link to, given as a string, a named

route, or a hash of options used to generate the URL. It can also be

an object, in which case Rails replaces it with its show action named

route.

• The third argument is a hash of HTML options for the resulting tag.

In Ruby, if the last argument to a method is a hash, the curly braces are optional.

Most link_to helpers therefore look like this:

link_to 'New', new_article_path, id: 'new_article_link'

ChApTer 8 AdvANCed ACTIoN pACk

https://api.rubyonrails.org/classes/ActionView/Helpers/TextHelper.html
https://api.rubyonrails.org/classes/ActionView/Helpers/TextHelper.html
https://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html
https://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html
https://api.rubyonrails.org/classes/ActionController/Base.html
https://api.rubyonrails.org/classes/ActionController/Base.html

260

If you use all three arguments and pass in options for HTML (like a class or id

attribute), you need to disambiguate them. Consider the following example, which uses

two hashes—one for the URL generation and another for the HTML options:

link_to 'New', {controller: 'articles', action: 'new'}, class: 'large'

Notice that you need to use the curly braces for at least the first hash to inform Ruby

that there are three arguments. Using braces on the last hash of options is still optional,

and you can just as easily include them:

link_to 'New', {controller: 'articles', action: 'new'}, {class: 'large'}

 Escaping HTML in Templates
You should always escape any HTML before displaying it in your views to prevent

malicious users from injecting arbitrary HTML into your pages (which is how cross-site

scripting attacks are often carried out). The rule of thumb is that whenever you have data

that are provided by the user, you can’t trust them blindly. You need to escape it. This

includes model attributes as well as parameters. Fortunately, Rails escapes all rendered

strings for you.

Try adding a new article with some HTML markup in the body, saving, and visiting

the show page. If you enter an anchor HTML tag, for example, you see something like

the screen shown in Figure 8-7. As you can see, Rails escapes the HTML entered in the

body field.

ChApTer 8 AdvANCed ACTIoN pACk

261

If you check the source code, you’ll see that the characters you entered have been

escaped:

No link for you

Sometimes, you may want to display the strings entered by users without escaping

them. To do that, Rails provides a method on strings named html_safe that skips the

HTML escaping process. To display the article’s body in its raw format, which you’ll do

shortly, you can call article.body.html_safe instead of article.body in the article

partial in app/views/articles/_article.html.erb.

Figure 8-7. Escaped HTML in the article page

ChApTer 8 AdvANCed ACTIoN pACk

262

 Formatting the Body Field
Let’s improve the display of the body field. One of the aforementioned text helpers is

simple_format. This helper converts text to HTML using simple formatting rules. Two

or more consecutive newlines are considered a paragraph and wrapped in <p> tags. One

newline is considered a line break, and a
 tag is appended. Listing 8-26 shows the

additions.

Listing 8-26. Formatting Helpers Added in app/views/articles/_article.

html.erb: https://gist.github.com/nicedawg/9f00b38de1b439fb856bcb94f3

2fc173

<div class="article">

 <h3>

 <%= link_to article.title, article %>

 <%= link_to 'Edit', edit_article_path(article) %>

 <%= link_to 'Delete', article, confirm: 'Are you sure?', method:

:delete %>

 </h3>

 <%= simple_format article.body %>

</div>

 Adding Edit Controls
You’ve applied authentication filters, but you still don’t have a way to prevent users from

editing or deleting articles that belong to other users. To do this, you add a method to the

Article model that can tell you whether the article in question is owned by the user you

pass in. Open the Article model and add the owned_by? method, as highlighted in bold

in Listing 8-27.

Listing 8-27. Updated app/models/article.rb: https://gist.github.com/

nicedawg/c7af0e45492bdc6b0dfc636bc84cdbd9

class Article < ApplicationRecord

 validates :title, :body, presence: true

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/9f00b38de1b439fb856bcb94f32fc173
https://gist.github.com/nicedawg/9f00b38de1b439fb856bcb94f32fc173
https://gist.github.com/nicedawg/c7af0e45492bdc6b0dfc636bc84cdbd9
https://gist.github.com/nicedawg/c7af0e45492bdc6b0dfc636bc84cdbd9

263

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_

date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?",

"%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

 def published?

 published_at.present?

 end

 def owned_by?(owner)

 return false unless owner.is_a?(User)

 user == owner

 end

end

Now, let’s use this method in the article and comment partials in app/views/

articles/_article.html.erb and app/views/comments/_comment.html.erb,

respectively, by adding links to edit or delete only if the article is owned by the currently

logged-in user, as shown in Listings 8-28 and 8-29.

Listing 8-28. Edit Controls for Article in app/views/articles/_article.html.

erb: https://gist.github.com/nicedawg/6ba53fc518daf0d4e24c765c106548c8

<div class="article">

 <h3>

 <%= link_to article.title, article %>

 <% if article.owned_by? current_user %>

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/6ba53fc518daf0d4e24c765c106548c8

264

 <%= link_to 'Edit', edit_article_path(article) %>

 <%= link_to 'Delete', article, confirm: 'Are you sure?', method:

:delete %>

 <% end %>

 </h3>

 <%= simple_format article.body %>

</div>

Listing 8-29. Edit Controls for Comment in app/views/comments/_

comment.html.erb: https://gist.github.com/nicedawg/

d2b52b2ef0700dfbdc460f1e9dd7f414

<div class="comment">

 <h3>

 <%= comment.name %> <<%= comment.email %>> said:

 <% if @article.owned_by? current_user %>

 <%= link_to 'Delete', article_comment_path(article_id: @article,

id: comment), confirm: 'Are you sure?', method: :delete %>

 <% end %>

 </h3>

 <%= comment.body %>

</div>

Note When you try this in your browser, you may not see the edit and delete links
for any of the articles because their user_id field is nil. This is great console
practice for you. Start your console with rails console, find your own user
record using user = User.find_by_email('email@example.com'), and
update all articles in the system using Article.update_all(["user_id = ?",
user.id]).

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/d2b52b2ef0700dfbdc460f1e9dd7f414
https://gist.github.com/nicedawg/d2b52b2ef0700dfbdc460f1e9dd7f414

265

 Making Sure Articles Have Owners
You need to make sure that when you add an article, a user is assigned. To do that, you

update the create method in the articles controller to use the association between User

and Article. When creating the @article variable, instead of using Article.new, you

use current_user.articles.new: it instantiates an Article object with the user_id

field set to the ID of current_user. That’s exactly what you need.

Applying the same logic, you can change the edit, update, and destroy actions

to retrieve only articles belonging to the logged-in user. In code parlance, you’ll use

current_user.articles.find wherever you were using Article.find. Since a few

actions no longer need the :set_article before_action, we remove them from the list.

Listing 8-30 shows the changes to make in app/controllers/articles_controller.rb.

Listing 8-30. Updated app/controllers/articles_controller.rb: https://

gist.github.com/nicedawg/40203f4a67681af6d876a89c21e3f576

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show]

 before_action :set_article, only: [:show]

 # GET /articles

 # GET /articles.json

 def index

 @articles = Article.all

 end

 # GET /articles/1

 # GET /articles/1.json

 def show

 end

 # GET /articles/new

 def new

 @article = Article.new

 end

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/40203f4a67681af6d876a89c21e3f576
https://gist.github.com/nicedawg/40203f4a67681af6d876a89c21e3f576

266

 # GET /articles/1/edit

 def edit

 @article = current_user.articles.find(params[:id])

 end

 # POST /articles

 # POST /articles.json

 def create

 @article = current_user.articles.new(article_params)

 respond_to do |format|

 if @article.save

 format.html { redirect_to @article, notice: 'Article was

successfully created.' }

 format.json { render :show, status: :created, location: @article }

 else

 format.html { render :new }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /articles/1

 # PATCH/PUT /articles/1.json

 def update

 @article = current_user.articles.find(params[:id])

 respond_to do |format|

 if @article.update(article_params)

 format.html { redirect_to @article, notice: 'Article was

successfully updated.' }

 format.json { render :show, status: :ok, location: @article }

 else

 format.html { render :edit }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

ChApTer 8 AdvANCed ACTIoN pACk

267

 end

 end

 # DELETE /articles/1

 # DELETE /articles/1.json

 def destroy

 @article = current_user.articles.find(params[:id])

 @article.destroy

 respond_to do |format|

 format.html { redirect_to articles_url, notice: 'Article was

successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_article

 @article = Article.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def article_params

 params.require(:article).permit(:title, :location, :excerpt, :body,

:published_at, category_ids: [])

 end

end

 Adding Custom Helpers
Your blog application is looking pretty good, but let’s make it a bit more user-friendly.

One thing you can do is add a helpful cancel link beside each submit button on the

forms, so users can back out of editing. You could do this by adding a link_to helper

beside each button, but you’d need to do this for every form. Because you probably

want to repeat this pattern throughout the application, this could end up being a lot of

ChApTer 8 AdvANCed ACTIoN pACk

268

duplication. Why not create a custom helper to do this for you? Listing 8-31 shows the

method submit_or_cancel added to the application_helper.

Listing 8-31. The submit_or_cancel Method in app/helpers/

application_helper.rb: https://gist.github.com/nicedawg/

cd8158c477a1974b648da1ab8ff1b5de

module ApplicationHelper

 def submit_or_cancel(form, name = "Cancel")

 form.submit + " or " + link_to(name, 'javascript:history.go(-1);',

class: 'cancel')

 end

end

Now, let’s use this helper on your forms. Open both the user and the article form

partials in app/views/users/_form.html.erb and app/views/articles/_form.html.

erb, and update them so they look like Listings 8-32 and 8-33, respectively.

Listing 8-32. Updated app/views/users/_form.html.erb: https://gist.

github.com/nicedawg/7f4ede7a53cd8482456dec5191af2253

<%= form_with(model: user, local: true) do |form| %>

 <% if user.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(user.errors.count, "error") %> prohibited this user

from being saved:</h2>

 <% user.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :email %>

 <%= form.text_field :email %>

 </div>

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/cd8158c477a1974b648da1ab8ff1b5de
https://gist.github.com/nicedawg/cd8158c477a1974b648da1ab8ff1b5de
https://gist.github.com/nicedawg/7f4ede7a53cd8482456dec5191af2253
https://gist.github.com/nicedawg/7f4ede7a53cd8482456dec5191af2253

269

 <div class="field">

 <%= form.label :password %>

 <%= form.password_field :password %>

 </div>

 <div class="field">

 <%= form.label :password_confirmation %>

 <%= form.password_field :password_confirmation %>

 </div>

 <div class="actions">

 <%= submit_or_cancel(form) %>

 </div>

<% end %>

Listing 8-33. Updated app/views/articles/_form.html.erb: https://gist.

github.com/nicedawg/fe196bcf0330ebc1b925b4d603877417

<%= form_with(model: article, local: true) do |form| %>

 <% if article.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(article.errors.count, "error") %> prohibited this

article from being saved:</h2>

 <% article.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :title %>

 <%= form.text_field :title %>

 </div>

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/fe196bcf0330ebc1b925b4d603877417
https://gist.github.com/nicedawg/fe196bcf0330ebc1b925b4d603877417

270

 <div class="field">

 <%= form.label :location %>

 <%= form.text_field :location %>

 </div>

 <div class="field">

 <%= form.collection_check_boxes(:category_ids, Category.all, :id,

:name) do |b| %>

 <% b.label { b.check_box + b.text } %>

 <% end %>

 </div>

 <div class="field">

 <%= form.label :excerpt %>

 <%= form.text_field :excerpt %>

 </div>

 <div class="field">

 <%= form.label :body %>

 <%= form.text_area :body %>

 </div>

 <div class="field">

 <%= form.label :published_at %>

 <%= form.datetime_select :published_at %>

 </div>

 <div class="actions">

 <%= submit_or_cancel(form) %>

 </div>

<% end %>

As in the earlier examples, every time you copy and paste view code in more than

one template, it means that you very likely can extract it into a helper method.

 Giving It Some Style
Your blog application could use a little varnish. Let’s update the layout and apply a style

sheet.

ChApTer 8 AdvANCed ACTIoN pACk

271

 Updating the Layout

Let’s update the main layout and add some style hooks that you can target via CSS. You

also add some pieces to allow the user to log in, log out, edit their password, and add a

new article. The final result looks like the code in Listing 8-34, with changes in bold.

Listing 8-34. Updated app/views/layouts/application.html.erb: https://

gist.github.com/nicedawg/fc953bf06cae995032f8c40590b7f4bb

<!DOCTYPE html>

<html>

 <head>

 <title>Blog</title>

 <%= csrf_meta_tags %>

 <%= csp_meta_tag %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-

track': 'reload' %>

 <%= javascript_pack_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <div id="header">

 <h1><%= link_to "Blog", root_path %></h1>

 <div id="user_bar">

 <% if logged_in? %>

 <%= link_to "New Article", new_article_path %> |

 <%= link_to "Edit Password", edit_user_path(current_user) %> |

 <%= link_to "Logout", logout_path %>

 <% else %>

 <%= link_to "Login", login_path %>

 <% end %>

 </div>

 </div>

 <div id="main">

 <%= content_tag :p, notice, class: 'notice' if notice.present? %>

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/fc953bf06cae995032f8c40590b7f4bb
https://gist.github.com/nicedawg/fc953bf06cae995032f8c40590b7f4bb

272

 <%= content_tag :p, alert, class: 'alert' if alert.present? %>

 <%= yield %>

 </div>

 <div id="footer">

 A simple blog built for the book Beginning Rails 6

 </div>

 </body>

</html>

We just now added a link to add a new article in the application layout; therefore,

we no longer need that link on the articles’ index page. Update the app/views/

articles/index.html.erb file to remove the new article link. It should look like the

code in Listing 8-35.

Listing 8-35. Remove New Article Link from app/views/articles/index.html.

erb: https://gist.github.com/nicedawg/b55540aedc034de3851f2e5b1f29eaf9

<h1>Articles</h1>

<div id="articles">

 <%= render @articles %>

</div>

 Applying a Style Sheet

We’ve prepared a simple CSS that you can apply to make the application look pretty.

Listing 8-36 shows the resulting app/assets/stylesheets/application.css file

after we've added our custom rules. We’re no longer using the app/assets/

stylesheets/scaffolds.scss file; remove it to avoid any styling conflicts.

Listing 8-36. The app/assets/stylesheets/application.css File: https://

gist.github.com/nicedawg/b8f6e3af51ef7db3bd3f4eda2841558e

/*

 * This is a manifest file that'll be compiled into application.css, which

will include all the files

 * listed below.

 *

ChApTer 8 AdvANCed ACTIoN pACk

https://gist.github.com/nicedawg/b55540aedc034de3851f2e5b1f29eaf9
https://gist.github.com/nicedawg/b8f6e3af51ef7db3bd3f4eda2841558e
https://gist.github.com/nicedawg/b8f6e3af51ef7db3bd3f4eda2841558e

273

 * Any CSS and SCSS file within this directory, lib/assets/stylesheets, or

any plugin's

 * vendor/assets/stylesheets directory can be referenced here using a

relative path.

 *

 * You're free to add application-wide styles to this file and they'll

appear at the bottom of the

 * compiled file so the styles you add here take precedence over styles

defined in any other CSS/SCSS

 * files in this directory. Styles in this file should be added after the

last require_* statement.

 * It is generally better to create a new file per style scope.

 *

 *= require_tree .

 *= require_self

 */

* {

 margin: 0 auto;

}

body {

 background-color: #fff;

 color: #333;

}

body, p, ol, ul, td {

 font-family: verdana, arial, helvetica, sans-serif;

 font-size: 13px;

 line-height: 18px;

}

pre {

 background-color: #eee;

 padding: 10px;

 font-size: 11px;

}

ChApTer 8 AdvANCed ACTIoN pACk

274

p {

 padding: 5px;

}

a {

 color:#D95E16;

 padding:0 2px;

 text-decoration:none;

}

a:hover {

 background-color:#FF813C;

 color:#FFFFFF;

}

.notice { color: green; }

.alert { color: red; }

#header, #main, #footer {

 max-width: 800px;

}

#header {

 font-family:"Myriad Web Pro",Helvetica,Arial,sans-serif;

 letter-spacing: 1px;

 border-bottom: 5px solid #333333;

 color:#333333;

 padding: 15px 0;

 height: 35px;

}

#header #user_bar {

 float: right;

 font-size: 10px;

}

#footer {

 border-top: 5px solid #C1C1C1;

 margin-top: 10px;

ChApTer 8 AdvANCed ACTIoN pACk

275

 clear:both;

 padding: 10px 0;

 text-align: center;

 font-size: 11px;

}

#header h1 {

 padding-top: 14px;

 float: left;

 font-size: 30px;

}

#header h1 a{

 color: black;

}

#header h1 a:hover {

 background-color: white;

 color: black;

 border-bottom: 4px solid #ccc;

}

#header p {

 float: right;

}

#main h1 {

 font-size: 16px;

 padding: 10px 0;

 border-bottom: 1px solid #bbb;

 margin-bottom: 10px;

}

#main table{

 margin: 0;

}

ChApTer 8 AdvANCed ACTIoN pACk

276

#main form{

 text-align: left;

}

#main form br{

 display: none;

 float: left;

}

#main form label {

 width: 150px;

 display: block;

 text-align: right;

 padding-right: 10px;

 float: left;

 line-height: 21px;

 vertical-align: center;

 background-color: #F0F0F0;

 border: 2px solid #ccc;

 margin-right: 10px;

}

#main form label.check_box_label {

 width: auto;

 display: inline;

 text-align: right;

 padding-right: 10px;

 line-height: 21px;

 vertical-align: center;

 background-color: #FFF;

 border: none;

}

#main form .field, #main form .actions {

 padding-top: 10px;

 clear: both;

}

ChApTer 8 AdvANCed ACTIoN pACk

277

#main form input[type=text], #main form input[type=password], #main form

textarea {

 float: left;

 font-size: 14px;

 width: 250px;

 padding: 2px;

 border: 2px solid #ccc;

}

#main form input[type=checkbox] {

 margin: 4px;

 float: left;

}

#main form textarea {

 height: 150px;

}

#main form input[type=submit] {

 margin-left: 175px;

 float:left;

 margin-right: 10px;

 margin-bottom: 10px;

}

#main h3 {

 padding-top: 10px;

 height: 20px;

}

#main h3 .actions{

 display:none;

 font-weight: normal;

 font-size: 10px;

}

ChApTer 8 AdvANCed ACTIoN pACk

278

#main h3:hover .actions{

 display: inline;

}

.field_with_errors {

 display:table;

 float:left;

 margin:0;

 width:100px;

 margin-right: 10px;

}

#main form .field_with_errors label{

 border: 2px solid red;

 margin-right: 0px;

}

#main form .field_with_errors input, #main form .field_with_

errors textarea{

 width: 250px;

 border: 2px solid red;

}

#error_explanation {

 width: 413px;

 border: 2px solid red;

 padding: 7px;

 padding-bottom: 12px;

 margin-bottom: 20px;

 background-color: #f0f0f0;

 margin: 0;

}

#error_explanation h2 {

 text-align: left;

 font-weight: bold;

 padding: 5px 5px 5px 15px;

 font-size: 12px;

ChApTer 8 AdvANCed ACTIoN pACk

279

 margin: -7px;

 background-color: #c00;

 color: #fff;

}

#error_explanation p {

 color: #333;

 margin-bottom: 0;

 padding: 5px;

 margin: 0;

}

#error_explanation ul li {

 font-size: 12px;

 list-style: square;

}

Yikes! That’s a lot of CSS! Don’t worry, though. Like all the other listings in the book,

you can get the code from the gist URL in the listing caption. The code is also available

on the book’s website (http://www.apress.com) so you can download it and copy it into

your project. We certainly don’t expect you to type it all in.

With the CSS in place, your application is starting to look nice. If you’ve done

everything correctly, it should look a lot like Figure 8-8.

Figure 8-8. Final layout with CSS

ChApTer 8 AdvANCed ACTIoN pACk

http://www.apress.com

280

 Summary
This chapter discussed a fair number of advanced topics, including nested resources,

sessions and state, and how to protect actions using filters. But we didn’t stop there.

You also learned how to sanitize HTML to protect your application from defacement by

malicious users, and how to create your own helpers to improve your interface. You even

took the time to make your application look pretty, sprucing up the layout and adding

some CSS.

The next chapters build on this knowledge, and we’ll start by going over how Rails

handles JavaScript and CSS.

ChApTer 8 AdvANCed ACTIoN pACk

281
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_9

CHAPTER 9

JavaScript and CSS
JavaScript and CSS (Cascading Style Sheets) have evolved over the years from being nice

embellishments on a web page to critical aspects of a web application’s user interface.

It should be no surprise that Rails, by convention over configuration, makes including

modern JavaScript and CSS both easy to incorporate into your web application and

flexible to modify for advanced use cases.

Rails 6 introduces the inclusion of the webpacker gem by default. The webpacker

gem (with its default configuration) causes your javascript to be preprocessed and

bundled with the popular JavaScript bundler webpack. Though webpack is capable of

also handling CSS, images, fonts, and more, at this point Rails’ default configuration only

uses webpack for JavaScript. To keep things simple, we’ll stick with only using webpack

for JavaScript in this book.

For CSS, images, and fonts, Rails still uses the Asset Pipeline, a component of Rails

which handles preprocessing and bundling.

Why do we need our JavaScript, CSS, and other assets to be preprocessed and

bundled? What does that even mean? We’ll give a brief overview of some of the benefits

before we apply our knowledge to the blog application we’re building.

Note If you need to get the code at the exact point where you finished Chapter 8,
download the source code zip file from the book’s page on www.apress.com and
extract it onto your computer.

 Benefits of Preprocessing Assets
Why bother preprocessing and bundling your assets? We’ve been serving JavaScript,

CSS, images, and more on our websites for years just fine, right? In the last several years,

JavaScript and CSS have exploded in new features and capabilities and have quickly

https://doi.org/10.1007/978-1-4842-5716-6_9#DOI
http://www.apress.com

282

become integral parts of our web applications, whereas previously they might have just

been a nice enhancement.

As our web applications now include more JavaScript and CSS than they used to,

we must be concerned with how quickly our users can download our assets. Traditional

approaches to optimizing the sizes of our assets required tedious work, or custom scripts.

Also, in recent years, JavaScript and CSS have spawned new languages—such as

TypeScript and SASS—which seek to add features that make authoring JavaScript and

CSS easier and more featureful. But browsers need JavaScript and CSS, not TypeScript or

SASS. Wouldn’t it be nice to choose to author our JavaScript and CSS in the language we

desire and have it converted automatically to what the browser needs?

In the next few sections, we’ll discuss some of these benefits of preprocessing assets

in more detail.

 Asset Concatenation and Compression
Applications that have a lot of JavaScript and CSS can have hundreds of individual .js

and .css files. If a browser has to download all of these files, it causes a lot of overhead

just starting and stopping the transfer of files. The Asset Pipeline concatenates both your

JavaScript and CSS into files so that a browser only has to download one or two files

instead of hundreds. It can also minify and compress the files. This removes things like

comments, whitespace, and long variable names from the final output. The final product

is functionally equivalent, but usually much smaller. Both of these features combine to

make web applications load much faster and are transparent to the user.

 Secondary Languages
Browsers have very strong support for both JavaScript and CSS, but if you want to use

another language on the frontend or even if you use newer JavaScript features that

aren’t available in slightly older browsers, you’d be out of luck. The browser would

at best ignore it and at worse throw errors all over the screen. webpack and the Asset

Pipeline allow you to use other languages that compile down to code that browsers

understand. For example, webpack (with babel) allows you to write modern JavaScript—

ES6—which is then transpiled (converted) into older JavaScript which more browsers

can understand. The Asset Pipeline allows you to create your app’s styles in the SASS

language and converts it into standard CSS which browsers understand.

Chapter 9 JavaSCrIpt and CSS

283

Detailed description of ES6 and SASS is out of the scope of this book, but you should

know what they are if you encounter them. For more information on ES6, visit https://

developer.mozilla.org/en-US/docs/Web/JavaScript, and for more information on

SASS, visit https://sass-lang.com/.

 Asset Locations
Rails allows you to place files in several different locations, depending on whether

you want them to be processed by webpack or the Asset Pipeline. The following table

describes these locations (Table 9-1).

In general, webpack and the Asset Pipeline stay out of the way, but they empower

you to do impressive things with your assets with the default configuration and can be

configured to do even more. For more information on the Asset Pipeline, visit https://

guides.rubyonrails.org/asset_pipeline.html. For more information on Webpacker,

see https://github.com/rails/webpacker.

Table 9-1. Locations for Assets

Preprocessor File Location Description

Asset

Pipeline

app/assets this is for assets that are owned by the application. You can

include images, style sheets, and JavaScript.

Asset

Pipeline

lib/assets this location is for assets that are shared across applications but

are owned by you. these assets don’t really fit into the scope of

this specific application but are used by it.

Asset

Pipeline

vendor/

assets

this location is for assets that are from an outside vendor, like

JavaScript or CSS frameworks.

webpack app/

javascript/

packs/

this location is where you create packs—JavaScript files that

import other Javascript files, meant to be served as a bundle. By

default, application.js is installed. You can add to it or create a

separate pack when you want a substantially different group of

JavaScript files (e.g., admin.js).

webpack app/

javascript

this location is where you add smaller JavaScript files which will

be imported by pack files, as described in the preceding text.

Chapter 9 JavaSCrIpt and CSS

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://sass-lang.com/
https://guides.rubyonrails.org/asset_pipeline.html
https://guides.rubyonrails.org/asset_pipeline.html
https://github.com/rails/webpacker

284

 Turbolinks
Since version 4, Rails has included the Turbolinks gem by default. This gem (and the

accompanying JavaScript) aims to speed up your application by using Ajax to request

pages instead of the more traditional page requests. It tracks files that are commonly

shared across requests, like JavaScript and style sheets, and only reloads the information

that changes. It attaches itself to links on your page instead of making those requests the

traditional way. It makes an Ajax request and replaces the body tag of your document.

Turbolinks also keeps track of the URL and manages the back and forward buttons. It’s

designed to be transparent to both users and developers.

Turbolinks is turned on by default since Rails 4. It is included in the default

JavaScript pack. If you needed to remove Turbolinks for some reason, you could do so,

but we’ll leave it on for our blog application we’re building.

By default, Turbolinks attaches itself to every link on the page, but you can disable it

for specific links by attaching a data-turbolinks="false" attribute to the link, as shown

in Listing 9-1. This causes the link to behave in a traditional fashion.

Listing 9-1. Rails link_to Helper with a No-Turbolinks Attribute Attached

link_to "Some Link", "/some-location", data: { turbolinks: false }

Note Some JavaScript libraries aren’t compatible with turbolinks. Listing these
is out of the scope of this book, but you can find more information at https://
github.com/turbolinks/turbolinks. If you continue to have problems, you
can always disable turbolinks.

 Let’s Build Something!
We’ve talked about the features of Rails that support JavaScript and CSS, but let’s actually

put JavaScript to work. We’ve added our style sheets in Chapter 8, but this chapter will

focus on making our application use Ajax to load and submit forms.

Chapter 9 JavaSCrIpt and CSS

https://github.com/turbolinks/turbolinks
https://github.com/turbolinks/turbolinks

285

 Ajax and Rails
Ajax is a combination of technologies centered around the XMLHttpRequest object,

a JavaScript API originally developed by Microsoft but now supported in all modern

browsers. Of course, you could interface with the XMLHttpRequest API directly, but it

wouldn’t be fun. A far better idea is to use one of several libraries that abstracts the low-

level details and makes cross-browser support possible.

Rails makes Ajax easier for web developers to use. Toward that end, it implements

a set of conventions that enable you to implement even the most advanced techniques

with relative ease.

Most of the Ajax features you implement in Rails applications are coded using

JavaScript; so familiarity with JavaScript code always helps and is pretty important for

today’s web developers.

 JavaScript and the DOM
The Document Object Model (DOM) provides a way to interact programmatically with

a web page in your browser with JavaScript. Using the DOM, you can add, update, and

remove elements from the web page without having to ask the server for a new page.

In the past, different browsers did not provide consistent APIs for interacting with

the DOM. Developers were forced to write different JavaScript for different browsers.

Eventually, JavaScript frameworks like jQuery emerged to simplify the process of writing

code compatible with different browsers.

However, things have changed considerably. Different browsers now provide a more

consistent interface (not perfectly consistent, but better!). So while tools like jQuery

were considered essential in the not-so-distant past, developers no longer need such

frameworks to achieve cross-browser compatibility.

Tip Wikipedia defines dOM as follows: “the document Object Model (dOM)
is a cross-platform and language-independent convention for representing and
interacting with objects in htML, XhtML, and XML documents” (https://
en.wikipedia.org/wiki/Document_Object_Model).

Chapter 9 JavaSCrIpt and CSS

https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Document_Object_Model

286

Working with the DOM is a deep subject; we’ll only scratch the surface in this book.

But we’ll learn enough to add some nice touches to our application. See https://

developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model for more

information.

First, we’ll show you a few different ways to select elements from the DOM in the

following table (Table 9-2).

Table 9-2 used some of the most commonly used CSS selectors. For a complete list,

see https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors. Also, notice

that when we expected a unique element (e.g., with a given id), we used querySelector,

whereas when we expected any number of elements, we used querySelectorAll.

 Moving to Practice
Now that you know what Ajax is, how it works, and how to select elements from the DOM,

we can apply some of this knowledge to enhance the usability of our application. Mainly,

one would use Ajax in their application when they think a snappier interaction is possible

and recommended. Let’s begin Ajaxifying our blog application in the article page.

 Not All Users Comment

If you look at the article page, you quickly notice that every time users read a post,

they’re presented with a form for entering comments. Although reader participation is

paramount, most users are only interested in reading the content. You can modify the

article page to not load the comment form automatically; instead, it will load the form

only after a user clicks the new comment link.

Table 9-2. Selecting Elements from the DOM

Function Description

document.querySelector('#article_123') returns the element matching the

given Id article_123.

document.querySelectorAll('.comment') returns a list of elements with the class

name comment.

document.querySelectorAll('div.article') returns a list of div elements with the

class name article.

Chapter 9 JavaSCrIpt and CSS

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

287

Loading a Template via Ajax

One of the rules of good interface design is to make things snappy. That is to say, the

interface should be responsive and quick to load. A good way to achieve this is to load

elements (like forms or content areas) onto the page whenever the user requests them.

Modify the article’s show template, as shown in Listing 9-2.

Listing 9-2. The Article Partial in app/views/articles/show.html.erb: https://

gist.github.com/nicedawg/5e13311132f323e425be2488c7b2f5d4

<%= render @article %>

<h3>Comments</h3>

<div id="comments">

 <%= render @article.comments %>

</div>

<%= link_to "new comment", new_article_comment_path(@article), remote:

true, id: 'new_comment_link' %>

The template hasn’t changed a lot: you no longer directly render the comment form,

and you add a link called new comment. The new link still uses the well-known link_to

helper to generate a link; however, you pass in the remote: true option, which tells Rails

that you want the request triggered by this link to hit the server using Ajax.

There are a couple of things to note in the use of link_to in Listing 9-2. First, you

send the request to a URL that already exists; the new_article_comment_path route

identifies a path to a new comment. Second, you use the id: 'new_comment_link'

option to give the rendered HTML element an ID that you can refer to later.

On the server side, you don’t need to make any changes to the comments controller.

As currently implemented, you don’t explicitly implement a new action; the default

behavior in this case is to render the new partial template in app/views/comments/_new.

html.erb. But that file doesn’t exist, and that isn’t really what we want. We want to

execute some JavaScript in this case—not just receive some HTML. Instead, we want a

separate JavaScript template to be used as a response for this action.

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/5e13311132f323e425be2488c7b2f5d4
https://gist.github.com/nicedawg/5e13311132f323e425be2488c7b2f5d4

288

Responding to Requests with JavaScript

When a browser makes a request, it indicates what type of content it hopes to receive.

When we add remote: true to the preceding link, Rails will now cause the browser to

request a JavaScript response, instead of the typical HTML response. To make sure you

send a response that includes JavaScript code, you must create a template with the .js.

erb template extension. Create the app/views/comments/new.js.erb template as per

Listing 9-3. The following text explains all the lines in the template to make sure you

know what’s happening.

Listing 9-3. The .js.erb New Comment Template in app/views/comments/new.js.erb:

https://gist.github.com/nicedawg/944c9b741caa5437101687103e292a94

document.querySelector("#comments").insertAdjacentHTML("afterend",

"<%= escape_javascript render partial: 'new' %>");

document.querySelector("#new_comment_link").style.display = 'none';

The first line selects the element with id comments and inserts after it the rendered

output of the app/views/comments/_new.html.erb partial. Table 9-3 lists similar DOM

methods that you can use to add HTML content to a page with JavaScript.

Table 9-3. DOM Element Methods for Inserting HTML into a Page

Method Description

insertAdjacentHTML(

position, text)

Inserts the provided text adjacent to the current element,

according to position, which can be ‘beforebegin’, ‘afterbegin’,

‘beforeend’, or ‘afterend’

insertAdjacentElement(

position, element)

Inserts the provided element adjacent to the current element,

according to the provided position, as in the preceding text

insertAdjacentText(

position, text)

Inserts the provided text adjacent to the current element,

according to the provided position, as in the preceding text. this

is recommended when you expect the content to be plain text.

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/944c9b741caa5437101687103e292a94

289

Going back to Listing 9-3, the last line hides the new_comment_element, which

contains the link to add a new comment, by setting its style’s display attribute to “none.”

Because you already have the comment form in your page, it makes little sense to keep

that link around.

Note In a similar fashion, you can display a hidden element by setting its style.
display attribute to “block,” “inline,” or other values, depending on the element’s
intended usage.

Let’s see what you built in practice. Open your browser to any existing article, such

as http://localhost:3000/articles/2, and notice that the comment form is no longer

there (Figure 9-1).

As soon as you click the new comment link, the comment form pops into place, and

you can add comments (Figure 9-2). You achieved your goal of keeping the user interface

cleaner while allowing users to quickly access functionality without having to move to a

new page. That’s a good start.

Figure 9-1. The article page without the comment form

Chapter 9 JavaSCrIpt and CSS

290

Making a Grand Entrance

In the previous section, you added an element to the screen via Ajax—the comment

form. It’s a pretty big form. It’s a very obvious inclusion on the page and your users won’t

miss it; however, sometimes you may want to add just an extra link or highlight some text

on a page. To help draw attention to the new content, let’s have it fade in.

We’ll add some JavaScript to fade in the comment form. Modify your app/views/

comments/new.js.erb so it looks like the code in Listing 9-4.

Figure 9-2. The article page with the comment form and without the new
comment link

Chapter 9 JavaSCrIpt and CSS

291

Listing 9-4. The Updated New Comment Template in app/views/comments/

new.js.erb: https://gist.github.com/nicedawg/1a94805ef8141b48b16a0b2faf

8d659b

document.querySelector("#comments").insertAdjacentHTML("afterend",

"<%= escape_javascript render partial: 'new' %>");

var comment_form = document.querySelector("#main form");

comment_form.style.opacity = 0;

setTimeout(function() {

 comment_form.style.transition = 'opacity 1s';

 comment_form.style.opacity = 1;

}, 10);

document.querySelector("#new_comment_link").style.display = 'none';

We added a few lines that could use some explanation. First, we select the form we

just added and store it in the variable comment_form. Then, we immediately set the

form’s opacity to 0, to make it completely transparent. Then, we use the setTimeout

method to delay the execution of the next steps by 10 milliseconds. (Apparently, newly

added content needs a few milliseconds before they’re ready to consistently work

with CSS transitions.) Lastly, we tell the element that any future changes to its opacity

attribute should gradually take place over 1 second, and then we set its opacity to 1—full

visibility—and the element begins to fade in.

Arguably, there are better ways of making an element fade in. Perhaps we should

have written some CSS rules to handle the transition in combination with JavaScript

and made a more reusable solution for fading the element in. We also should make the

JavaScript code we added more robust—but for now, this is the simplest way to get what

we want, and that’s okay!

Open your browser at any article page and look at the shiny effect that is being

applied.

Note You very likely want to learn more about all the various style properties
you can change with CSS and JS. For more info, see https://developer.
mozilla.org/en-US/docs/Web/API/ElementCSSInlineStyle/style.

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/1a94805ef8141b48b16a0b2faf8d659b
https://gist.github.com/nicedawg/1a94805ef8141b48b16a0b2faf8d659b
https://developer.mozilla.org/en-US/docs/Web/API/ElementCSSInlineStyle/style
https://developer.mozilla.org/en-US/docs/Web/API/ElementCSSInlineStyle/style

292

 Using Ajax for Forms

Another user interaction improvement is to not refresh the page after a user adds a

new record. In quite a few applications, users may be required to enter a considerable

amount of data in forms; so this technique is important to grasp.

In the same way that you made a link submit data via Ajax, we can make forms

submit data via Ajax by making sure the data-remote=“true” attribute is on the form’s

HTML element. When using the form_with helper, as we did with the comment form,

that happens automatically! However, we added local: true to keep that from happening

earlier to help illustrate this point. We can simplify our comment form a bit by removing

some parameters we no longer need (Listing 9-5).

Listing 9-5. The Updated Comment Form in app/views/comments/_new.html.erb:

https://gist.github.com/nicedawg/5dd35d1922270369b41f52815b57b224

<%= form_with(model: @article.comments.new, url: article_comments_path

(@article)) do |form| %>

 <div class="field">

 <%= form.label :name %>

 <%= form.text_field :name %>

 </div>

 <div class="field">

 <%= form.label :email %>

 <%= form.text_field :email %>

 </div>

 <div class="field">

 <%= form.label :body %>

 <%= form.text_area :body %>

 </div>

 <div class="actions">

 <%= form.submit 'Add' %>

 </div>

<% end %>

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/5dd35d1922270369b41f52815b57b224

293

Although the changes in the view are minimal, you have to make a few more changes

in your controller layer. You want to respond to JavaScript and HTML requests in

different ways. Change the create method in your comments controller to look like the

code in Listing 9-6.

Listing 9-6. The Updated Comments Controller in app/controllers/comments_

controller.rb: https://gist.github.com/nicedawg/db9226972a7cbc652513d3e

657b959b7

class CommentsController < ApplicationController

 before_action :load_article, except: :destroy

 before_action :authenticate, only: :destroy

 def create

 @comment = @article.comments.new(comment_params)

 if @comment.save

 respond_to do |format|

 format.html { redirect_to @article, notice: 'Thanks for your

comment' }

 format.js

 end

 else

 respond_to do |format|

 format.html { redirect_to @article, notice: 'Unable to add comment' }

 format.js { render :fail_create }

 end

 end

 end

 def destroy

 @article = current_user.articles.find(params[:article_id])

 @comment = @article.comments.find(params[:id])

 @comment.destroy

 redirect_to @article, notice: 'Comment deleted'

 end

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/db9226972a7cbc652513d3e657b959b7
https://gist.github.com/nicedawg/db9226972a7cbc652513d3e657b959b7

294

 private

 def load_article

 @article = Article.find(params[:article_id])

 end

 def comment_params

 params.require(:comment).permit(:name, :email, :body)

 end

end

The main method in this code is the respond_to helper. By using respond_to, you

can have some code in the format.html block that’s called when you receive a regular

request and some code in the format.js block that’s called when a JavaScript request

is received. Hang on! There is no code in format.js! When no code is added to a format

block, Rails looks for a template named after the view, just like regular views, which

means it looks for create.js.erb. When a submitted comment fails validation, you

also want to warn the user by displaying error messages; for that, you use format.js {

render :fail_create } to render a template named fail_create.js.erb.

The new apps/views/comments/create.js.erb and app/views/comments/fail_

create.js.erb templates are shown in Listings 9-7 and 9-8, respectively.

Listing 9-7. The Template in app/views/comments/create.js.erb: https://gist.

github.com/nicedawg/cae8f8be678155859b6730b144738599

document.querySelector("#comments").insertAdjacentHTML("beforeend",

"<%= escape_javascript render @comment %>");

document.querySelector("#main form").reset();

Listing 9-8. The Template in app/views/comments/fail_create.js.erb: https://

gist.github.com/nicedawg/0cb4848e5553d60b366d0ecd8f2a1d4d

alert("<%= @comment.errors.full_messages.to_sentence.html_safe %>");

In the create.js.erb template, you run a couple of JavaScript commands. First,

you render the template for a new comment—using render @comment—and insert that

HTML at the bottom of the comments div, similar to what we’ve done before.

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/cae8f8be678155859b6730b144738599
https://gist.github.com/nicedawg/cae8f8be678155859b6730b144738599
https://gist.github.com/nicedawg/0cb4848e5553d60b366d0ecd8f2a1d4d
https://gist.github.com/nicedawg/0cb4848e5553d60b366d0ecd8f2a1d4d

295

The document.querySelector("#main form").reset(); line is a simple call to reset

all the elements of the new comment form, which is blank and ready to accept another

comment from your user.

In the fail_create.js.erb template, you use the alert JavaScript function to

display a dialog box with the validation error message, as shown in Figure 9-3.

Give it a try: point your browser to an existing article, for example, http://

localhost:3000/articles/2, and enter a few—or lots of—comments. As you can see,

you can interact with the page in a much more efficient way: there’s no need to wait until

a full page reload happens.

 Deleting Records with Ajax

To complete the “making things snappy” section, you may want to delete some of the

comments that are added by users. You can combine the techniques you’ve learned in

this chapter to let users delete comments without delay.

You already have a link to delete comments in the comment template at app/views/

comments/_comment.html.erb. To use Ajax with that link, you again need to add the

remote: true option to the method call. We’re also going to add a unique id to each

comment so that later, we know which comment to delete (Listing 9-9).

Figure 9-3. Displaying an error message

Chapter 9 JavaSCrIpt and CSS

296

Listing 9-9. The Template in app/views/comments/_comment.html.erb:

 https://gist.github.com/nicedawg/3710992814a2d9328dd86dd8cd081df5

<div class="comment" id="comment-<%= comment.id %>">

 <h3>

 <%= comment.name %> <<%= comment.email %>> said:

 <% if @article.owned_by? current_user %>

 <%= link_to 'Delete', article_comment_path(article_id: @article,

id: comment), confirm: 'Are you sure?', method: :delete, remote:

true %>

 <% end %>

 </h3>

 <%= comment.body %>

</div>

The changes in the controller are also minimal. Use the respond_to and format

block to make sure you support both regular and JavaScript requests, as shown in

Listing 9-10.

Listing 9-10. The Comments Controller in app/controllers/comments_

controller.rb: https://gist.github.com/nicedawg/0d6b6c3907175ed645cd6c

1ebb2965c4

class CommentsController < ApplicationController

 before_action :load_article, except: :destroy

 before_action :authenticate, only: :destroy

 def create

 @comment = @article.comments.new(comment_params)

 if @comment.save

 respond_to do |format|

 format.html { redirect_to @article, notice: 'Thanks for your

comment' }

 format.js

 end

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/3710992814a2d9328dd86dd8cd081df5
https://gist.github.com/nicedawg/0d6b6c3907175ed645cd6c1ebb2965c4
https://gist.github.com/nicedawg/0d6b6c3907175ed645cd6c1ebb2965c4

297

 else

 respond_to do |format|

 format.html { redirect_to @article, notice: 'Unable to add comment' }

 format.js { render :fail_create }

 end

 end

 end

 def destroy

 @article = current_user.articles.find(params[:article_id])

 @comment = @article.comments.find(params[:id])

 @comment.destroy

 respond_to do |format|

 format.html { redirect_to @article, notice: 'Comment deleted' }

 format.js

 end

 end

 private

 def load_article

 @article = Article.find(params[:article_id])

 end

 def comment_params

 params.require(:comment).permit(:name, :email, :body)

 end

end

You wire up the delete link in the comment partial to send an Ajax request to the

controller. The controller responds to those Ajax requests with the default action, which

is to render the app/views/comments/destroy.js.erb file (Listing 9-11).

Listing 9-11. The app/views/comments/destroy.js.erb File: https://gist.

github.com/nicedawg/b30f595ec078927ff93ab37f3bb94f14

var comments = document.querySelector("#comments");

comments.removeChild(document.querySelector("#comment-<%= @comment.id %>"));

Chapter 9 JavaSCrIpt and CSS

https://gist.github.com/nicedawg/b30f595ec078927ff93ab37f3bb94f14
https://gist.github.com/nicedawg/b30f595ec078927ff93ab37f3bb94f14

298

In the preceding JavaScript, we select the comments container and then call

removeChild, passing it the comment element we wish to delete. Removing an element

seems a little complicated. Most modern browsers support simply calling .remove() on

the element you want to remove, but IE doesn’t support that feature. We could have

added a polyfill—a JavaScript library which adds specific features to browsers which

don’t implement them—but that’s out of the scope of this book.

Open your browser to an article page—make sure you are logged in as the article

owner—with some comments you want to delete or add lots of spam-like comments.

See how quickly you can get rid of comments now? It’s a lot better than waiting for page

reloads.

 Summary
To be sure, JavaScript is a large topic. Entire books, conferences, and technology are

devoted to the language, so it goes without saying that this chapter only scratches the

surface. Still, in short order, you’ve learned the basics of implementing Ajax in Rails

applications, and you know where to go when you need to dig deeper.

You learned how to make remote Ajax calls using the remote: true option for links

and forms. You also used a simple visual effect to show new elements on the page,

thanks to JavaScript’s ability to interact with the DOM.

Finally, you learned about using JavaScript templates—which have the .js.erb

extension—to produce responses to Ajax requests using JavaScript code. At this stage,

you have a solid grasp of the Action Pack side of web development with Rails.

Chapter 9 JavaSCrIpt and CSS

299
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_10

CHAPTER 10

Active Storage
With version 5.2, Rails introduced a system to make it easy to handle files attached to

your application’s models. Web applications often need to perform tasks such as saving

user-uploaded files, creating thumbnail versions of images, and validating file types.

Previously, developers depended on other gems to handle this functionality, but now we

have the option to use a system that’s a full-fledged part of Rails.

In this chapter, we’ll enhance our blog application by adding the ability for users to

upload an image to an article, showing a thumbnail version of the image in the list of

articles and another version on an individual article’s page.

 ImageMagick
Since we plan on resizing uploaded images, we need to install ImageMagick—a

command-line tool which can perform a wide variety of operations on images, such as

resizing, converting formats, cropping, adding borders, watermarking, and more.

 Installing on MacOS Catalina
We can use Homebrew to install ImageMagick:

> brew install imagemagick

ImageMagick has several dependencies, so this may take a few minutes. To verify

installation, run the following command:

> convert -version

If you see output like “Version: ImageMagick 7.0.9-26…” (ignoring any major

differences in version number), then we are ready to go.

https://doi.org/10.1007/978-1-4842-5716-6_10#DOI

300

 Installing on Windows
Visit https://imagemagick.org/script/download.php#windows and download the

appropriate ImageMagick-*.exe for your system. For most, the topmost link is suitable.

Developers with older systems may need to look for the 32-bit version on the page.

After downloading the ImageMagick exe file, open it to run the installer. We can just

accept the defaults. When installation finishes, run the following command in a fresh

command prompt to verify installation was successful:

> magick --version

Ignoring any minor version differences, you should see output that includes

something like “Version: ImageMagick 7.0.9-26”. If so, we are ready to go!

 Installing on Linux
On Ubuntu Linux, we’ll run the following command. (If using another distribution

of Linux, use your system’s package manager to install the imagemagick package.) If

prompted, accept the

> sudo apt-get install imagemagick

To verify installation, run the following command:

> convert -v

Look for text that says something like “Version: ImageMagick…” If you do, then we’re

ready to go!

 Configuration
Next, we need to generate the database tables needed to store information about our

uploaded files. Run the following commands to generate and run the necessary migration:

> rails active_storage:install

> rails db:migrate

Chapter 10 aCtive Storage

https://imagemagick.org/script/download.php#windows

301

We won’t need to change any of Active Storage’s default configuration for our sample

blog application. But if we wanted to, for example, configure Active Storage to store files

in Amazon S3, we would define a new service in config/storage.yml and edit the various

config/environments/*.rb files to choose which storage service should be used in a

given Rails environment. For more information on configuration options, see https://

edgeguides.rubyonrails.org/active_storage_overview.html.

Next, since we plan on processing the images we’re going to add to our blog, we need

to install the image_processing gem. The following line is already in our Gemfile—but

it's commented out because we didn't need it yet. Uncomment the following line in your

Gemfile, save it, and then run bundle install:

gem "image_processing", "~> 1.2"

That’s it! We’re ready to start enhancing our blog with images.

 Saving Uploaded Images
First, we’ll update our Article model to declare that it has an attached image. Update

your app/models/article.rb so it matches the code in Listing 10-1.

Listing 10-1. Attaching an Image to the Article Model

https://gist.github.com/nicedawg/0c3a7645b269b5a48bd091fd8feb5754

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 has_one_attached :cover_image

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_

date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?",

"%#{term}%") }

Chapter 10 aCtive Storage

https://edgeguides.rubyonrails.org/active_storage_overview.html
https://edgeguides.rubyonrails.org/active_storage_overview.html
https://gist.github.com/nicedawg/0c3a7645b269b5a48bd091fd8feb5754

302

 def long_title

 "#{title} - #{published_at}"

 end

 def published?

 published_at.present?

 end

 def owned_by?(owner)

 return false unless owner.is_a?(User)

 user == owner

 end

end

Adding has_one_attached :cover_image to Article allows us to use article.cover_image

to access the article’s cover image file and perhaps perform operations on it. You may

have noticed we didn’t create any database storage specifically for article cover images.

When we generated and ran migrations earlier, we created a polymorphic table to store

information about attached files. This table stores not only the id of the record which

owns the attached file but also its class name (e.g., “Article”). This allows us to add

attachments to any model without needing separate storage for each type.

Now that our database and Article model are prepared to handle cover images, let's

add the ability to upload a cover image while creating or updating an article. First, let's

edit our article form, found in app/views/articles/_form.html.erb, to match Listing 10-2.

Listing 10-2. Adding Cover Image File Upload Field in the Article Form

https://gist.github.com/nicedawg/74e6d30f99b82da66efc8ea0ee816278

<%= form_with(model: article, local: true) do |form| %>

 <% if article.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(article.errors.count, "error") %> prohibited this

article from being saved:</h2>

 <% article.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

Chapter 10 aCtive Storage

https://gist.github.com/nicedawg/74e6d30f99b82da66efc8ea0ee816278

303

 </div>

 <% end %>

 <div class="field">

 <%= form.label :title %>

 <%= form.text_field :title %>

 </div>

 <div class="field">

 <%= form.label :cover_image %>

 <%= form.file_field :cover_image %>

 </div>

 <div class="field">

 <%= form.label :location %>

 <%= form.text_field :location %>

 </div>

 <%# ... code omitted for brevity ... %>

<% end %>

Now that our article form will submit the uploaded cover image, we need to update

our ArticlesController to permit the cover image to be uploaded. Update your app/

controllers/articles_controller.rb to match Listing 10-3.

Listing 10-3. Permitting cover_image Param in ArticlesController

https://gist.github.com/nicedawg/2a59c8b763831130042186ef8e64990c

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show]

 before_action :set_article, only: [:show]

 # ... code omitted for brevity ...

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_article

 @article = Article.find(params[:id])

 end

Chapter 10 aCtive Storage

https://gist.github.com/nicedawg/2a59c8b763831130042186ef8e64990c

304

 # Never trust parameters from the scary internet, only allow the white

list through.

 def article_params

 params.require(:article).permit(:title, :cover_image, :location,

:excerpt, :body, :published_at, category_ids: [])

 end

end

Next, we’ll display this image in the article partial template (Listing 10-4) so that it

appears on the articles index and show pages.

 Displaying Uploaded Images

Listing 10-4. Displaying Article Cover Image in the Article Partial https://gist.

github.com/nicedawg/7af1ba628cfeddebf1bac7c51faba0e9

<div class="article">

 <h3>

 <%= link_to article.title, article %>

 <% if article.owned_by? current_user %>

 <%= link_to 'Edit', edit_article_path(article) %>

 <%= link_to 'Delete', article, confirm: 'Are you sure?', method:

:delete %>

 <% end %>

 </h3>

 <hr>

 <% if article.cover_image.attached? %>

 <%= image_tag article.cover_image.variant(resize_to_limit: local_

assigns.fetch(:cover_image_options, [200, 200])) %>

 <% end %>

 <hr>

 <%= simple_format article.body %>

</div>

Chapter 10 aCtive Storage

https://gist.github.com/nicedawg/7af1ba628cfeddebf1bac7c51faba0e9
https://gist.github.com/nicedawg/7af1ba628cfeddebf1bac7c51faba0e9

305

There’s a bit going on there, so let’s explain! First, we call .attached? to see if this

article actually has a cover image. If it does, then we want to display the image, so we use

the image_tag helper and give a variant of the cover image as the source of the image.

We call .variant() to indicate we don’t want the original version of the attached

image—it could be huge! So we pass resize_to_limit with an array of the width and height

we desire, which will resize the image while preserving the aspect ratio to fit inside the

dimensions requested, as long as it exceeds the dimensions.

However, this is a shared partial—both articles/index and articles/show use it—

and we want to use different dimensions for the cover image in those two scenarios.

So we use Ruby’s fetch method on the special local_assigns hash, which is populated

with any local variables passed into the template, if any. So local_assigns.fetch(:cover_

image_options, [200, 200]) effectively says “if :cover_image_options was passed into this

template as a local variable, then use those options. However, if :cover_image_options

was not passed in, then use [200, 200] as the default.”

That was a mouthful to explain, but I’m sure you can see how this is a helpful way to

allow a shared partial to function differently in different scenarios. Be careful, though—

relying on too many local variables in partials can become unwieldy. At some point, it

may be more beneficial to create separate partials.

Next, we’ll update app/views/articles/show.html.erb (Listing 10-5) to show a larger

variant of the cover image than what is shown on the articles’ index page. This will make

use of the local_assigns code we added in the previous listing.

Listing 10-5. Displaying Larger Cover Image in the Article Show Page https://

gist.github.com/nicedawg/6f476ebe496fc6b03c4c3591e97d96d6

<%= render partial: @article, locals: { cover_image_options: [500, 500] } %>

<h3>Comments</h3>

<div id="comments">

 <%= render @article.comments %>

</div>

<%= link_to "new comment", new_article_comment_path(@article), remote:

true, id: 'new_comment_link' %>

Chapter 10 aCtive Storage

https://gist.github.com/nicedawg/6f476ebe496fc6b03c4c3591e97d96d6
https://gist.github.com/nicedawg/6f476ebe496fc6b03c4c3591e97d96d6

306

Try it out! Edit an article or create a new one, and upload a web-compatible image,

such as a .jpg, .png, or .gif file. Your uploaded file should now be shown on the articles

index and show pages, in different sizes.

 Removing Uploaded Images
Now that we’ve added images to articles, we realize we’d like to be able to remove images

from articles. Currently, we can only add or replace images. To allow the editor to remove

cover images, we’ll need to update our article form and our articles controller.

First, let’s improve our article form by showing a small thumbnail of the cover

image and a checkbox that allows the editor to remove the image by editing app/views/

articles/_form.html.erb to look something like Listing 10-6.

Listing 10-6. Displaying Cover Image and Removal Checkbox in the Article Form

https://gist.github.com/nicedawg/65148223ee3416242d68a7a370ccc4fb

<%= form_with(model: article, local: true) do |form| %>

 <% if article.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(article.errors.count, "error") %> prohibited this

article from being saved:</h2>

 <% article.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :title %>

 <%= form.text_field :title %>

 </div>

Chapter 10 aCtive Storage

https://gist.github.com/nicedawg/65148223ee3416242d68a7a370ccc4fb

307

 <div class="field">

 <%= form.label :cover_image %>

 <%= form.file_field :cover_image %>

 <% if article.cover_image.attached? %>

 <p>

 <%= image_tag article.cover_image.variant(resize_to_limit:

[50, 50]) %>

 <%= form.label :remove_cover_image do %>

 <%= form.check_box :remove_cover_image %> Remove this image

 <% end %>

 </p>

 <% end %>

 </div>

 <div class="field">

 <%= form.label :location %>

 <%= form.text_field :location %>

 </div>

 <div class="field">

 <%= form.collection_check_boxes(:category_ids, Category.all, :id,

:name) do |b| %>

 <% b.label { b.check_box + b.text } %>

 <% end %>

 </div>

 <div class="field">

 <%= form.label :excerpt %>

 <%= form.text_field :excerpt %>

 </div>

 <div class="field">

 <%= form.label :body %>

 <%= form.text_area :body %>

 </div>

Chapter 10 aCtive Storage

308

 <div class="field">

 <%= form.label :published_at %>

 <%= form.datetime_select :published_at %>

 </div>

 <div class="actions">

 <%= submit_or_cancel(form) %>

 </div>

<% end %>

Next, we’ll update our articles controller to allow the remove_cover_image value to

be passed through the update action into our call to update the Article object, as seen in

Listing 10-7.

Listing 10-7. Allowing remove_cover_image in the Articles Controller

https://gist.github.com/nicedawg/52fe5730332e638965f02b8c9b785ca4

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show]

 before_action :set_article, only: [:show]

 # GET /articles

 # GET /articles.json

 def index

 @articles = Article.all

 end

 # GET /articles/1

 # GET /articles/1.json

 def show

 end

 # GET /articles/new

 def new

 @article = Article.new

 end

 # GET /articles/1/edit

 def edit

Chapter 10 aCtive Storage

https://gist.github.com/nicedawg/52fe5730332e638965f02b8c9b785ca4

309

 @article = current_user.articles.find(params[:id])

 end

 # POST /articles

 # POST /articles.json

 def create

 @article = current_user.articles.new(article_params)

 respond_to do |format|

 if @article.save

 format.html { redirect_to @article, notice: 'Article was

successfully created.' }

 format.json { render :show, status: :created, location: @article }

 else

 format.html { render :new }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /articles/1

 # PATCH/PUT /articles/1.json

 def update

 @article = current_user.articles.find(params[:id])

 respond_to do |format|

 if @article.update(article_params)

 format.html { redirect_to @article, notice: 'Article was

successfully updated.' }

 format.json { render :show, status: :ok, location: @article }

 else

 format.html { render :edit }

 aformat.json { render json: @article.errors, status:

:unprocessable_entity }

 end

 end

 end

Chapter 10 aCtive Storage

310

 # DELETE /articles/1

 # DELETE /articles/1.json

 def destroy

 @article = current_user.articles.find(params[:id])

 @article.destroy

 respond_to do |format|

 format.html { redirect_to articles_url, notice: 'Article was

successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_article

 @article = Article.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def article_params

 params.require(:article).permit(:title, :cover_image, :remove_cover_

image, :location, :excerpt, :body, :published_at, category_ids: [])

 end

end

Lastly, we make a small change to our Article model to receive the remove_cover_

image value and to remove its cover image if that value is “1” whenever the article is

saved, as seen in Listing 10-8.

Listing 10-8. Deleting the Attachment When the Article Is Saved

https://gist.github.com/nicedawg/26288ce37ad9f7ad212f827176a665cb

class Article < ApplicationRecord

 validates :title, :body, presence: true

Chapter 10 aCtive Storage

https://gist.github.com/nicedawg/26288ce37ad9f7ad212f827176a665cb

311

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 has_one_attached :cover_image

 attr_accessor :remove_cover_image

 after_save { cover_image.purge if remove_cover_image == '1' }

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_

date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?",

"%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

 def published?

 published_at.present?

 end

 def owned_by?(owner)

 return false unless owner.is_a?(User)

 user == owner

 end

end

We used attr_accessor to add a getter and setter for an attribute called remove_cover_

image, which matches the checkbox name we added to the form and permitted in the

controller. We then add an after_save callback which will call .purge on the attached file

to delete it if the value of remove_cover_image is “1”—the default value of a checked

checkbox in Rails.

Try it out! You should be able to edit an article and remove its cover image by

checking the “Remove this image” checkbox and clicking “Update Article.”

Chapter 10 aCtive Storage

312

 Summary
In this chapter, we installed some prerequisites for processing images, added support for

Active Storage to our app, and then added the ability to manage cover images for articles

to our app.

There is certainly more to Active Storage than what we covered here. To learn more

about Active Storage, read the Rails guide at https://edgeguides.rubyonrails.org/

active_storage_overview.html.

Also, be aware that Active Storage is not the only solution for handling file

attachments. Other gems like CarrierWave and Shrine offer robust alternatives to Active

Storage.

Chapter 10 aCtive Storage

https://edgeguides.rubyonrails.org/active_storage_overview.html
https://edgeguides.rubyonrails.org/active_storage_overview.html

313
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_11

CHAPTER 11

Action Text
With version 6, Rails introduced a system to make it easy to enhance text areas with

WYSIWYG (What You See Is What You Get) editors. Often, developers need to allow

users—who may not be HTML-savvy—to edit HTML content. Rails developers have

previously needed to choose from a variety of JavaScript-based WYSIWYG editors,

integrate the assets into the Asset Pipeline, and connect them with the desired text area

inputs. While Rails developers still have the freedom to do this if we desire, Action Text

gives us first-class option.

In this chapter, we’ll cover the steps necessary to allow the users in our blog

application to easily use HTML when editing their articles’ body fields.

 Installation
To add support for using Action Text, we’ll need to do a few things. First, Action Text

stores its data in a separate table (similar to Active Storage, as we saw in the previous

chapter). Thankfully, Rails gives us a simple way to generate the needed database

migrations. Next, we’ll need to include Action Text’s JavaScript and CSS in our

application.

The first step is to run the action_text:install command, as shown in the

following with the output:

> rails action_text:install

Copying actiontext.scss to app/assets/stylesheets

 create app/assets/stylesheets/actiontext.scss

Copying fixtures to test/fixtures/action_text/rich_texts.yml

 create test/fixtures/action_text/rich_texts.yml

Copying blob rendering partial to app/views/active_storage/blobs/_blob.

html.erb

 create app/views/active_storage/blobs/_blob.html.erb

https://doi.org/10.1007/978-1-4842-5716-6_11#DOI

314

Installing JavaScript dependencies

 run yarn add trix@^1.0.0 @rails/actiontext@^6.0.2-1 from "."

yarn add v1.21.0

[1/4] Resolving packages...

[2/4] Fetching packages...

[3/4] Linking dependencies...

[4/4] Building fresh packages...

success Saved lockfile.

success Saved 2 new dependencies.

info Direct dependencies

├─ @rails/actiontext@6.0.2-1
└─ trix@1.2.2
info All dependencies

├─ @rails/actiontext@6.0.2-1
└─ trix@1.2.2
✨ Done in 4.81s.

Adding trix to app/javascript/packs/application.js

 append app/javascript/packs/application.js

Adding @rails/actiontext to app/javascript/packs/application.js

 append app/javascript/packs/application.js

Copied migration 20200304234710_create_action_text_tables.action_text.rb

from action_text

Your output may differ slightly, but take note of some of the things this simple

command did:

• Added Action Text’s CSS to our app

• Added Action Text’s JavaScript dependencies to our package.json and

yarn.lock files

• Installed Action Text’s JavaScript dependencies into our node_

modules directory

• Added Action Text’s JavaScript to our app’s JavaScript pack

• Created the database migration we need to store Action Text data

Chapter 11 aCtion text

315

The only thing left for us to do is to run our database migrations:

> rails db:migrate

== 20200304234710 CreateActionTextTables: migrating ===============

-- create_table(:action_text_rich_texts)

 -> 0.0048s

== 20200304234710 CreateActionTextTables: migrated (0.0049s) =======

Next we’ll describe each of the changes that just happened in a little more detail. We

could just skip ahead to enhancing a blog, but we can learn a little bit by paying closer

attention to these details.

 Action Text CSS
The action_text:install command we ran magically added Action Text’s CSS to our

application, so that the Trix editor (Action Text’s WYSIWYG editor of choice) has the

styles it needs to look good.

But how did it do this? It simply added the file app/assets/stylesheets/actiontext.css.

Don’t we need to explicitly load that style sheet somewhere? By default, we don’t need

to. Listing 11-1 shows an excerpt from our main style sheet.

Listing 11-1. Excerpt from app/assets/stylesheets/application.css

https://gist.github.com/nicedawg/92ed0bf488b5b4aee1eef85982f8383a

/*

 * This is a manifest file that'll be compiled into application.css, which

will include all the files

 * listed below.

 *

 * Any CSS and SCSS file within this directory, lib/assets/stylesheets, or

any plugin's

 * vendor/assets/stylesheets directory can be referenced here using a

relative path.

 *

 * You're free to add application-wide styles to this file and they'll

appear at the bottom of the

Chapter 11 aCtion text

https://gist.github.com/nicedawg/92ed0bf488b5b4aee1eef85982f8383a

316

 * compiled file so the styles you add here take precedence over styles

defined in any other CSS/SCSS

 * files in this directory. Styles in this file should be added after the

last require_* statement.

 * It is generally better to create a new file per style scope.

 *

 *= require_tree .

 *= require_self

 */

...

The comments are helpful here, so read them closely. Essentially, they’re saying

you could add a special comment line like /*= require ‘shiny’ */ and Rails will look for a

CSS file named “shiny.scss” or “shiny.css” in a few of your application’s directories. If it

finds one, it will include it in your application.css file. If it doesn’t find one in your app’s

directories, it will then start looking in your included gems for a style sheet with the given

name.

This is good to know, but it doesn’t answer our question—how did Action Text’s

CSS actually get added to our application.css? The answer is in the bolded line—the

“= require_tree .” directive in our comment says “look for any style sheets in this directory

and any subdirectories and include them.” Since the action_text:install command added

app/assets/stylesheets/actiontext.scss, the require_tree directive included that style

sheet automatically.

This is a great example of how Rails again uses convention over configuration to

simplify the process of adding a style sheet. However, there may be times when require_

tree is undesirable. Perhaps you need to control the order of style sheet inclusion, or

maybe you need to exclude certain style sheets from being included. In those cases, you

may need to use the require directive to explicitly list the style sheets you wish to include.

We won’t need to do that for our application, but it’s good to know this exists. For more

information on these directives (like require_tree and require), see https://guides.

rubyonrails.org/asset_pipeline.html#manifest-files-and-directives.

Let’s take a quick look at the actiontext.scss file which our action_text:install

command added in Listing 11-2.

Chapter 11 aCtion text

https://guides.rubyonrails.org/asset_pipeline.html#manifest-files-and-directives
https://guides.rubyonrails.org/asset_pipeline.html#manifest-files-and-directives

317

Listing 11-2. app/assets/stylesheets/actiontext.scss

https://gist.github.com/nicedawg/aa815191362c98adb5e445c4e803ea82

//

// Provides a drop-in pointer for the default Trix stylesheet that will

format the toolbar and

// the trix-editor content (whether displayed or under editing). Feel free

to incorporate this

// inclusion directly in any other asset bundle and remove this file.

//

//= require trix/dist/trix

// We need to override trix.css’s image gallery styles to accommodate the

// <action-text-attachment> element we wrap around attachments. Otherwise,

// images in galleries will be squished by the max-width: 33%; rule.

.trix-content {

 .attachment-gallery {

 > action-text-attachment,

 > .attachment {

 flex: 1 0 33%;

 padding: 0 0.5em;

 max-width: 33%;

 }

 &.attachment-gallery--2,

 &.attachment-gallery--4 {

 > action-text-attachment,

 > .attachment {

 flex-basis: 50%;

 max-width: 50%;

 }

 }

 }

 action-text-attachment {

 .attachment {

 padding: 0 !important;

Chapter 11 aCtion text

https://gist.github.com/nicedawg/aa815191362c98adb5e445c4e803ea82

318

 max-width: 100% !important;

 }

 }

}

This style sheet is included in our main style sheet. Notice the bolded text. This style

sheet includes another style sheet—trix/dist/trix. Where does that come from? We didn’t

notice that getting added to our application. The require directive also loads from our

node_modules directory. If you look in node_modules/trix/dist, you’ll see a trix.css file.

Apparently, Trix’s default CSS needed just a bit of tweaking to work with Action Text, so

our actiontext.scss adds some overrides.

 Action Text JavaScript
We just learned how Action Text integrated its CSS into our app; now, we’ll take a look at

how Action Text integrated its JavaScript into our app.

In the output of action_text:install, we see that it ran the command “yarn add

trix@^1.0.0 @rails/actiontext@^6.0.2-1 from "."” Several things happened here:

• An entry was added to package.json which listed trix as a JavaScript

dependency, requiring the version number to begin with 1.

• An entry was added to package.json which listed @rails/actiontext as a

JavaScript dependency, requiring the version number to begin with 6.

• The latest versions of those JavaScript libraries (which satisfied

the version requirements) were downloaded into our app’s node_

modules directory.

• The exact versions of these two JavaScript libraries (and their

dependencies) were added to yarn.lock, to ensure that future

installations of these libraries for our app will receive the exact same

versions.

Then, the action_text:install command appended a couple of lines to our app/

javascript/packs/application.js file, as shown in Listing 11-3.

Chapter 11 aCtion text

319

Listing 11-3. app/javascripts/packs/application.js

https://gist.github.com/nicedawg/b647350cce50f921b2e8ab666474b841

// This file is automatically compiled by Webpack, along with any other

files

// present in this directory. You're encouraged to place your actual

application logic in

// a relevant structure within app/javascript and only use these pack files

to reference

// that code so it'll be compiled.

require("@rails/ujs").start()

require("turbolinks").start()

require("@rails/activestorage").start()

require("channels")

// Uncomment to copy all static images under ../images to the output folder

and reference

// them with the image_pack_tag helper in views (e.g <%= image_pack_tag

'rails.png' %>)

// or the `imagePath` JavaScript helper below.

//

// const images = require.context('../images', true)

// const imagePath = (name) => images(name, true)

require("trix")

require("@rails/actiontext")

Similar to how Action Text’s CSS was included in our application.css, the bolded

require lines include Action Text’s JavaScript in our main application.js pack. We can use

require in our JavaScript files to include other JavaScript files from our own application

(e.g., app/javascript/shiny.js) or to include JavaScript files from our app’s dependencies

found in our node_modules directory. (The latter is where our trix and @rails/actiontext

JavaScript dependencies are found.)

Chapter 11 aCtion text

https://gist.github.com/nicedawg/b647350cce50f921b2e8ab666474b841

320

 Action Text Database Storage
The last task our action_text:install command performed was to generate a migration to

store our Action Text data. After running the migration, we see the following table added

to our db/schema.rb, as shown in Listing 11-4.

Listing 11-4. Action Text Table Added to db/schema.rb

https://gist.github.com/nicedawg/b4d79afe726e026afae59821a3b70385

...

 create_table "action_text_rich_texts", force: :cascade do |t|

 t.string "name", null: false

 t.text "body"

 t.string "record_type", null: false

 t.integer "record_id", null: false

 t.datetime "created_at", precision: 6, null: false

 t.datetime "updated_at", precision: 6, null: false

 t.index ["record_type", "record_id", "name"], name: "index_action_text_

rich_texts_uniqueness", unique: true

 end

...

Similar to the active_storage_attachments table from the previous chapter’s work,

the action_text_rich_texts table is a polymorphic table, meaning it can belong to many

different types of Active Record models by using the record_type column to store the

class name of the model a particular action_text_rich_texts row belongs to, along with the

record_id column to identify which particular record (of type record_type) it belongs to.

For illustration, consider the sample data which might appear in the action_text_

rich_texts database table in Table 11-1.

Chapter 11 aCtion text

https://gist.github.com/nicedawg/b4d79afe726e026afae59821a3b70385

321

In this sample data, we see that

• Article 1 has a body of “<p>Hey!</p>” and an excerpt of “<p>Hi</p>”.

• FAQ 1 has a body of “<p>Yo</p>”.

• Article 2 has a body of “<p>:-)</p>”, but no excerpt.

As you can see, this structure is very flexible. It can hold the content for any attribute

of any model. This usually is much more convenient than needing to define separate

database storage each model’s rich text needs.

 Using Action Text in Our Blog
Now that we’ve investigated how Action Text adds its CSS, JavaScript, and database

storage needs to our app, we can enhance our blog with greater understanding of what’s

happening behind the scenes. In the following steps, we will allow our users to create

articles with HTML bodies.

 Updating the Article Model
First, we need to make our Article model aware that we want to use Action Text for its

body attribute.

In Listing 11-5, we declare in our Article model that we want to use Action Text to

handle its body attribute.

Table 11-1. Sample Data in the action_text_rich_texts Database Table

id name body record_type record_id

1 body <p>hey!</p> article 1

2 body <p>Yo</p> FaQ 1

3 excerpt <p>hi</p> article 1

4 body <p>:-)</p> article 2

Chapter 11 aCtion text

322

Listing 11-5. Adding Action Text to Article#body

https://gist.github.com/nicedawg/98424877354b24411de2dbe5d2a1fa79

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 has_one_attached :cover_image

 attr_accessor :remove_cover_image

 after_save { cover_image.purge if remove_cover_image == '1' }

 has_rich_text :body

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_

date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?",

"%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

 def published?

 published_at.present?

 end

 def owned_by?(owner)

 return false unless owner.is_a?(User)

 user == owner

 end

end

By adding has_rich_text :body, a few things happened behind the scenes. Now,

Article#body is a has_one relation which returns the relevant ActionText::RichText object

from the action_text_rich_texts table, rather than returning the value of the body column

Chapter 11 aCtion text

https://gist.github.com/nicedawg/98424877354b24411de2dbe5d2a1fa79

323

from the articles table. Also, assigning to the body (e.g., article.body = “<p>Hey!</p>”) now

assigns the given value to the body attribute of the ActionText::RichText related object,

rather than the article’s old body attribute. Lastly, adding has_rich_text :body added a

couple of scopes to our class to make it easier to include the related ActionText::RichText

objects, helping us avoid N+1 queries. We’ll demonstrate this later in the chapter.

 Migrating Our Data
You may have noticed in the previous section that one side effect of using has_rich_

content :body is that the value is retrieved from (and stored in) a different table. If we

were starting from scratch, no problem. However, we have some data in our articles

table’s body column which is now being ignored! To preserve our data (and for

illustration), we’ll migrate our body data from the articles table to the action_text_rich_

texts table. Then we’ll add a migration to remove the body column from the articles

table; since we no longer need it, we should remove it to prevent possible confusion

down the road.

First, let’s generate a migration to copy our body data from the articles table to the

action_text_rich_texts table. Run the following command to generate the migration file:

> rails g migration MigrateArticleBodyToActionText

Next, modify the generated migration file to look like Listing 11-6. (Note: In my case,

that’s db/migrate/20200305025834_migrate_article_body_to_action_text.rb, but

your timestamp will differ.)

Listing 11-6. Migrating Article Body Data to ActionText::RichText

https://gist.github.com/nicedawg/5654a9de5ac781d71462912af754d659

class MigrateArticleBodyToActionText < ActiveRecord::Migration[6.0]

 def up

 execute <<-SQL

 INSERT INTO action_text_rich_texts (

 name,

 body,

 record_type,

 record_id,

 created_at,

Chapter 11 aCtion text

https://gist.github.com/nicedawg/5654a9de5ac781d71462912af754d659

324

 updated_at

) SELECT

 'body' AS name,

 body,

 "Article",

 id,

 created_at,

 updated_at

 FROM articles

 SQL

 end

 def down

 execute <<-SQL

 DELETE FROM action_text_rich_texts

 SQL

 end

end

Let’s talk about this migration. First, notice we defined separate up and down

methods in this migration; we need to execute some custom SQL, so we need to declare

what should happen in each direction.

When migrating up, we added some SQL to create action_text_rich_texts records

using our articles data. We used the INSERT INTO .. SELECT... syntax which most SQL

databases understand. It may look complicated, but it’s essentially saying “for each

record in the articles table, create a record in the action_text_rich_texts by mapping these

values to those.”

Let’s run the migration and then query the database directly to see how our data

looks:

> rails db:migrate

> rails dbconsole

sqlite> .headers on

sqlite> .mode column

sqlite> SELECT * FROM articles;

sqlite> SELECT * FROM action_text_rich_texts;

sqlite> .exit

Chapter 11 aCtion text

325

Let’s explain those sqlite commands. “.headers on” adds headers to the display of

output in the SQLite console. “.mode column” formats the output to be in a column

layout. We took the time to configure these options to make the next two steps easier

to read. Then, we get the contents of the articles and action_text_rich_texts tables. You

should see the same number of records in each, and you should see the action_text_rich_

texts table populated with data that matches the article record to which it corresponds.

Now that we are confident the data looks okay, we can try it out in rails console:

> rails console

irb(main):001:0> Article.first.body

 (0.4ms) SELECT sqlite_version(*)

 Article Load (0.2ms) SELECT "articles".* FROM "articles" ORDER BY

"articles"."id" ASC LIMIT ? [["LIMIT", 1]]

 ActionText::RichText Load (0.2ms) SELECT "action_text_rich_texts".* FROM

"action_text_rich_texts" WHERE "action_text_rich_texts"."record_id" = ?

AND "action_text_rich_texts"."record_type" = ? AND "action_text_rich_

texts"."name" = ? LIMIT ? [["record_id", 1], ["record_type", "Article"],

["name", "body"], ["LIMIT", 1]]

 Rendered /Users/brady.somerville/.rbenv/versions/2.6.5/lib/ruby/

gems/2.6.0/gems/actiontext-6.0.2.1/app/views/action_text/content/_layout.

html.erb (Duration: 1.8ms | Allocations: 478)

=> #<ActionText::RichText id: 9, name: "body", body: #<ActionText::Content

"<div class=\"trix-conte...">, record_type: "Article", record_id: 1,

created_at: "2020-02-25 02:23:56", updated_at: "2020-02-29 15:41:47">

As the console output shows, Article.first.body did a few things. First, it loaded

the Article object. Then, it loaded its corresponding ActionText::RichText object for

the body attribute. Then it loaded an action_text template! Lastly, it returned the

body as an instance of the ActionText::RichText class. Notice the body value of the

ActionText::RichText object—it’s actually an instance of the ActionText::Content class. We

won’t dig even further at this point, but just know this means our simple Article#body

attribute now has a lot of new behavior attached to it.

Now that we know our Article model is fetching its body content from Action Text’s

database tables, let’s add a database migration to remove the body column from the

articles table. This isn’t necessary, but since we aren’t using it (and we’re sure we don’t

need its data anymore), we’ll remove it to keep things tidy.

Chapter 11 aCtion text

326

Run the following Rails command to generate another migration:

> rails g migration RemoveBodyFromArticles body:text

By following the naming convention and adding the name and data type of the

column we wish to remove, Rails generates exactly the migration we need, as seen in

Listing 11-7.

Listing 11-7. Migration to Remove the Body Column from the Articles Table

https://gist.github.com/nicedawg/176b87f36550f8269fa4afcf73f4502e

class RemoveBodyFromArticles < ActiveRecord::Migration[6.0]

 def change

 remove_column :articles, :body, :text

 end

end

This migration will remove the body column from the articles table when migrating

upward and will add the column back when calling rails db:rollback. However, when

rolling back, it won’t restore the data. We’re okay with that, because we know we don’t

need it, but be aware that extra steps would be necessary if that were not the case.

Run rails db:migrate to actually remove the unneeded column from articles:

> rails db:migrate

At this point, we feel confident that our Article model is correctly integrated with

Action Text, so let’s continue enhancing our blog application.

 Updating the Article View
After having updated our Article model to use Action Text for its body, if you were try

to load the root path (or /articles path) of our application, you would see an error:

“NoMethodError in Articles#index: undefined method `strip' for #<ActionText::RichTex

t:0x00007ff6f6b51478>”. We shouldn’t be too surprised; we changed what type of object

article.body returns, so we have to deal with it a little differently.

We were using simple_format in the article partial template to safely allow links (and

other basic HTML) in the display of our article bodies. Modify your app/views/articles/_

article.html.erb file to match Listing 11-8.

Chapter 11 aCtion text

https://gist.github.com/nicedawg/176b87f36550f8269fa4afcf73f4502e

327

Listing 11-8. Displaying Action Text Content in _article.html.erb

https://gist.github.com/nicedawg/2c3d1d2f14899ffb944099879935857c

<div class="article">

 <h3>

 <%= link_to article.title, article %>

 <% if article.owned_by? current_user %>

 <%= link_to 'Edit', edit_article_path(article) %>

 <%= link_to 'Delete', article, confirm: 'Are you sure?', method:

:delete %>

 <% end %>

 </h3>

 <hr>

 <% if article.cover_image.attached? %>

 <%= image_tag article.cover_image.variant(resize_to_limit: local_

assigns.fetch(:cover_image_options, [200, 200])) %>

 <hr>

 <% end %>

 <%= article.body %>

</div>

After updating app/views/articles/_article.html.erb, we can now load the various

pages that display an article body without error. Nothing really looks different than

before, but that’s good! Our article bodies don’t have any HTML in them. Yet.

 Updating the Article Form
Now, almost everything’s in place. The support system for articles having HTML in their

body fields is there; we just need to update the form to use a WYSIWYG editor.

Again, Action Text makes this easy. Edit your app/views/articles/_form.html.erb to

match Listing 11-9.

Chapter 11 aCtion text

https://gist.github.com/nicedawg/2c3d1d2f14899ffb944099879935857c

328

Listing 11-9. Updating the Article Form to Use the Trix Editor for Its Body Input

https://gist.github.com/nicedawg/d76b2b3ad4e4b1dd5eefd2af2f1a5a3f

<%= form_with(model: article, local: true) do |form| %>

 <% if article.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(article.errors.count, "error") %> prohibited this

article from being saved:</h2>

 <% article.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :title %>

 <%= form.text_field :title %>

 </div>

 <div class="field">

 <%= form.label :cover_image %>

 <%= form.file_field :cover_image %>

 <% if article.cover_image.attached? %>

 <p>

 <%= image_tag article.cover_image.variant(resize_to_limit:

[50, 50]) %>

 <%= form.label :remove_cover_image do %>

 <%= form.check_box :remove_cover_image %> Remove this image

 <% end %>

 </p>

 <% end %>

 </div>

Chapter 11 aCtion text

https://gist.github.com/nicedawg/d76b2b3ad4e4b1dd5eefd2af2f1a5a3f

329

 <div class="field">

 <%= form.label :location %>

 <%= form.text_field :location %>

 </div>

 <div class="field">

 <%= form.collection_check_boxes(:category_ids, Category.all, :id,

:name) do |b| %>

 <% b.label { b.check_box + b.text } %>

 <% end %>

 </div>

 <div class="field">

 <%= form.label :excerpt %>

 <%= form.text_field :excerpt %>

 </div>

 <div class="field">

 <%= form.label :body %>

 <%= form.rich_text_area :body %>

 </div>

 <div class="field">

 <%= form.label :published_at %>

 <%= form.datetime_select :published_at %>

 </div>

 <div class="actions">

 <%= submit_or_cancel(form) %>

 </div>

<% end %>

As you can see, all we had to do was replace the text_area form helper we were using

for the body attribute with the rich_text_area form helper which Action Text provides.

Edit an article, and see our WYSIWYG editor for the body tag in action! Your article form

should look something like Figure 11-1.

Chapter 11 aCtion text

330

Try it out! Restart your Rails server to be sure all of our new code is loaded, and use

the article form to add content to your body, using Trix’s toolbar to make some of your

content bold and add links, lists, and other formatting. Then view the article, and see

your fancy formatting in the body tag.

 Cleaning Up N+1 Queries
In an earlier section in this chapter, we described what happened when we added has_

rich_text :body to our Article model. One of the benefits we described was the inclusion

of scopes to help us deal with N+1 queries.

Figure 11-1. Article form using Trix as WYSIWYG editor for the body field

Chapter 11 aCtion text

331

Why is this necessary? While viewing your rails server output, load the root path

(which renders each article in your database), and notice how many SQL queries are

executed. See Listing 11-10 for an example.

Listing 11-10. Too Many SQL Queries for Loading Articles

https://gist.github.com/nicedawg/70ba78c747b96fa0ec4d7a924b760586

Started GET "/" for ::1 at 2020-03-04 23:04:50 -0600

Processing by ArticlesController#index as HTML

 Rendering articles/index.html.erb within layouts/application

 Article Load (0.2ms) SELECT "articles".* FROM "articles"

 ↳ app/views/articles/index.html.erb:4
 User Load (0.2ms) SELECT "users".* FROM "users" WHERE "users"."id" = ?

LIMIT ? [["id", 2], ["LIMIT", 1]]

 ↳ app/controllers/application_controller.rb:6:in `current_user'
 CACHE User Load (0.0ms) SELECT "users".* FROM "users" WHERE "users"."id"

= ? LIMIT ? [["id", 2], ["LIMIT", 1]]

 ↳ app/models/article.rb:29:in `owned_by?'
 ActiveStorage::Attachment Load (0.2ms) SELECT "active_storage_

attachments".* FROM "active_storage_attachments"...

 ↳ app/views/articles/_article.html.erb:12
 ActionText::RichText Load (0.2ms) SELECT "action_text_rich_texts".* FROM

"action_text_rich_texts"...

 ↳ app/views/articles/_article.html.erb:16
 User Load (0.3ms) SELECT "users".* FROM "users" WHERE "users"."id" = ?

LIMIT ? [["id", 1], ["LIMIT", 1]]

 ↳ app/models/article.rb:29:in `owned_by?'
 ActiveStorage::Attachment Load (0.3ms) SELECT "active_storage_

attachments".* FROM "active_storage_attachments"...

 ↳ app/views/articles/_article.html.erb:12
 ActionText::RichText Load (0.3ms) SELECT "action_text_rich_texts".* FROM

"action_text_rich_texts"...

 ↳ app/views/articles/_article.html.erb:16
 CACHE User Load (0.0ms) SELECT "users".* FROM "users" WHERE "users"."id"

= ? LIMIT ? [["id", 1], ["LIMIT", 1]]

Chapter 11 aCtion text

https://gist.github.com/nicedawg/70ba78c747b96fa0ec4d7a924b760586

332

 ↳ app/models/article.rb:29:in `owned_by?'
 ActiveStorage::Attachment Load (0.2ms) SELECT "active_storage_

attachments".* FROM "active_storage_attachments"...

 ↳ app/views/articles/_article.html.erb:12
 ActionText::RichText Load (0.2ms) SELECT "action_text_rich_texts".* FROM

"action_text_rich_texts"...

 ↳ app/views/articles/_article.html.erb:16
 ActiveStorage::Attachment Load (0.2ms) SELECT "active_storage_

attachments".* FROM "active_storage_attachments"...

 ↳ app/views/articles/_article.html.erb:12
 ActionText::RichText Load (0.2ms) SELECT "action_text_rich_texts".* FROM

"action_text_rich_texts"...

 ↳ app/views/articles/_article.html.erb:16
 Rendered collection of articles/_article.html.erb [4 times] (Duration:

48.2ms | Allocations: 13120)

 Rendered articles/index.html.erb within layouts/application (Duration:

49.9ms | Allocations: 13897)

[Webpacker] Everything's up-to-date. Nothing to do

Completed 200 OK in 68ms (Views: 64.7ms | ActiveRecord: 2.6ms |

Allocations: 19139)

To help make the output easier to read, we truncated and omitted extremely long

lines. But scanning the output, we see a pattern; over and over again, we query the same

three tables: users, active_storage_attachments, and action_text_rich_texts.

At this point, we only have a few articles, so the performance hit of making at least

three queries may not be noticeable. But each article in our database would result in at

least three queries being executed, so imagine if we had 50 articles or 100. This doesn’t

scale, so we need to deal with these N+1 queries we’ve accumulated along the way.

To combat these N+1 queries in our articles index, we just need to make a simple

change to our ArticlesController. Modify your app/controllers/articles_controller.rb so it

resembles Listing 11-11.

Chapter 11 aCtion text

333

Listing 11-11. Fixing N+1 Queries in ArticlesController

https://gist.github.com/nicedawg/e47509b6a42e7732475c0db89bf40b65

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show]

 before_action :set_article, only: [:show, :edit, :update, :destroy]

 # GET /articles

 # GET /articles.json

 def index

 @articles = Article.includes(:user).with_rich_text_body.with_attached_

cover_image.all

 end

 # rest of code omitted for brevity

end

Instead of simply calling Article.all, we add a few things to eliminate our N+1 queries.

First, we use .includes(:user) to hint to Active Record that we want to know the user

which each article belongs to. (:user is the name of the relevant association, so that’s

what we provide to includes. Next, we chain the with_rich_text_body scope. This scope

was added automatically to our Article class when we added has_rich_content :body

and similarly hints to Rails we want to efficiently load the relevant action_text_rich_texts

records for each article. Lastly, we chain the with_attached_cover_image scope, which

Active Storage automatically added to our class when we added has_one_attached

:cover_image in the previous chapter.

Now that we’ve addressed these N+1 queries, watch the rails server output again

while you load the root path. It should resemble Listing 11-12.

Listing 11-12. No More N+1 Queries When Loading Articles

https://gist.github.com/nicedawg/cfe9422f14763cbf831a224d7c74b8c5

Started GET "/" for ::1 at 2020-03-04 23:27:15 -0600

Processing by ArticlesController#index as HTML

 Rendering articles/index.html.erb within layouts/application

 Article Load (0.2ms) SELECT "articles".* FROM "articles"

 ↳ app/views/articles/index.html.erb:4

Chapter 11 aCtion text

https://gist.github.com/nicedawg/e47509b6a42e7732475c0db89bf40b65
https://gist.github.com/nicedawg/cfe9422f14763cbf831a224d7c74b8c5

334

 User Load (0.4ms) SELECT "users".* FROM "users" WHERE "users"."id" IN

(?, ?) [["id", 2], ["id", 1]]

 ↳ app/views/articles/index.html.erb:4
 ActionText::RichText Load (0.4ms) SELECT "action_text_rich_texts".* FROM

"action_text_rich_texts"...

 ↳ app/views/articles/index.html.erb:4
 ActiveStorage::Attachment Load (0.3ms) SELECT "active_storage_

attachments".* FROM "active_storage_attachments"...

 ↳ app/views/articles/index.html.erb:4
 User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ?

LIMIT ? [["id", 2], ["LIMIT", 1]]

 ↳ app/controllers/application_controller.rb:6:in `current_user'
 Rendered collection of articles/_article.html.erb [4 times] (Duration:

12.5ms | Allocations: 3421)

 Rendered articles/index.html.erb within layouts/application (Duration:

24.7ms | Allocations: 7684)

[Webpacker] Everything's up-to-date. Nothing to do

Completed 200 OK in 36ms (Views: 32.9ms | ActiveRecord: 1.5ms |

Allocations: 13062)

Again, note that we truncated and omitted some extremely long lines for clarity. But

look again for the SELECT statements. Instead of dozens of SELECT statements, there are

only a few! This is a good sign that our optimizations were effective.

 Summary
In this chapter, we ran the action_text:install command and investigated what changes it

made to our app in order to support using Trix as a WYSIWYG editor. Then, we enhanced

our blog application by allowing users to create HTML in their articles’ bodies without

needing to learn HTML.

While we ended up covering most of what you need to know to work with Action

Text, https://edgeguides.rubyonrails.org/action_text_overview.html is a great

resource for future reference.

Chapter 11 aCtion text

https://edgeguides.rubyonrails.org/action_text_overview.html

335
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_12

CHAPTER 12

Sending and Receiving
Email
It’s a rare web application that doesn’t need to send email from time to time. For

example, you may want to send messages to welcome users who sign up on your

website, send “reset password” links, or confirm orders placed with an online store. Rails

ships with a library called Action Mailer, which provides developers with an easy-to-use

yet powerful tool to handle email.

This chapter explains how Action Mailer works and how to use it in your

applications. You first learn how to configure it, and then you’ll see a few examples of

how to send email in various formats.

In addition to sending email, your Rails app can also receive email with the help of

Action Mailbox—a new feature in Rails 6. With Action Mailbox, we can receive email

destined for different email addresses, parse the email however we want, and then

decide what action to take (if any) in response to that email. For example, we could allow

authors to send an email to our app, which would then parse the email and create an

unpublished article—great for allowing authors to save ideas for an article when it’s not

convenient for them to use the browser. Toward the end of the chapter, we’ll add the

ability for our blog to do just that.

Note If you need to get the code at the exact point where you finished Chapter 11,
download the source code zip file from the book’s page on www.apress.com and
extract it on your computer.

https://doi.org/10.1007/978-1-4842-5716-6_12#DOI
http://www.apress.com

336

 Setting Up Action Mailer
Like Active Record and Action Pack, Action Mailer is one of the components that make

up the Rails framework. It works much like the other components of Rails: mailers are

implemented to behave like controllers, and mailer templates are implemented as views.

Because it’s integrated into the framework, it’s easy to set up and use, and it requires very

little configuration to get going.

When you send email using an email client such as Outlook or a web-based email

application like Gmail or Yahoo Mail, your messages are sent via a mail server. Unlike

a web server, Rails doesn’t provide a built-in mail server. You need to tell Action

Mailer where your email server is located and how to connect to it. This sounds a bit

complicated, but it’s really quite easy. Depending on the kind of computer you’re using,

you may have a mail server built in (this is true of most UNIX systems). If not, you can

use the same server that you use to process your regular email. If this is the case, you can

find your server information in your email client settings, as provided by your Internet

service provider (ISP), or in the settings section of your web-based email application,

like Gmail.

 Configuring Mail Server Settings
Before you can send email from your Rails application, you need to tell Action Mailer

how to communicate with your mail server. Action Mailer can be configured to send

email using either sendmail or a Simple Mail Transfer Protocol (SMTP) server. SMTP

is the core Internet protocol for relaying email messages between servers. If you’re on

Linux, OS X, or any other UNIX-based system, you’re in luck: you can use sendmail, and

as long as it’s in the standard location (/usr/bin/sendmail), you don’t need to configure

anything. If you’re on Windows or if you want to use SMTP, you have some work to do.

Action Mailer options are set at the class level on ActionMailer::Base. The best

place to set these options is in your environment files, located in the config directory

of your application. You can also add your configuration in an initializer file in config/

initializers; doing so ensures that your settings apply for all environments. In

most cases, though, you have different settings for the development and production

environments; so it may be wiser to add settings in any of the environment-specific

configuration files (config/environments/*.rb), because this takes precedence over the

global configuration.

Chapter 12 SendIng and reCeIvIng emaIl

337

This section describes how to set up Action Mailer to use SMTP, because it works on

all systems and is the default delivery method. To do this, you supply the SMTP settings

via the smtp_settings option. The smtp_settings method expects a hash of options,

most of which are shown in Table 12-1.

 Storing Sensitive Secrets

Since we know we’re going to need to set some sensitive information in our

configuration—our user_name and password for our SMTP server—we need to know

where to put them. We could just put them directly in our config file. While that would be

the simplest choice, it’s not the safest choice. Our config files may be version controlled,

deployed to servers, or copied to developers’ laptops—and our sensitive information will

be sitting there in plain text, vulnerable to misuse. How can we prevent this?

Naturally, there are various ways to prevent this. A common approach is to put

sensitive configuration values in environment variables which are not version controlled

and must be manually added and updated to servers and workstations as they’re

needed. The Rails application would then fetch these values from the special ENV hash.

This approach works well, but can be tedious to maintain. For example, when a code

change requires a new environment variable, care must be taken to ensure the servers

Table 12-1. Server Connection Settings

Setting Description

address the address of your mail server. the default is localhost.

port the port number of your mail server. the default is port 25.

domain If your email server responds to different domain names, you may need to

specify your domain name here.

authentication If your mail server requires authentication, you need to specify the

authentication type here. this can be one of :plain, :login, or :cram_md5.

user_name the username you use to authenticate when you connect to the mail server, if

your server requires authentication.

password the password you use to authenticate when you connect to the mail server, if

your server requires authentication.

Chapter 12 SendIng and reCeIvIng emaIl

338

are updated with the new environment variables in conjunction with deploying the

code. This can be an error-prone manual task.

Rails now offers an integrated approach, called credentials. With Rails’ approach

to handling sensitive information, we generate a secret key in config/master.key which

is not to be version controlled. (But it can and should be shared with other developers

and servers.) This secret key can then be used to encrypt and decrypt a YAML file which

stores our sensitive data–in config/credentials.yml.enc. This strikes a good balance

between security and convenience; we only share the master key once, and then future

updates to the contents of config/credentials.yml.enc are shared via version control, and

we avoid the risks of storing sensitive data in plain text.

To safely store our SMTP username and password, we will use Rails’ credentials

system. (Note: If you downloaded the source code for this book, you received an

encoded credentials file—config/credentials.yml.enc—for which you don’t have the key.

Simply remove that file before beginning.) First, let’s run the Rails command to edit our

encrypted credentials file:

> rails credentials:edit

Running this command will open an editor with the unencrypted contents of config/

credentials.yml.enc. Now we can edit our sensitive credentials, and when we save and

close our editor, the contents will be encrypted again and saved.

Easy enough, but there’s one complication—which editor will it use? Like many

CLI (command-line interface) programs, rails credentials delegates that decision to the

$EDITOR environment variable on your system. Depending on your system, this may

be a console-based editor like nano or vim, or on Windows it could be Notepad. If the

default editor isn’t to your liking, use your favorite search engine to find how to set your

preferred default editor for command-line programs like rails credentials:edit.

After running rails credentials:edit to open your unencrypted credentials in your

editor, edit your credentials file to match Listing 12-1, but with your SMTP username

and password, of course. (Note: Your secret_key_base value will likely be different. That’s

okay!)

Listing 12-1. Adding SMTP Credentials via rails credentials:edit

https://gist.github.com/nicedawg/d1691274c9b99de6cf81a80a89d3ae3f

Used as the base secret for all MessageVerifiers in Rails, including the

one protecting cookies.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/d1691274c9b99de6cf81a80a89d3ae3f

339

secret_key_base: 42cd449ceeb465562463941be28c64e7786cfe482fcf8b5e4f51f5605c

6b1a155b3cb2ef1baa221e27c5dc41b778a0dc91b26f956aa6a3f295ae098a67a3f891

smtp:

 user_name: "beginningrails@gmail.com"

 password: "changeme"

Save and close your editor, and your config/credentials.yml.enc file will be created

or updated to include your encrypted information. Now that we have our sensitive data

securely stored, we can configure our SMTP settings in our config files and reference our

encrypted credentials rather than store them in plain text.

Let’s configure our SMTP settings now. Listing 12-2 shows a typical configuration

for a server that requires authentication, in this case, Gmail. You can use this sample

configuration as a starting point to configure your connection. Change each of the

settings to connect to your own SMTP server. You may need to search for correct SMTP

settings for your particular email service. If you’re using sendmail as the delivery

method, add config.action_mailer.delivery_method = :sendmail; then, everything

should “just work.”

In addition to configuring our SMTP settings, we also go ahead and set default_url_

options to include our host URL in the development environment so that links in our

emails can point back to our app.

Listing 12-2. Sample Action Mailer Configuration Using SMTP, in config/

environments/*.rb https://gist.github.com/nicedawg/0424d7892cbb3ef3e0fa

87f2a777f40c

Rails.application.configure do

 # Settings specified here will take precedence over those in config/

application.rb.

 # In the development environment your application's code is reloaded on

 # every request. This slows down response time but is perfect for

development

 # since you don't have to restart the web server when you make code

changes.

 config.cache_classes = false

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/0424d7892cbb3ef3e0fa87f2a777f40c
https://gist.github.com/nicedawg/0424d7892cbb3ef3e0fa87f2a777f40c

340

 # Do not eager load code on boot.

 config.eager_load = false

 # Show full error reports.

 config.consider_all_requests_local = true

 # Enable/disable caching. By default caching is disabled.

 # Run rails dev:cache to toggle caching.

 if Rails.root.join('tmp', 'caching-dev.txt').exist?

 config.action_controller.perform_caching = true

 config.action_controller.enable_fragment_cache_logging = true

 config.cache_store = :memory_store

 config.public_file_server.headers = {

 'Cache-Control' => "public, max-age=#{2.days.to_i}"

 }

 else

 config.action_controller.perform_caching = false

 config.cache_store = :null_store

 end

 # Store uploaded files on the local file system (see config/storage.yml

for options).

 config.active_storage.service = :local

 # Don't care if the mailer can't send.

 config.action_mailer.raise_delivery_errors = false

 config.action_mailer.default_url_options = { host: 'http://

localhost:3000' }

 # Gmail SMTP server setup

 config.action_mailer.smtp_settings = {

 address: "smtp.gmail.com",

 enable_starttls_auto: true,

 port: 587,

 authentication: :plain,

 user_name: Rails.application.credentials.smtp[:user_name],

Chapter 12 SendIng and reCeIvIng emaIl

341

 password: Rails.application.credentials.smtp[:password],

 }

 config.action_mailer.perform_caching = false

 # Print deprecation notices to the Rails logger.

 config.active_support.deprecation = :log

 # Raise an error on page load if there are pending migrations.

 config.active_record.migration_error = :page_load

 # Highlight code that triggered database queries in logs.

 config.active_record.verbose_query_logs = true

 # Debug mode disables concatenation and preprocessing of assets.

 # This option may cause significant delays in view rendering with a large

 # number of complex assets.

 config.assets.debug = true

 # Suppress logger output for asset requests.

 config.assets.quiet = true

 # Raises error for missing translations.

 # config.action_view.raise_on_missing_translations = true

 # Use an evented file watcher to asynchronously detect changes in source

code,

 # routes, locales, etc. This feature depends on the listen gem.

 config.file_watcher = ActiveSupport::EventedFileUpdateChecker

end

Make sure to modify the options to match your own connection details for your

email provider. Restart your server if it’s running, and your application is ready to send

email. If your server fails to restart, check the error messages and look closely at your

config/environments/development.rb file and your encrypted credentials via rails

credentials:edit to make sure your changes match the listings.

Chapter 12 SendIng and reCeIvIng emaIl

342

Note If you need to use any advanced action mailer settings, the rails apI has
a good chunk of information at https://api.rubyonrails.org/classes/
ActionMailer/Base.html.

 Configuring Application Settings
In addition to the mail server settings, Action Mailer has a set of configuration

parameters you can tweak to make the library behave in specific ways according to

the application or the environment. For reference, Table 12-2 lists the most common

configuration options. Just like the server settings, these can be specified in an initializer

file or in the environment-specific configuration files (config/environments/*.rb).

Table 12-2. Common Action Mailer Application Settings

Option Description

raise_delivery_errors determines if exceptions should be raised when an error occurs

during email delivery.

delivery_method determines which subsystem to use to deliver emails. valid options

are :smtp, :sendmail, :file, and :test. additional options for the

chosen subsystem may be required.

perform_deliveries Indicates whether emails should actually be delivered.

deliveries Keeps an array of all delivered emails when the delivery method is

set to :test. this is useful when writing tests as we can inspect

the delivered messages without sending them anywhere.

default_options allows you to specify default arguments for the mail method used

inside mailers (e.g., setting default from or reply_to addresses).

default_url_options allows you to specify default arguments for Url helpers used

inside your mailers (e.g., setting host so generated Urls have the

correct domain name).

asset_host allows you to specify the base Url used when including assets like

images in your emails.

Chapter 12 SendIng and reCeIvIng emaIl

https://api.rubyonrails.org/classes/ActionMailer/Base.html
https://api.rubyonrails.org/classes/ActionMailer/Base.html

343

Note When you create a new rails application, the configuration files
automatically use sensible defaults for each of the development, test, and
production environments. take a quick look in config/environments to see
how action mailer behaves in development, production, and test mode to make
sure you understand your application’s behavior.

 Sending Email
Now that you have Action Mailer configured, it’s time to see it in action. This section

explores all the possibilities in the Action Mailer world, starting with basic text-only

email and then adding extra email options such as attachments.

To demonstrate Action Mailer, let’s enhance the blog application by allowing users

to send email to their friends, so they can share information about a specific article. This

is a common feature in today’s web applications, affectionately referred to as “send to

friend.”

By now, you know that Rails provides helpful generators to get started writing your

own code. You saw generators in action when you created models and controllers in

previous chapters. The mailer generator works just like the other generators.

Enter the following command to generate the NotifierMailer class with one

method named email_friend:

$ rails g mailer Notifier email_friend

 create app/mailers/notifier_mailer.rb

 invoke erb

 create app/views/notifier_mailer

 create app/views/notifier_mailer/email_friend.text.erb

 create app/views/notifier_mailer/email_friend.html.erb

 invoke test_unit

 create test/mailers/notifier_mailer_test.rb

 create test/mailers/previews/notifier_mailer_preview.rb

As we can see, the generator created several files, which we’ll briefly describe before

diving into more detail.

Chapter 12 SendIng and reCeIvIng emaIl

344

First, it created the NotifierMailer class in app/mailers/notifier_mailer.rb. By

convention, any other mailers we create will be located in app/mailers as well.

Inspecting NotifyMailer, we notice two things: First, the NotifyMailer class contains the

email_friend method we requested on the command line. Second, we see that it is a

subclass of ApplicationMailer class (found in app/mailers/application_mailer.rb), which

is in turn a subclass of the ActionMailer::Base class. This gives us a chance to make

app-wide changes to our mailers (by setting default options or changing layouts) while

still inheriting all the features ActionMailer::Base provides.

Next, we see that it also created two template files in the views directory (email_

friend.text.erb and email_friend.html.erb) which correspond to the email_friend

method (action) found in our mailer class. These template files will control the HTML

and text content of our emails. (Though most prefer to view the HTML version of an

email, it’s still considered a best practice to include a plain- text alternative. As you can

see, Action Mailer encourages this best practice.)

Doesn’t this look familiar? Just like controllers, Action Mailer classes contain

methods that, when triggered, execute some code and render a related view of the same

name, unless otherwise specified.

Lastly, the generator created a test file for our mailer, which we won’t use yet. It also

created a preview file, which we will cover later in this chapter.

Before we dive into our NotifierMailer implementation, let’s take a quick look at our

ApplicationMailer class, as seen in Listing 12- 3.

Listing 12-3. ApplicationMailer Class in app/mailers/application_mailer.rb

https://gist.github.com/nicedawg/d77cbbcf9705fbe917cf3caeddaaa5cb

class ApplicationMailer < ActionMailer::Base

 default from: 'from@example.com'

 layout 'mailer'

end

We see a couple of things happening here. First, the default method is called on

the hash from: ‘from@example.com’. This sets the given email address as the default,

making it unnecessary to specify the same From address for each mailer action we

might add. It would be a good idea to go ahead and change this From address to be the

same as the account you configured in your SMTP settings in config/environments/

development.rb, to stave off any possible delivery problems.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/d77cbbcf9705fbe917cf3caeddaaa5cb

345

We also see that the layout is set to mailer. Similar to how view templates rendered

by controller actions are usually wrapped in a layout template, mailer templates are by

default as well. This default “mailer” layout is defined in app/views/layouts/mailer.html.

erb and app/views/layouts/mailer.text.erb. If you want to make changes that affect all (or

most) of your mailer templates, these mailer layout template files are the perfect place to

do so.

Now, we’re ready to look at the NotifierMailer class we generated. In Listing 12-4,

we see that the email_friend method already has some code, which will be the starting

point for most of the methods you write using Action Mailer.

Listing 12-4. NotifierMailer Class in app/mailers/notifier.rb

https://gist.github.com/nicedawg/7db1799fd4eaa504d1a81ddc41930333

class NotifierMailer < ApplicationMailer

 # Subject can be set in your I18n file at config/locales/en.yml

 # with the following lookup:

 #

 # en.notifier_mailer.email_friend.subject

 #

 def email_friend

 @greeting = "Hi"

 mail to: "to@example.org"

 end

end

We see a comment about setting up our subject line for the email which our email_

friend mailer action will send in our I18n (internationalization) file. We won’t do that

now, but we will cover internationalization in a later chapter in this book.

Next, in the email_friend method body, the first line defines an instance variable

named @greeting; just like in controllers, instance variables are also available in your

views.

Also in the email_friend method body, we see that the mail method is called with a

parameter of to: "to@example.org", specifying the email address that will receive this

message. The mail method accepts an options hash that specifies the various headers of

the message. Table 12-3 lists the available options we can use to configure an individual

message.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/7db1799fd4eaa504d1a81ddc41930333

346

 Handling Basic Email
Let’s start enhancing the blog application by adding “Notify a Friend” functionality to

the article page. The first iteration is a very basic example that sends an email (with both

HTML and plain-text formats) containing a brief message.

The first piece of the puzzle is to make a change to the routes file, to include a route

for the action that will be called after the user submits the form. Let’s add a member

route to articles using the member method to give a notify_friend_article route.

Make sure your config/routes.rb file looks like the code in Listing 12-5.

Listing 12-5. Added a notify_friend Action to config/routes.rb:

https://gist.github.com/nicedawg/1b848339e03a9ce2204836e744d9c272

Rails.application.routes.draw do

 root to: "articles#index"

 resources :articles do

 member do

Table 12-3. Mail Method Options

Option Description Example

subject the subject of the email message to be sent. subject: "Action Mailer is

powerful"

to a string or array of email addresses to which

the message will be sent.

to: "friend@example.com"

from a string specifying the sender of the email

message.

from: "sender@example.com"

reply_to a string specifying the reply-to email address. reply: "sender@example.com"

date the date header. the default is the current

date.

date: Time.now

cc a string or array of email addresses to carbon

copy with the message.

cc: "admin@example.com"

bcc a string or array of email addresses to blind

carbon copy with the message.

bcc: ["support@example.com",

"sales@example.com"]

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/1b848339e03a9ce2204836e744d9c272

347

 post :notify_friend

 end

 resources :comments

 end

 resources :users

 resource :session

 get "/login", to: "sessions#new", as: "login"

 get "/logout", to: "sessions#destroy", as: "logout"

end

Note Using the member method inside your resources block helps define a
route that requires the id of the resource. Custom member routes are similar to
the default member routes, such as edit_article_path and article_path.
Following the same convention, you can define collection routes using the
collection method. Custom collection routes are similar to the default collection
routes, such as articles_path, which don’t require an id.

Now that we have the route in place, let’s show users a link which, when clicked,

shows a form where they can enter the email address of the friend to whom they want

to send a message. (Please note, a feature like this could be abused. In a production

environment, it may be necessary to add security measures to restrict usage of a form

like this to prevent malicious users using your form to send unsolicited emails. That’s

beyond the scope of this book, but be aware.)

Let’s update the article’s show view to include the new link and form partial directly

after rendering the article’s partial. Add the code shown in Listing 12-6 in app/views/

articles/show.html.erb.

Listing 12-6. “Email a Friend” Link and Partial Added to app/views/articles/

show.html.erb:

https://gist.github.com/nicedawg/5fac226dd94990290eb2deb18d67951d

<%= render partial: @article, locals: { cover_image_options: [500, 500] } %>

<%= link_to 'Email a friend', '#', onclick: "document.

querySelector('#notify_friend').style.display = 'block';return false;" %>

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/5fac226dd94990290eb2deb18d67951d

348

<div id="notify_friend" style="display:none;">

 <%= render 'notify_friend', article: @article %>

</div>

<h3>Comments</h3>

<div id="comments">

 <%= render @article.comments %>

</div>

<%= link_to "new comment", new_article_comment_path(@article), remote:

true, id: 'new_comment_link' %>

We added a link which may look a little strange. We set its URL to ‘#’, which is one

way to make a link clickable without it navigating anywhere. We’re only using the link to

trigger some JavaScript when clicked—namely, to display the “Notify a Friend” form. (We

also added return false to the onclick handler to prevent the browser from navigating.)

We also added a partial—notify_friend—and passed the article as a local variable.

This partial doesn’t exist yet, but we’ll create it next. We wrapped the partial in a

container which will be hidden by default. We gave the container an id so that the

preceding link can reference it and display the form. Generally, it’s best to keep your

JavaScript behavior separate from your HTML—perhaps in app/javascript/—but this

works for now and keeps us focused on our goal. And that’s okay!

Next, we need to add the partial for the “Notify a Friend” form we referenced in the

preceding listing. Let’s create this partial in app/views/articles/_notify_friend.

html.erb so it looks like the code in Listing 12-7.

Listing 12-7. “Notify a Friend” Partial in app/views/articles/_notify_friend.html.

erb: https://gist.github.com/nicedawg/c39b08e008df3daab297ba9998b0f178

<%= form_with(url: notify_friend_article_path(article)) do |form| %>

 <div class="field">

 <%= form.label :name, 'Your name' %>

 <%= form.text_field :name %>

 </div>

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/c39b08e008df3daab297ba9998b0f178

349

 <div class="field">

 <%= form.label :email, "Your friend's email" %>

 <%= form.text_field :email %>

 </div>

 <div class="actions">

 <%= form.submit 'Send' %> or

 <%= link_to 'Cancel', '#', onclick: "document.querySelector('#notify_

friend').style.display='none';return false;" %>

 </div>

<% end %>

This form is pretty standard. We configured it to send the name and email values to

the new route we added. And remember that, by default, form_with will send its data via

Ajax. The only other thing to note is the Cancel link; it’s similar to the “Email a Friend”

link from the previous listing, except that it hides the form.

Now, when you go to any article page, you’ll see a link to email a friend. Because

you don’t want to show the form all the time, you made the form hidden. If users are

interested in recommending the article by sending an email to a friend, they can click

the link, and the form will be revealed through the help of some simple JavaScript. The

end result is shown in Figures 12-1 and 12-2.

Figure 12-1. Article page without “Notify a Friend” form

Chapter 12 SendIng and reCeIvIng emaIl

350

The new form is ready to go, but the articles controller doesn’t know how to handle

its submitted data yet. The form is configured to submit to an action called notify_

friend, but that action doesn’t exist. Let’s update the articles controller and add the

notify_friend method (and to find the article for it) as shown in Listing 12-8.

Listing 12-8. The notify_friend Action Added to app/controllers/articles_

controller.rb: https://gist.github.com/nicedawg/9447cf251055501a1d3a41

05af4fa208

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show]

 before_action :set_article, only: [:show, :notify_friend]

 # GET /articles

 # GET /articles.json

 def index

 @articles = Article.includes(:user).with_rich_text_body.with_attached_

cover_image.all

 end

 # code omitted for brevity ...

 # DELETE /articles/1

 # DELETE /articles/1.json

Figure 12-2. Article page with visible “Notify a Friend” form

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/9447cf251055501a1d3a4105af4fa208
https://gist.github.com/nicedawg/9447cf251055501a1d3a4105af4fa208

351

 def destroy

 @article = current_user.articles.find(params[:id])

 @article.destroy

 respond_to do |format|

 format.html { redirect_to articles_url, notice: 'Article was

successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 def notify_friend

 NotifierMailer.email_friend(@article, params[:name], params[:email]).

deliver

 redirect_to @article, notice: 'Successfully sent a message to your

friend'

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_article

 @article = Article.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def article_params

 params.require(:article).permit(:title, :cover_image, :remove_cover_

image, :location, :excerpt, :body, :published_at, category_ids: [])

 end

end

First, we modified the before_action so that it would also set @article for our new

action. Then, we added the notify_friend action to deliver our message. The notify_friend

action is short and readable, but let’s dig a little deeper. Let’s use the rails console to see

what’s going on:

> rails console

irb(main):001:0> NotifierMailer.email_friend

Chapter 12 SendIng and reCeIvIng emaIl

352

 Rendering notifier_mailer/email_friend.html.erb within layouts/mailer

 Rendered notifier_mailer/email_friend.html.erb within layouts/mailer

(Duration: 1.1ms | Allocations: 226)

 Rendering notifier_mailer/email_friend.text.erb within layouts/mailer

 Rendered notifier_mailer/email_friend.text.erb within layouts/mailer

(Duration: 0.4ms | Allocations: 101)

NotifierMailer#email_friend: processed outbound mail in 13.1ms

=> #<Mail::Message:70146235556720, Multipart: true, Headers: <From: from

@example.com>, <To: to@example.org>, <Subject: Email friend>, <Mime-

Version: 1.0>, <Content-Type: multipart/alternative; boundary="--==_mimepar

t_5e6ada2fab7e7_110243fcc3142bfd48643f"; charset=UTF-8>>

A lot happened there. We see that our mailer action rendered our mailer templates,

and it constructed a message which it returned—apparently an instance of a class

named Mail::Message. Let's inspect that instance to find out more about it:

irb(main):002:0> email = _

=> #<Mail::Message:70146235556720, Multipart: true, Headers: <From: from@

example.com>, <To: to@example.org>, <Subject: Email friend>, <Mime-Version:

1.0>, <Content-Type: multipart/alternative; boundary="--==_mimepart_5e6ada2

fab7e7_110243fcc3142bfd48643f"; charset=UTF-8>>

irb(main):003:0> email.class.name

=> "ActionMailer::MessageDelivery"

We used a handy shortcut—the underscore—as an alias for the last object returned

by rails console and assigned its value to a variable we defined called email, for more

convenient investigation.

Then, we asked for the name of its class and were surprised to find out that it’s Act

ionMailer::MessageDelivery, not Mail::Message as we thought. Why did that happen?

ActionMailer::MessageDelivery is a thin wrapper around Mail::Message—it relies on

Mail::Message for its expertise in manipulating emails and adds some methods to

facilitate the delivery of these emails. It’s such a thin wrapper that it delegates almost

every method call to the Mail::Message object it contains—even the inspect method

inherited from the base Object class, which rails console uses to print the value of the

last returned object. That’s really interesting!

Chapter 12 SendIng and reCeIvIng emaIl

353

Now, let’s see what we can do with this object:

irb(main):004:0> email.methods # note: output shortened for brevity

=> [:subject, :subject=, :errors, :to_yaml, :decoded, :add_file, :filename,

:from, :content_type, :to, :charset, :action, :<=>, :content_type=, :==,

:[], :[]=, :sender, :boundary, :references, :attachment, :delivery_method,

:inspect, :method_missing, :multipart?, :parts, :from_address, :recipients_

addresses, :to_addresses, :cc_addresses, :x_original_to_addresses,

:bcc_addresses, :to_s, :deliver, :deliver!, ..., :reply_to=, :resent_

bcc, :body=, ... :message, :deliver_now!, :deliver_later, :deliver_now,

:processed?, :deliver_later!, :__setobj__, :marshal_dump, :marshal_load]

irb(main):005:0> email.deliver

Delivered mail 5e6adb06191e8_110243fcc3142bfd48652b@bardy.local.mail

(984.5ms)

Date: Thu, 12 Mar 2020 19:59:50 -0500

From: from@example.com

To: to@example.org

Message-ID: <5e6adb06191e8_110243fcc3142bfd48652b@bardy.local.mail>

Subject: Email friend

... omitted for brevity ...

=> #<Mail::Message:70146235556720, Multipart: true, Headers: <Date: Thu, 12

Mar 2020 19:59:50 -0500>, <From: from@example.com>, <To: to@example.org>,

<Message-ID: <5e6adb06191e8_110243fcc3142bfd48652b@bardy.local.mail>>,

<Subject: Email friend>, <Mime-Version: 1.0>, <Content-Type: multipart/

alternative; boundary="--==_mimepart_5e6ada2fab7e7_110243fcc3142bfd48643f";

charset=UTF-8>, <Content-Transfer-Encoding: 7bit>>

We see that our email object has a long list of messages we can send it; many are for

inspecting the details of the email message itself. Others are for managing the delivery of

it. There were too many methods to include in the listing, but we included some of the

more interesting ones. We see several methods with “deliver” in their name. We used

:deliver in our controller already, but we also see :deliver_later and :deliver_now;

the next chapter will explain those in more depth, though we can easily imagine what

they might do.

Chapter 12 SendIng and reCeIvIng emaIl

354

Lastly, we ran email.deliver, and the rails console output indicated the delivery was

performed—or at least attempted.

We don’t need to remember all these details every time we send an email; we just

need to remember that we call the mailer action as a class method on the mailer class

and then call deliver (e.g., NotifierMailer.email_friend.deliver).

We’re not quite ready to send our new email. In the previous code change, we added

some code to send the article, the name of the sender, and the email address of the

recipient to our mailer action—but the mailer action isn’t ready to receive it yet. Let’s

update our mailer action to receive this data and to make use of it when constructing the

message. Listing 12-9 shows these changes.

Listing 12-9. Updated NotifierMailer in app/mailers/notifier_mailer.rb:

https://gist.github.com/nicedawg/a9d4779d99d442d9beddf76d169e92b6

class NotifierMailer < ApplicationMailer

 def email_friend(article, sender_name, receiver_email)

 @article = article

 @sender_name = sender_name

 mail to: receiver_email, subject: 'Interesting Article'

 end

end

We added three arguments which correspond to the arguments we added to the

controller action in Listing 12-8: article, sender_name, and receiver_email. We

assigned two of those values—article and sender_name—to instance variables

so they will be available for use in our mailer templates. Then, we modified the

mail method call to send the email to the receiver_email address with the subject

“Interesting Article.”

We can now test to see if our email will actually be sent. It won’t have the content we

want yet, but we’ll change that soon. Go ahead and try! Fill out the form in your browser,

and send the message to your own email address. If all goes according to plan, you

should receive an email that looks something like Figure 12-3.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/a9d4779d99d442d9beddf76d169e92b6

355

If you didn’t get the message, don’t worry. Sending email can be tricky, but there are

a few things we can try.

First, look at your server output. Do you see any errors? If so, it may be a syntax error

in your code which you can fix. Address any errors by making sure your code matches

the preceding listings, and try again.

Does it look like everything was successful, but you still didn’t receive the message?

Checking your Spam or Junk folder or simply waiting another minute could clear this

up. However, there could be an SMTP error that’s being hidden. Edit your config/

environments/development.rb file, and change the following option so it says config.

action_mailer.raise_delivery_errors = true. (It was set to false, meaning SMTP delivery

errors would be suppressed.) Then restart your Rails server and try to send the message

again. Perhaps this will reveal the problem.

Email providers must continuously evolve to fight security risks and spam. It’s

quite likely that a security feature or spam-blocking feature from your email provider is

blocking your delivery attempts. For instance, if using a Gmail account with two-factor

authentication enabled, you may need to go to your Google Account settings page, visit

the Security section, and add an “app password” for your Rails app and then replace the

password in your SMTP settings (via rails credentials:edit) with the new app password in

order to send email from your Rails app.

Unfortunately, we cannot provide solutions for every type of SMTP delivery problem

that might exist with every provider—and even if we did, the solutions would soon be

obsolete! But knowing how to reveal the problem (via raise_delivery_errors) and using

your favorite search engine, you’re bound to solve the problem. But if not, don’t worry.

We can still preview the emails, even if they can’t be delivered right now.

Figure 12-3. Message delivered to a user’s inbox

Chapter 12 SendIng and reCeIvIng emaIl

356

 Previewing Email
Hopefully, you were able to successfully send the email from your app. But if not, don’t

worry. We can still preview what the email would look like with the help of another

feature of Action Mailer—previews.

With Action Mailer’s previews, we can configure a mailer action to be previewed

with some predefined data for its templates and then view the HTML and plain-text

variations of that mailer action in our web browser—without having to send the email.

Certainly this is helpful when you’re having trouble sending emails from your

development environment, but even if you don’t have any delivery problems, using

Action Mailer previews helps shorten the feedback loop for making incremental changes

to your mailers. Instead of filling out a form and waiting for the message to be sent to

your email account, simply refresh your browser! We’ll walk through the steps necessary

to make our email_friend mailer action previewable.

First, we need to define a subclass of ActionMailer::Preview specifically for

previewing mailer actions in our NotifierMailer class. Thankfully, when we generated

the mailer in an earlier section, it already created one for us, located in test/mailers/

previews/notifier_mailer_preview.rb. It already has almost everything we need; however,

we need to pass to the email_friend method the arguments which it expects. Modify your

NotifierMailerPreview class so it matches Listing 12-10.

Listing 12-10. NotifierMailerPreview in test/mailers/previews/notifier_

mailer_preview.rb

https://gist.github.com/nicedawg/c5522dc35fcb2f4cdca3b3b29edab451

Preview all emails at http://localhost:3000/rails/mailers/notifier_mailer

class NotifierMailerPreview < ActionMailer::Preview

 # Preview this email at http://localhost:3000/rails/mailers/notifier_

mailer/email_friend

 def email_friend

 NotifierMailer.email_friend(Article.first, 'Sender T. Sendington',

'ree.seever@example.com')

 end

end

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/c5522dc35fcb2f4cdca3b3b29edab451

357

Instead of passing arguments to email_friend based on user input, we’re predefining

the values which will be sent to the mailer action for the purpose of previewing.

Now, visit http://localhost:3000/rails/mailers in your browser. If all is well, you

should see “Notifier Mailer” listed, with a link to “email_friend” nested underneath it.

Click “email_friend,” and you should see the preview, similar to Figure 12-4.

Notice that we see essentially every important part of the message—the From

address, the Subject, the content, and more. Also, notice the Format menu; we see we’re

currently viewing the HTML version of our email, but can easily switch to viewing the

plain-text version as well.

Please be aware that email clients may not display the email exactly as it appears

here. Email clients tend to support a subset of HTML and CSS, and each email client has

its particular quirks. A good rule of thumb is to keep your layout and styles simple and to

test your messages with a variety of popular email clients.

Now that we can preview our “Email a Friend” message, let’s add the content we

want to send. We should include the sender’s name and a brief description of why we’re

sending this email so the recipient understands why they’re receiving this email. We

should also include the article’s title and a link back to the article. So let’s update our

email_friend mailer action text and HTML templates to match Listings 12-11 and 12-12,

respectively.

Figure 12-4. Action Mailer preview of NotifierMailer#email_friend

Chapter 12 SendIng and reCeIvIng emaIl

358

Listing 12-11. NotifierMailer Template in app/views/notifier_mailer/email_

friend.text.erb:

https://gist.github.com/nicedawg/a68c65b8b15b21be7a6346e8e3375969

Your friend, <%= @sender_name %>, thinks you may like the following

article:

<%= @article.title %>: <%= article_url(@article) %>

Listing 12-12. HTML email_friend Template in app/views/notifier_mailer/

email_friend.html.erb:

https://gist.github.com/nicedawg/1cc96d3de7b9bdf3bb0980bd87a2803e

<p>

 Your friend, <%= @sender_name %>, thinks you may like the

following article:

</p>

<p>

 <%= link_to @article.title, article_url(@article) %>

</p>

Now that we’ve updated our text and HTML versions of our mailer action, try

previewing the email again in your browser by visiting http://localhost:3000/rails/

mailers/notifier_mailer/email_friend. Much better!

If you were able to successfully send email from your Rails app via SMTP, try using

the “Email a Friend” form to send yourself this email. It looks pretty good, as shown in

Figure 12-5. If your users don’t have a rich email client and can’t read HTML mail, they

are shown the plain-text version.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/a68c65b8b15b21be7a6346e8e3375969
https://gist.github.com/nicedawg/1cc96d3de7b9bdf3bb0980bd87a2803e

359

Note If you think maintaining both text and html versions of an email message
is a lot of work, it may be safer to stick with the html message. While it is best
practice to send both, most email users prefer the html version.

 Adding Attachments
In some cases, you may want to add attachments to an email message. Action Mailer

makes this a straightforward task by providing an attachments helper. You tell

attachments which file you want to attach to the email, and it does its magic.

Let’s walk through an example of attaching a file to an email message. We could send

the article’s cover image (if available) when a user sends an email about that article to

a friend. To attach this image file to the email you created in the previous section, add

a call to the attachments method in the email_friend method in the NotifierMailer

class, as shown in Listing 12-13.

Listing 12-13. Adding an Attachment to the Mailer in app/mailers/notifier_

mailer.rb:

https://gist.github.com/nicedawg/bdf43103d0cb0f896047d9c458600afc

class NotifierMailer < ApplicationMailer

 def email_friend(article, sender_name, receiver_email)

 @article = article

 @sender_name = sender_name

Figure 12-5. HTML message delivered to a user’s inbox

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/bdf43103d0cb0f896047d9c458600afc

360

 if @article.cover_image.present?

 attachments[@article.cover_image.filename.to_s] = @article.cover_

image.download

 end

 mail to: receiver_email, subject: 'Interesting Article'

 end

end

First, since articles don’t require a cover image, we only attempt to add the

attachment if a cover image is present. Then, we set the name of the attachment to the

file name of the cover image. We could have named it anything we wanted, as long as it

had the right extension so that the recipient can view it properly. To set the contents of

the attachment, we used the download method—provided by Active Storage to give you

the raw data of the attached file. The resulting message preview looks like Figure 12-6.

Notice the link to the attachment.

Tip In addition to sending dynamic attachments like the preceding example, you
can also add a static attachment that exists on disk by using the File.read method.
For instance, if you wanted to send an image found in app/assets/images/blog.png,
you’d use File.read(Rails.root.join(‘app’, ‘assets’, ‘images’, ‘blog.png’)) when adding
an attachment.

Figure 12-6. Message with an attachment delivered to a user’s inbox

Chapter 12 SendIng and reCeIvIng emaIl

361

 Letting Authors Know About Comments
Just to make sure you’ve grasped how to send email from your Rails applications, this

section quickly goes over the complete flow to add another mailer action.

In Chapter 6, we added an after_create callback to the Comment model to email the

author of an article after a comment was created—but we never implemented the email.

Let’s do that now! We will change five files. First, we’ll add a new action to the Notifier

Mailer class; next, we will add new HTML and text mailer templates with the contents

of the email to send; then, we will add a previewer for our new mailer action so we can

easily test it; finally, we add code to the after_create callback in the Comment model to

invoke the mailer when a new comment is created. Listings 12-14 to 12-18, respectively,

show the code for these modifications.

Listing 12-14. Adding the comment_added Method to app/mailers/notifier_

mailer.rb:

https://gist.github.com/nicedawg/b6572b22e3627a93072b5a1eb2dead50

class NotifierMailer < ApplicationMailer

 def email_friend(article, sender_name, receiver_email)

 @article = article

 @sender_name = sender_name

 if @article.cover_image.present?

 attachments[@article.cover_image.filename.to_s] = @article.cover_

image.download

 end

 mail to: receiver_email, subject: 'Interesting Article'

 end

 def comment_added(comment)

 @article = comment.article

 mail to: @article.user.email, subject: "New Comment for '#{@article.

title}'"

 end

end

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/b6572b22e3627a93072b5a1eb2dead50

362

Listing 12-15. The comment_added HTML Mailer Template in app/views/

notifier_mailer/comment_added.html.erb:

https://gist.github.com/nicedawg/f60a353d255661cdb181ad8306cecf62

<p>

 Someone added a comment to one of your articles <i><%= @article.title

%></i>.

</p>

<p>

 Go read the comment:

 <%= link_to @article.title, article_url(@article) %>

</p>

Listing 12-16. The comment_added Text Mailer Template in app/views/notifier_

mailer/comment_added.text.erb:

https://gist.github.com/nicedawg/4d0690011557da8bf7526a76760995e3

Someone added a comment to one of your articles: "<%= @article.title"

Go read the comment:

 <%= article_url(@article) %>

Listing 12-17. Adding a Previewer for NotifierMailer#comment_added in

test/mailers/previews/notifier_mailer_preview.rb:

https://gist.github.com/nicedawg/8f6ebddb661a4939f7732dc9de000695

Preview all emails at http://localhost:3000/rails/mailers/notifier_mailer

class NotifierMailerPreview < ActionMailer::Preview

 # Preview this email at http://localhost:3000/rails/mailers/notifier_

mailer/email_friend

 def email_friend

 NotifierMailer.email_friend(Article.first, 'Sender T. Sendington',

'ree.seever@example.com')

 end

 def comment_added

 comment = Article.first.comments.build(

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/f60a353d255661cdb181ad8306cecf62
https://gist.github.com/nicedawg/4d0690011557da8bf7526a76760995e3
https://gist.github.com/nicedawg/8f6ebddb661a4939f7732dc9de000695

363

 name: 'Anonymous Reader',

 email: 'guesswho@example.com',

 body: 'This article changed my life.',

)

 NotifierMailer.comment_added(comment)

 end

end

Listing 12-18. Updates to app/model/comment.rb:

https://gist.github.com/nicedawg/a523e8af12c2559d539351aeb8d9f66d

class Comment < ApplicationRecord

 belongs_to :article

 validates :name, :email, :body, presence: true

 validate :article_should_be_published

 after_create :email_article_author

 def article_should_be_published

 errors.add(:article_id, 'is not published yet') if article && !article.

published?

 end

 def email_article_author

 NotifierMailer.comment_added(self).deliver

 end

end

Most of the code changes we made probably look familiar to you. However, we did

something in the preview class we should mention: we built a comment belonging to

the first article to use in our mailer. Why did we do this? When the preview action runs,

it is connected to your development database. If we had chosen to create a comment

instead of building one, then every time you previewed the email, it would add another

comment to your database. While that’s not necessarily a problem, you may not want

that to happen. By building instead of creating, the comment is never saved to the

database. Alternatively, we could have manually created a comment for the first article

so we could preview this email—but if we deleted that comment during the course of

development, this preview would suddenly be broken.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/a523e8af12c2559d539351aeb8d9f66d

364

Another thing we should point out is the email_article_author method in the

Comment model; we passed self as the argument to NotifierMailer.comment_added.

That’s because the mailer action expects a comment, and in this context, the comment is

the current object, which can be referred to as self.

Now that those changes have been made, create an article with your user account

and add some comments. You should receive one email message per comment. If you

want to, you could add the comment text to the email; that way, you wouldn’t need to go

to the article page to read the comment. You could easily implement that by changing

the mailer view.

 Receiving Email via Action Mailbox
So far, you’ve seen that Action Mailer has extensive support for sending all types of email

messages. But what if your application needs to receive email? Action Mailbox is a new

feature in Rails 6 which makes it as easy as possible to receive emails into your app and

process them.

Though Action Mailbox makes it as easy as it can to receive and parse emails, it can

still be tricky to set up. Being able to actually receive email may involve domain name

registration, deploying your application to a publicly available web host, signing up for

third- party email services, or configuring mail servers to call a Rails command when

receiving certain messages.

Walking you through the process of configuring your app to receive actual email

would be too difficult, as the variety of systems and services to integrate with is too great

and may require payment. However, Action Mailbox offers a tool in development mode

to let you submit emails to your app via a form. So we’ll use that tool to help us as we

modify our blog to let our authors submit draft articles via email. If at some point you

decide to send actual email to your app, be sure to check out the Action Mailbox guide at

https://edgeguides.rubyonrails.org/action_mailbox_basics.html.

Chapter 12 SendIng and reCeIvIng emaIl

https://edgeguides.rubyonrails.org/action_mailbox_basics.html

365

 Installation
To add Action Mailbox capabilities to our blog, we must begin by running Action

Mailbox’s installation command:

> rails action_mailbox:install

Copying application_mailbox.rb to app/mailboxes

 create app/mailboxes/application_mailbox.rb

Copied migration 20200314210550_create_action_mailbox_tables.action_

mailbox.rb from action_mailbox

As we see from the command’s output, it did a couple of things. First, it created an

ApplicationMailbox class. Then, it created a migration file; Action Mailbox keeps track

of which messages it has received and processed in a database table. So let's run the

migrations to add this new database table to our database:

> rails db:migrate

== 20200314210550 CreateActionMailboxTables: migrating ==================

-- create_table(:action_mailbox_inbound_emails)

 -> 0.0069s

== 20200314210550 CreateActionMailboxTables: migrated (0.0071s) ===========

That's it! Next, let's take a look at configuring Action Mailbox.

 Configuration
Action Mailbox has a few configuration options, as shown in Table 12-4. We won’t

deviate from the defaults in our blog, but it’s still helpful to take a look and see what’s

possible. Per usual, these values can be changed by putting config.action_mailbox.

[setting] = [value] in the appropriate config/environments/ files or in config/application.

rb to set the value for all environments.

Chapter 12 SendIng and reCeIvIng emaIl

366

Now that we’ve installed Action Mailbox and perused its options (though we didn’t

need to change any yet), let’s get started on enhancing our blog by allowing authors to

create draft articles via email.

 Creating Draft Articles via Email
Before we jump in to adding this feature, let’s think about the various things we need to

do in order to accomplish this.

First, we need to give each author a special email address, so that when we receive an

email, we know what it’s for (creating a draft article) and we know whom it’s for. Ideally,

we’ll make this a hard-to-guess email address to help prevent the public from being able

to create draft articles for the author.

Then, we’ll need to process the email. Based on the email’s To: address, subject, and

body, we’ll create a draft article associated with the right user, the right subject, and the

draft body.

Table 12-4. Action Mailbox Configuration Options

Option Description

ingress Specifies which adapter to use to receive emails. valid options include :relay,

:mailgun, :mandrill, :postmark, and :sendgrid. depending on the adapter chosen,

additional credentials may be required.

logger Specifies which logger action mailbox should use for its logging output. By

default, it will use the standard rails logger.

incinerate action mailbox stores the emails it receives for a certain amount of time and

then deletes them. If you wish to keep them forever, set this value to false.

incinerate_

after

By default, when incinerate is true, action mailbox will destroy emails after

storing them for 30 days. You can alter the storage policy by changing this

value. (e.g., config.action_mailbox.incinerate_after = 60.days).

queues action mailbox uses queues to schedule routing and incineration jobs. We

haven’t talked about queues yet, but we will in the next chapter when we

discuss active Job. For now, just know this option gives you a chance to rename

the queues which action mailbox uses by default.

Chapter 12 SendIng and reCeIvIng emaIl

367

Finally, we’ll send an acknowledgement email to the author, so they know our app

successfully processed their content. It will also have a convenient link to allow them to

edit their draft article.

 Assigning Authors a Special Email Address

First, let’s give each author a unique email address which they can use to create draft

articles via email. To do this, we will add a secret token to each user record for this

purpose and display it on their “Edit Password” page.

Let’s generate and run the necessary migration:

> rails g migration add_draft_article_token_to_users draft_article_

token:token

 invoke active_record

 create db/migrate/20200314215947_add_draft_article_token_to_users.rb

> rails db:migrate

== 20200314215947 AddDraftArticleTokenToUsers: migrating ================

-- add_column(:users, :draft_article_token, :string)

 -> 0.0034s

-- add_index(:users, :draft_article_token, {:unique=>true})

 -> 0.0016s

== 20200314215947 AddDraftArticleTokenToUsers: migrated (0.0053s) =========

Notice we gave a hint to the migration generator that our new field—draft_article_

token—is a token. Rails handles that specially. We can see in the output that it created

our field as a string in the database, but also added a unique index to the column,

ensuring that each user has a different token. (If two users had the same draft_articles_

token, we might end up creating a draft article associated with the wrong user!)

Next, we’ll modify our User class so that it will treat the draft_article_token like

a token, as shown in Listing 12-19. By doing so, it will automatically set a random,

unique token when a user is being created. It also gives the User class a method called

regenerate_draft_article_token we could use if we needed to.

We’ll also add a method to return the full special email address for convenience, so

we don’t end up repeating it throughout the blog’s code base.

Chapter 12 SendIng and reCeIvIng emaIl

368

Listing 12-19. Adding draft_article_token to User Model

https://gist.github.com/nicedawg/6848c1a2348a1afa28406f93ced19e97

require 'digest'

class User < ApplicationRecord

 attr_accessor :password

 validates :email, uniqueness: true

 validates :email, length: { in: 5..50 }

 validates :email, format: { with: /\A[^@][\w.-]+@[\w.-]+[.][a-z]

{2,4}\z/i }

 validates :password, confirmation: true, if: :password_required?

 validates :password, length: { in: 4..20 }, if: :password_required?

 validates :password, presence: true, if: :password_required?

 has_one :profile

 has_many :articles, -> { order 'published_at DESC, title ASC' },

 dependent: :nullify

 has_many :replies, through: :articles, source: :comments

 has_secure_token :draft_article_token

 before_save :encrypt_new_password

 def self.authenticate(email, password)

 user = find_by email: email

 return user if user && user.authenticated?(password)

 end

 def authenticated?(password)

 self.hashed_password == encrypt(password)

 end

 def draft_article_email

 "#{draft_article_token}@drafts.example.com"

 end

 protected

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/6848c1a2348a1afa28406f93ced19e97

369

 def encrypt_new_password

 return if password.blank?

 self.hashed_password = encrypt(password)

 end

 def password_required?

 hashed_password.blank? || password.present?

 end

 def encrypt(string)

 Digest::SHA1.hexdigest(string)

 end

end

After this code change, new users will automatically receive a unique token. And

we can easily generate the user’s special draft article email address. But what about our

existing users? We can use this code in the rails console to generate draft_article_token

values for them and then verify it worked:

> rails c

irb(main):001:0> User.find_each { |u| u.regenerate_draft_article_token }

 SQL output ...

irb(main):002:0> User.first.draft_article_token

 User Load (0.3ms) SELECT "users".* FROM "users" ORDER BY "users"."id"

ASC LIMIT ? [["LIMIT", 1]]

=> "qzi2k2g9ULwZhVqFQTKUet5M"

Now that we have secure draft article tokens for each user (and will automatically

create tokens for new users), let's show our authors their unique, secure email address

they can use to send draft articles via email.

Perhaps near the top of the “new article” form would be a good place to show them

this email address. We could also explain how the process works. Let’s add this to our

app/views/articles/new.html.erb, as Listing 12-20 shows.

Chapter 12 SendIng and reCeIvIng emaIl

370

Listing 12-20. Showing the Draft Article Email at the Top of app/views/articles/

new.html.erb

https://gist.github.com/nicedawg/6a6dbb6049f28c9873ed0d963488e477

<h1>New Article</h1>

<p>

 Did you know that you can submit draft articles via email?

 Send an e-mail to <%= mail_to current_user.draft_article_email %> with

the title in your subject, and your draft content in the body.

</p>

<%= render 'form', article: @article %>

<%= link_to 'Back', articles_path %>

After making these changes, go to the New Article page in your browser. It should

resemble Figure 12-7.

Figure 12-7. New article form with special draft article email address

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/6a6dbb6049f28c9873ed0d963488e477

371

With these changes, authors are aware of their special draft article email address and

can start sending email to our blog to create draft articles. But what will our application

do with those emails when it receives them? We clearly have more work to do. Next, we’ll

add code to process these emails and create draft articles from them.

 Processing the Email

We need a place to put code that can handle incoming emails which are meant to create

draft articles. It needs to be able to find the right author record and then create an article

with the right title and body. If we wanted to take this action in response to an incoming

HTTP request, we’d do that in a controller. But when receiving email input, we’ll do that

in a mailbox.

In an Action Mailbox context, a mailbox receives emails and decides what to do

with them. We can have many mailboxes, each one for a particular purpose, similar to

controllers. Since we’re going to be creating draft articles from emails, we should name

our new mailbox accordingly.

To create our new mailbox, run the following Rails command:

> rails g mailbox draft_articles

 create app/mailboxes/draft_articles_mailbox.rb

 invoke test_unit

 create test/mailboxes/draft_articles_mailbox_test.rb

As we can see, the generator created our DraftArticlesMailbox class in the app/

mailboxes directory and also added a placeholder test file for us (which we won’t use yet.)

If you view the DraftArticlesMailbox class, you’ll see it’s a blank state. It has an empty

process method, and that’s it. We’ll need to update the DraftArticlesMailbox class in app/

mailboxes/draft_articles_mailbox.rb to match Listing 12-21.

Listing 12-21. Processing Emails in app/mailboxes/draft_articles_mailbox.rb

https://gist.github.com/nicedawg/fdb5245cb9a8235d6f0894f0d4dc31f5

class DraftArticlesMailbox < ApplicationMailbox

 before_processing :require_author

 def process

 author.articles.create(

 title: mail.subject,

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/fdb5245cb9a8235d6f0894f0d4dc31f5

372

 body: mail.body,

)

 end

 private

 def require_author

 bounce_with DraftArticlesMailer.no_author(mail.from) unless author

 end

 def author

 @author ||= User.find_by(draft_article_token: token)

 end

 def token

 mail.to.first.split('@').first

 end

end

This isn’t a ton of code, but there’s a bit to unpack here. First, we see that our

DraftArticlesMailbox class inherits from ApplicationMailbox. Any mailboxes we create to

work with Action Mailbox should inherit from this class.

Next, we see before_processing :require_author. Similar to how Action Controller

allows you to define filters to run before, after, or around your controller action, Action

Mailbox allows you to define filters to run before, after, or around your process method.

Here, we reference a method we added called require_author which we’ll explain in a

minute. We could have put the code for require_author at the top of our process method,

but extracting it to a separate method keeps our process method tidy and encourages

reuse. So now we understand the general idea—before we process the email, we make

sure we could locate the right user object.

Before we dig into the methods we added, let’s talk about some magic that Action

Mailbox added to our class. First, notice how we referenced something called mail a

few times in our class. Where did that come from? Action Mailbox provides that to our

class—and it returns the object representing the email we’re processing. So we can use it

to access the email’s To, Subject, and Body fields and more.

We also used a method called bounce_with; this method marks the inbound email

record as “bounced” (so the system knows it was processed but failed), and the method

takes an ActionMailer::MessageDelivery instance as an argument. Action Mailbox will

Chapter 12 SendIng and reCeIvIng emaIl

373

then deliver this message in response to the failure. This is an elegant way to let you do

both things—mark as bounced and deliver an error message—with very little code.

Now we can understand the code we added more clearly. In require_author, we

bounce a message back to the sender unless we can find a valid author.

In author, we search for the user record with the right token. You may not have

seen the ||= operator yet, often referred to as the “or equals” operator. Using this in

conjunction with an instance variable, as we did in the author method, is a common

pattern called memoization—which attempts to prevent redundant, expensive queries.

We refer to author multiple times in this class, but don’t need to actually execute an SQL

query more than once. So the author method returns the value of @author if it has a

value. Otherwise, it executes the User.find_by query, assigns the value to @author, and

then returns the value.

In token, we access the object representing the email and get its to value…which

rightly returns an array of email addresses (since an email’s To field may have multiple

recipients). For our purposes, we assume the first address is the one we want, and then

we split the address based on the @ symbol and take the first piece of the resulting array

to return the token portion of our email address.

Finally, to the meat of the class. The process method creates an article associated

with the author found via the token in the email address and sets its title and body based

on the email’s subject and body, respectively.

You might notice the explanation of this class is longer than the code itself, a

tribute to the concise readability of well-written Ruby code. The code is rather self-

documenting. Even if you don’t know what’s happening behind the scenes, a developer

could read the code and have a good sense of the class’s intentions.

There’s one more matter to take care of. We referenced a mailer and mailer action

which don’t yet exist. Let’s take care of that now:

> rails g mailer draft_articles no_author

 create app/mailers/draft_articles_mailer.rb

 invoke erb

 create app/views/draft_articles_mailer

 create app/views/draft_articles_mailer/no_author.text.erb

 create app/views/draft_articles_mailer/no_author.html.erb

 invoke test_unit

 create test/mailers/draft_articles_mailer_test.rb

 create test/mailers/previews/draft_articles_mailer_preview.rb

Chapter 12 SendIng and reCeIvIng emaIl

374

We need to implement the no_author mailer action to send a message back to the

sender, informing them we couldn’t process their email. Edit your DraftArticlesMailer

to match Listing 12-22.

Listing 12-22. Sending Notifications That the Draft Article Couldn’t Be Created

https://gist.github.com/nicedawg/653f0fefb94f8afda2e1021a0b6287e4

class DraftArticlesMailer < ApplicationMailer

 def no_author(to)

 mail to: to, subject: 'Your email could not be processed' do |format|

 content = 'Please check your draft articles email address and try

again.'

 format.html { render plain: content }

 format.text { render plain: content }

 end

 end

end

Notice how in addition to specifying the “To:” address and subject of the message,

this time we passed a block which takes format as an argument. This lets us provide the

content inline for our HTML and text formats. Since we just want to send a plain, simple

message for now, we’ll do this instead of creating separate mailer view template files.

Before we finish with our DraftArticlesMailer, we should update its preview. Let’s edit

test/mailers/previews/draft_articles_mailer_preview.rb so DraftArticlesMailerPreview

matches Listing 12-23.

Listing 12-23. Update DraftArticlesMailerPreview

https://gist.github.com/nicedawg/d24dcc1464e41ef468589ee4ad2e8755

class DraftArticlesMailerPreview < ActionMailer::Preview

 def no_author

 DraftArticlesMailer.no_author('test@example.com')

 end

end

Now we can preview our new mailer via http://localhost:3000/rails/mailers if we

want to.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/653f0fefb94f8afda2e1021a0b6287e4
https://gist.github.com/nicedawg/d24dcc1464e41ef468589ee4ad2e8755

375

Finally, our mailbox is prepared to turn emails into draft articles when it can and

send an email back to the sender when it can’t find the right user. That sounds good, but

how will our app know to send emails to our new DraftArticlesMailbox? We have a little

more work to do.

Next, we need to update our ApplicationMailbox to send the right emails to

our DraftArticlesMailbox. We know we only need to handle emails addressed to

sometoken@drafts.example.com, so let’s edit ApplicationMailbox to look like

Listing 12-24.

Listing 12-24. Routing Emails to Our DraftArticlesMailbox in

ApplicationMailbox

https://gist.github.com/nicedawg/1ac117138347346a67bf7a82f9117023

class ApplicationMailbox < ActionMailbox::Base

 routing /@drafts\./i => :draft_articles

end

We added a routing line which says “if the To: address of the email has ‘@drafts.’ in it,

then send it to the DraftArticlesMailbox.” If you have multiple mailboxes in your app, you

will likely need multiple routing calls to send emails to the right mailboxes. Note that the

routes will be processed in top-down order, executing the first match (similar to Action

Pack’s router). Action Mailbox’s router also allows the symbol :all instead of a regular

expression to say “send all emails to this mailbox.”

Now that we’ve added the mailbox and routed the right types of email to it, let’s see

if it works! As mentioned in the beginning of the chapter, Action Mailbox provides a

helpful tool in development to “send” emails to your app. Visit http://localhost:3000/

rails/conductor/action_mailbox/inbound_emails/ in your browser, and you should see

a page that says “All Inbound Emails” and has an empty table. This page lists all of your

ActionMailbox::InboundEmail records in your database.

Click the “Deliver new inbound email” link, and you should see a form with fields

for creating an ActionMailbox::InboundEmail record. Populate the “From” field with

your email address and the “To” field with the draft article email address shown on your

New Article page, provide a title and body, and click “Deliver inbound email.” Before

submitting, your screen will look something like Figure 12-8.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/1ac117138347346a67bf7a82f9117023

376

Once you submit the email, your app should receive the email, route it to the

DraftArticlesMailbox, find your user record based on the token from the To: address,

and create an article with the subject of your email as its title and the body of your

email as its body.

Did it work? Go back to your blog’s root URL, http://localhost:3000. If the email

was able to be processed, you will see the unpublished article there. (Hmm, we ought

to change that! We won’t take time to do it now, but a live blog wouldn’t want to serve

unpublished articles to the public.)

If it didn’t work, make sure you addressed your email correctly. The dev tool we

used to send an email redirected to a details page for the email we sent. It shows the full

source of the email we generated and gives us a chance to send it again.

Figure 12-8. Testing our new mailbox with a new inbound email

Chapter 12 SendIng and reCeIvIng emaIl

377

If the email was addressed correctly, then check over our recent code changes

closely. You may also look in your server’s output for clues, though sending/processing

an email generates quite a bit of logging.

Now that we can create draft articles by processing an email, we’ve almost finished

adding our feature. However, there’s one last thing that will make it more polished—

letting the author know their email has been processed.

 Responding to the Author

As our feature currently stands, the author is left wondering if the email they sent to

create a draft article actually created a draft article. Rather than leaving them worried or

in doubt, we can send them an email to acknowledge their submission and even to give

them a helpful link to edit the draft article.

First, let’s add a mailer action to the DraftArticleMailer called created, as shown in

Listing 12-25.

Listing 12-25. Adding DraftArticleMailer#created Action

https://gist.github.com/nicedawg/760e8a533498503ab8f7133318830fe6

class DraftArticlesMailer < ApplicationMailer

 def created(to, article)

 @article = article

 mail to: to, subject: 'Your Draft Article has been created.'

 end

 def no_author(to)

 mail to: to, subject: 'Your email could not be processed' do |format|

 content = 'Please check your draft articles email address and try

again.'

 format.html { render plain: content }

 format.text { render plain: content }

 end

 end

end

And let’s add the HTML and text mailer view templates for this new mailer action as

shown in Listings 12-26 and 12-27, respectively.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/760e8a533498503ab8f7133318830fe6

378

Listing 12-26. app/views/draft_articles_mailer/created.html.erb

https://gist.github.com/nicedawg/9ba9ca657cd66e34a6b0cbaf82f0edf9

<p>

 Your draft article has been successfully created.

</p>

<p>

 You may edit your article here:

 <%= link_to @article.title, edit_article_url(@article) %>

</p>

Listing 12-27. app/views/draft_articles_mailer/created.text.erb

https://gist.github.com/nicedawg/b5ed9f8d972b90cdf0baeac23ca5f668

Your draft article has been successfully created.

You may edit your article here:

 <%= edit_article_url(@article) %>

Next, let’s update our DraftArticlesMailerPreview class in test/mailers/previews/

draft_articles_mailer_preview.rb, as shown in Listing 12-28, so we can preview our new

created mailer action.

Listing 12-28. test/mailers/previews/draft_articles_mailer_preview.rb

https://gist.github.com/nicedawg/adeaf5ae0325a1c6c1a5b460861f2099

class DraftArticlesMailerPreview < ActionMailer::Preview

 def created

 DraftArticlesMailer.created('test@example.com', Article.first)

 end

 def no_author

 DraftArticlesMailer.no_author('test@example.com')

 end

end

Now that we’re all set up to preview and send the DraftArticlesMailer.created message,

the last thing we need to do is to have our DraftArticlesMailbox send this message when

it’s appropriate. Let’s update our DraftArticlesMailbox so it looks like Listing 12-29.

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/9ba9ca657cd66e34a6b0cbaf82f0edf9
https://gist.github.com/nicedawg/b5ed9f8d972b90cdf0baeac23ca5f668
https://gist.github.com/nicedawg/adeaf5ae0325a1c6c1a5b460861f2099

379

Listing 12-29. Updating DraftArticlesMailbox to Send “Created” Email

https://gist.github.com/nicedawg/b6bdb5d3289079cd7f91c6e6657658d2

class DraftArticlesMailbox < ApplicationMailbox

 before_processing :require_author

 def process

 article = author.articles.create!(

 title: mail.subject,

 body: mail.body,

)

 DraftArticlesMailer.created(mail.from, article).deliver

 end

 private

 def require_author

 bounce_with DraftArticlesMailer.no_author(mail.from) unless author

 end

 def author

 @author ||= User.find_by(draft_article_token: token)

 end

 def token

 mail.to.first.split('@').first

 end

end

In this last code change, we changed author.articles.create to say author.articles.

create! instead. This will ensure that if the article can’t be created, an exception will be

raised and the process method will stop before sending the created message. If create!

succeeds, then we’ll construct our created message using the “From” address of the

sender, and the resulting draft article, and then deliver it.

Try it out! Visit http://localhost:3000/rails/conductor/action_mailbox/inbound_

emails/ to resend an email or to send a new email. If your Action Mailer delivery works

correctly and you use your email address as the “From” message, then in response to

Chapter 12 SendIng and reCeIvIng emaIl

https://gist.github.com/nicedawg/b6bdb5d3289079cd7f91c6e6657658d2

380

your email to create a draft article, you will receive an acknowledgement email with a

link to the newly created draft article. It did take a bit of work to make it happen, but in

retrospect, that was a really cool feature to add with not that much work.

 Summary
In this chapter, we learned how to send email from our web application using Action

Mailer. We configured Action Mailer to talk to our mail server and learned the most

common configuration parameters we can use to fine-tune how Action Mailer works

with our application.

We learned that Action Mailer allows us to send email messages based on view

templates and how to use implicit parts for text and HTML messages, as well as how to

use the attachments helper to add attachments to our messages. We also learned how to

preview messages so we don’t even have to deliver them while developing.

We also learned how to receive and process email using Action Mailbox. This

chapter only scratched the surface, but serves as a good starting point. Should your

application ever need to perform this task, you know where to look when you need more

information.

Now that our app is sending (and even receiving) emails, it’s time to talk about

another component of Rails—Active Job. In the next chapter, we’ll discuss how it can be

used to improve performance of your application when performing tasks that have the

potential to bog it down.

Chapter 12 SendIng and reCeIvIng emaIl

381
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_13

CHAPTER 13

Active Job
Web applications often need to perform long-running tasks in response to a request. For

example, in the previous chapter, we modified our blog to send emails. While it’s true that

sending an email usually only takes a second or so, web developers are often concerned

with milliseconds. So what’s the big deal with some requests taking a second or two?

For illustration, imagine going to your local Post Office to drop off a package for

delivery. There are a few employees at the counter accepting packages for delivery and a

long line of customers waiting to be helped. When it’s finally your turn to be helped at the

counter, you hand the package to the employee, and they say, “Thank you! Please wait here

at the counter with me until we have delivered your package.” No wonder why the line was

so long! The employees can’t help other customers while waiting for your package to be

delivered, and you can’t do anything else while you’re waiting either. How absurd, right?!

We don’t need to stand there and wait for the delivery to be completed. We just need to

know that the delivery was scheduled, and we’ll trust the system to work as it should.

The illustration is absurd, but this is exactly what happens in our web applications

when we perform lengthy tasks in the middle of a request, before returning a response

to the user. Perhaps a typical request can be serviced in 200 ms—but if we actually try

to deliver an email in the middle of the request, that request may take 1 or 2 seconds to

complete. For small web applications, this may be acceptable. But at a larger scale, this

could mean you need additional expensive servers to handle the load.

This is exactly the type of problem which Active Job strives to solve. With Active Job,

we can schedule a job (like email delivery) to be performed later, so that it doesn’t block

the server from handling other requests and doesn’t block the client from going about

their business too. Whenever we have a lengthy operation to perform in response to a

request and the client doesn’t need to know immediately if the operation succeeded or

not—just that it was scheduled to be performed—then using a job runner like Active Job

is a great way to service these requests efficiently.

https://doi.org/10.1007/978-1-4842-5716-6_13#DOI

382

Active Job isn’t the first or only solution to this problem for Rails developers. For

years, developers have solved this problem with cron jobs, custom software, or third-

party job queuing frameworks, like Resque, Delayed::Job, and Sidekiq. Active Job doesn’t

even necessarily replace these frameworks; it provides a simple default implementation

of a job queueing framework and acts as an adapter so that a developer can switch

between job queueing frameworks without needing to overhaul their code.

In this chapter, first we will learn about Active Job configuration. Then, we will explore

the anatomy of an Active Job class to learn about its capabilities. Finally, we will improve

the performance of our blog application by sending our emails through Active Job.

 Configuring Active Job
You may be surprised to find out that not only is Active Job already installed in our blog

application but we’ve already used it (indirectly). In the previous chapter, when we used

the built-in tool to send an email to our blog application, some Action Mailbox and

Active Storage jobs were scheduled and performed in order to analyze the submitted

email and to route it to the appropriate Mailbox class. (If you’d like to see for yourself,

revisit that section of the previous chapter and watch the server output when you submit

the email. Look for lines that begin with [ActiveJob].)

As you can see, Rails makes using a job queueing system as easy as possible—no

configuration necessary! However, it’s important to note that the default implementation

which Active Job includes is not appropriate for production use, mainly because it stores

the information about the scheduled jobs in memory—meaning that if your Rails server

is stopped, it loses track of the jobs it might still need to perform.

But as mentioned before, Active Job also acts as an adapter to work with more robust job

frameworks which are suitable for production environments; tools like Sidekiq, Delayed::Job,

and Resque can keep track of jobs which need to be performed, offer administrative tools,

and other advanced features. So this means we can use Active Job in development with no

fuss and, when the need arises in production, can do a little extra work to integrate with a

production-ready job runner—without needing to change how our jobs were written.

The only Active Job configuration option we’re likely to set is config.active_job.

queue_adapter, which tells Active Job which job queueing system we want to use.

Table 13-1 shows the most common values we might use for this option. As usual, we

can configure these options in config/application.rb when we want the setting to apply

across all environments or in each specific config/environments/*.rb file.

Chapter 13 aCtive Job

383

We will stick with Active Job’s default :async adapter for now, so no configuration

changes needed. But when you’re ready to use Active Job in production, see

https://api.rubyonrails.org/v6.0.2.1/classes/ActiveJob/QueueAdapters.html

for a list of supported adapters.

 Creating an Active Job
We have described the problem that Active Job seeks to solve and explored its

configuration a little bit—but how does one create a job?

Table 13-1. Common Values for config.active_job.queue_adapter

Option Description

:async this is the default implementation provided by active Job. it performs the jobs

asynchronously—outside of the client/server request cycle. this adapter is only

appropriate for development and testing, as it will lose track of scheduled jobs

when the server process is restarted.

:inline this is another implementation provided by active Job. Unlike the async

implementation, the inline implementation performs the jobs during the request

cycle. this option loses the performance gains which the :async adapter provides,

but may be necessary for custom rake tasks which schedule jobs to work

properly.

:test this is another implementation provided by active Job, meant to be used in your

testing environment. this adapter lets your tests decide whether the jobs should

actually be performed or not and makes it easy for your tests to assert whether or

not certain jobs were queued or performed.

:backburner,
:delayed_job,
:que, :que_
classic,
:resque, :sidekiq,
:sneakers,
:sucker_punch

these adapters are provided by active Job, but require configuration and

installation of a third-party job framework to actually queue and perform jobs. For

production use, it's highly recommended to choose one of these alternatives.

Chapter 13 aCtive Job

https://api.rubyonrails.org/v6.0.2.1/classes/ActiveJob/QueueAdapters.html

384

Purely for illustration (and for fun), let’s create a silly job called

GuessANumberBetweenOneAndTenJob. While this job won’t be useful for us in a

practical sense, it will demonstrate various aspects of Active Job classes which will serve

you practically in the future.

We’ll start out simple and then enhance this job as we go along. First, let’s use the

Rails generator to create our Job class:

> rails g job guess_a_number_between_one_and_ten

 invoke test_unit

 create test/jobs/guess_a_number_between_one_and_ten_job_test.rb

 create app/jobs/guess_a_number_between_one_and_ten_job.rb

Now, let’s edit app/jobs/guess_a_number_between_one_and_ten_job.rb so that it

matches Listing 13-1.

Listing 13-1. app/jobs/guess_a_number_between_one_and_ten_job.rb

https://gist.github.com/nicedawg/3189d0b82a40401a7d17ba1333cf1c2d

class GuessANumberBetweenOneAndTenJob < ApplicationJob

 queue_as :default

 def perform(my_number)

 guessed_number = rand(1..10)

 if guessed_number == my_number

 Rails.logger.info "I guessed it! It was #{my_number}"

 else

 Rails.logger.error "Is it #{guessed_number}? No? Hmm."

 end

 end

end

First, we see that our Job class inherits from ApplicationJob, which is defined in

our application in app/jobs/application_job.rb. If you inspect ApplicationJob, you’ll

see it inherits from ActiveJob::Base. This is similar to how our Active Record models,

controllers, and mailers work. ApplicationJob provides a place to add functionality to all

of our application’s jobs while also endowing each of our Job classes with all of Active

Job’s functionality.

Chapter 13 aCtive Job

https://gist.github.com/nicedawg/3189d0b82a40401a7d17ba1333cf1c2d

385

Next, we see queue_as :default. Active Job allows you to define separate queues for

categorizing your jobs and treating them differently. For example, some jobs may be

higher priority than others; you could put them in a queue named “critical,” for example,

and configure your server to prioritize them.

Next, we see we defined a perform method. Our Job classes must always have a

perform method; this is the method which will be executed when the job is performed.

As you can see, you can provide arguments to your perform method.

Our perform method implements a simple game; we provide our number (which

should be between 1 and 10), and the job will pick a random number between 1 and

10. If the random number matches the number we passed in, it declares victory in the

logged output. If the random number doesn’t match our number (and most of the time it

won’t), then it admits defeat in the logged output.

 Performing a Job
Let’s try it out! Open your rails console (or reload! it), and let’s perform the job:

> rails c

irb(main):001:0> GuessANumberBetweenOneAndTenJob.new.perform(3)

Is it 5? No? Hmm.

=> true

Of course, since the job guesses randomly, your output is likely different. You may

have even gotten lucky, and the job guessed your number on the first try! Go ahead and

rerun the job until it finally guesses your number if you’d like. (On most systems, you can

just press the “up” arrow on your keyboard to pull up the previous commands and then

press Enter again.)

 Performing a Job Later
Well, that was a little fun, maybe. But we didn’t make use of Active Job’s asynchronous

execution of our job. Let’s go back to our rails console and run our job a little differently:

irb(main):002:0> GuessANumberBetweenOneAndTenJob.perform_later(3)

Enqueued GuessANumberBetweenOneAndTenJob (Job ID: fc5eb7b6-b1ab-4011-ba4c-

cac73e999f3c) to Async(default) with arguments: 3

Chapter 13 aCtive Job

386

=> #<GuessANumberBetweenOneAndTenJob:0x00007fda1c172ae8 @arguments=[3],

@job_id="fc5eb7b6-b1ab-4011-ba4c-cac73e999f3c", @queue_name="default",

@priority=nil, @executions=0, @exception_executions={}, @provider_job_

id="c1fe1985-449a-4100-812c-9bab5923694b">

irb(main):003:0> Performing GuessANumberBetweenOneAndTenJob (Job ID:

fc5eb7b6-b1ab-4011-ba4c-cac73e999f3c) from Async(default) enqueued at

2020-03-28T18:48:45Z with arguments: 3

I guessed it! It was 3

Performed GuessANumberBetweenOneAndTenJob (Job ID: fc5eb7b6-b1ab-4011-ba4c-

cac73e999f3c) from Async(default) in 4.99ms

As you can see, I got lucky this time, but you likely won’t. We ran our job a little

differently—instead of .new.perform(3), we used perform_later(3). Our code in the

perform method was still executed, but all the extra output from the rails console

command shows us that this small change resulted in our job being “enqueued” and

then “performed” later. Sure, it was only milliseconds later, but you get the idea.

Admittedly, that was maybe even less fun. It’s interesting to see the job being queued

up and then performed asynchronously, but it didn’t add anything to our game. (But

it did teach us how to execute our job asynchronously!) Let’s enhance our silly game,

though.

 Retrying a Failed Job
Next, let’s change our job so that it retries the job if it fails to guess the correct number.

Modify your job so it looks like Listing 13-2.

Listing 13-2. Retrying Our Job When It Fails to Guess the Right Number

https://gist.github.com/nicedawg/784bfce14529a6e5432dd5eb542b8c8c

class GuessANumberBetweenOneAndTenJob < ApplicationJob

 queue_as :default

 class GuessedWrongNumber < StandardError; end

 retry_on GuessedWrongNumber, attempts: 8, wait: 1

 def perform(my_number)

Chapter 13 aCtive Job

https://gist.github.com/nicedawg/784bfce14529a6e5432dd5eb542b8c8c

387

 guessed_number = rand(1..10)

 if guessed_number == my_number

 Rails.logger.info "I guessed it! It was #{my_number}"

 else

 raise GuessedWrongNumber, "Is it #{guessed_number}? No? Hmm."

 end

 end

end

Our changes were fairly minimal. First, we defined a custom exception called

GuessedWrongNumber, which inherits from StandardError, as is common practice for

custom exceptions. This syntax may look strange; we haven’t yet defined a class inside

of another class, and the semicolon looks out of place. It’s okay, though; defining a class

within another class is perfectly valid, and when all you need is inheritance, defining a

class within a single line is valid too.

Next, we configured our job to retry when the GuessedWrongNumber exception

is raised during execution of the job. The default for retry_on is five attempts, but we

decided to be generous and give our job eight attempts to guess the right number. We

could have also accepted the default of waiting 3 seconds between retries, but we chose

to only wait 1 second.

Finally, instead of simply logging the error, we raise our custom exception with a

custom error message, so that the retry_on behavior will kick in. This has the overall

effect of retrying our job up to eight times, 1 second apart, when the job fails to guess the

correct number.

Let’s go ahead and try this out in our rails console:

irb(main):003:0> reload!

irb(main):004:0> GuessANumberBetweenOneAndTenJob.perform_later(3)

Enqueued GuessANumberBetweenOneAndTenJob

Performing GuessANumberBetweenOneAndTenJob

Error performing GuessANumberBetweenOneAndTenJob... GuessANumberBetweenOneA

ndTenJob::GuessedWrongNumber (Is it 9? No? Hmm.): ...

 ... backtrace omitted ...

Retrying GuessANumberBetweenOneAndTenJob in 1 seconds, due to a GuessANumbe

rBetweenOneAndTenJob::GuessedWrongNumber.

Performing GuessANumberBetweenOneAndTenJob ...

Chapter 13 aCtive Job

388

Error performing GuessANumberBetweenOneAndTenJob…

… backtrace omitted ...

Retrying GuessANumberBetweenOneAndTenJob in 1 seconds…

… many retries and their backtraces omitted …

Stopped retrying GuessANumberBetweenOneAndTenJob due to a GuessANumberBetwe

enOneAndTenJob::GuessedWrongNumber, which reoccurred on 8 attempts.

You may have noticed that we omitted a lot of output. The majority of the output

we omitted (which you might be scrolling through) is from backtraces—a long list of

file names, line numbers, and method names which show you the method calls that

led to your exception. Those aren’t helpful to us right now—we know exactly where our

GuessedWrongNumber exception came from. But in real-world debugging, it’s often

helpful to look closely at these backtraces to establish a context for the conditions in

which an error occurred.

Skipping over the backtraces, you’ll see a series of messages from Active Job which

inform you that it has enqueued your job, that it’s performing it, that an error occurred,

that it’s going to retry the job, and then perhaps that it finally gave up because it reached

the maximum retry attempts allowed.

While this is a silly example, being able to retry your jobs when certain exceptions

occur is very useful. For example, maybe your job consumes a third-party API; if that

third-party API has a brief outage and your job is written to handle the exception that

such an outage might raise, your job can be smart enough to try again later, when it very

well may succeed. By expecting and handling such exceptions, we can develop more

robust applications.

 Discarding a Failed Job
Sometimes, when a certain exception is raised, we may want to discard our job. In

certain situations, the job may no longer be applicable. For instance, perhaps a job is run

to update a particular article—but by the time the job is performed, that article has been

destroyed and can no longer be found.

Similar to retry_on, Active Job gives us the ability to call discard_on for certain

exceptions. To illustrate this, we’ll discard our job in the event that the number we

provide isn’t an integer between 1 and 10. Let’s modify our job so it matches Listing 13-3.

Chapter 13 aCtive Job

389

Listing 13-3. Discarding Our Job When Provided an Invalid Number

https://gist.github.com/nicedawg/80779e72918f83c86a81bd5115b92271

class GuessANumberBetweenOneAndTenJob < ApplicationJob

 class ThatsNotFair < StandardError; end

 class GuessedWrongNumber < StandardError; end

 discard_on ThatsNotFair

 retry_on GuessedWrongNumber, attempts: 8, wait: 1

 def perform(my_number)

 unless my_number.is_a?(Integer) && my_number.between?(1, 10)

 raise ThatsNotFair, "#{my_number} isn't an integer between 1 and 10!"

 end

 guessed_number = rand(1..10)

 if guessed_number == my_number

 Rails.logger.info "I guessed it! It was #{my_number}"

 else

 raise GuessedWrongNumber, "Is it #{guessed_number}? No? Hmm."

 end

 end

end

Similar to how we added the ability to retry, we added the ability to discard the job

by first defining a custom exception called ThatsNotFair. Then, we configured the job to

be discarded when the ThatsNotFair exception is raised during job execution. Finally, we

added some logic to the perform method to raise our custom exception (with a custom

error message) if we tried to cheat the system by providing a number which isn’t an

integer between 1 and 10.

Let’s try it out in the rails console:

irb(main):043:0> GuessANumberBetweenOneAndTenJob.perform_later(11)

Enqueued GuessANumberBetweenOneAndTenJob

Performing GuessANumberBetweenOneAndTenJob ...

Chapter 13 aCtive Job

https://gist.github.com/nicedawg/80779e72918f83c86a81bd5115b92271

390

Error performing GuessANumberBetweenOneAndTenJob GuessANumberBetweenOn

eAndTenJob::ThatsNotFair (11 isn't an integer between 1 and 10!):

... backtrace omitted ...

Discarded GuessANumberBetweenOneAndTenJob due to a GuessANumberBetweenOneAn

dTenJob::ThatsNotFair

Again, this is a silly example, but it shows us how we can choose how to handle

certain exceptions in our jobs—sometimes by retrying, sometimes by discarding.

 Improving Our Blog with Active Job
How can we use what we’ve learned about Active Job to improve our blog application?

What long-running tasks do we have which we can defer to a background process to

speed up our response time, so that both the client and server can move on to submitting

and responding to more requests?

Converting our email delivery to use Active Job for asynchronous delivery is the

lowest-hanging fruit. Thankfully, this is such a common need that we won’t have to write

custom Job classes to manage asynchronous email delivery; Action Mailer anticipated

our need and provided us with a deliver_later method we can use (instead of simply

using deliver) to convert our email delivery from happening in the middle of our request

cycle to happening outside of the request cycle.

In the previous chapter, we could have opted to use deliver_later; it would have

worked just fine, with no installation or configuration necessary. However, we decided to

introduce it in this chapter so you could appreciate its usefulness (and understand better

what’s happening behind the scenes).

Before we begin converting our emails to be delivered asynchronously with deliver_

later, let’s do a little casual benchmarking of the current performance of our requests

which send email synchronously.

For example, let’s use the “Email a Friend” form on an article’s show page.

(Hopefully in the previous example, you were able to successfully deliver email from

your application. But even if not, you should still be able to see the performance

improvements of handing your deliveries off to Active Job.)

Go ahead and send yourself an email using the “Email a Friend” form, and then look

at the server output for something that looks like the following:

Chapter 13 aCtive Job

391

Started POST "/articles/1/notify_friend" for ::1 at 2020-03-28 15:21:42
-0500
Processing by ArticlesController#notify_friend as JS
... output omitted ...
NotifierMailer#email_friend: processed outbound mail in 18.0ms
Delivered mail 5e7fb1d6e22ea_9abe3feeb76d503412331@Bradys-MacBook-Pro-2.
local.mail (2685.5ms)
... email contents omitted ...
Redirected to http://localhost:3000/articles/1
Completed 200 OK in 2758ms (ActiveRecord: 0.6ms | Allocations: 20009)

We omitted some of the output for clarity. Look for the line that signifies that the
request for “POST /articles/:id/notify_friend” began, and then look for the numbers that
correspond with that request. In my example, it took 2685 ms (2.6 s) to deliver the email.
The request as a whole (including the email delivery) took about 2.7 seconds to process.

Try it a few more times, taking note of these numbers, and establish an idea of
the average response time. You’re likely to see a bit of a range, but perhaps an average
response time of around 2 seconds, depending on your development machine, as well as
the performance of the email provider you’re using to send your email.

Now, let’s convert this mailer to deliver asynchronously using Active Job. Simply edit
your app/controllers/article_controller.rb to match Listing 13-4.

Listing 13-4. Sending “Email a Friend” Using Active Job https://gist.github.
com/nicedawg/52a9cdf57e671d41de0e6044c4d5b555

class ArticlesController < ApplicationController
 before_action :authenticate, except: [:index, :show]
 before_action :set_article, only: [:show, :notify_friend]

 .. code omitted ...

 def notify_friend
 NotifierMailer.email_friend(@article, params[:name],

params[:email]).deliver_later
 redirect_to @article, notice: 'Successfully sent a message to your friend'
 end

 ... code omitted ...

end

Chapter 13 aCtive Job

https://gist.github.com/nicedawg/52a9cdf57e671d41de0e6044c4d5b555
https://gist.github.com/nicedawg/52a9cdf57e671d41de0e6044c4d5b555

392

With that small change, now try sending that same email to yourself by filling out the

“Email a Friend” form again. Let’s try a few times to see what the new average response

time is:

Started POST "/articles/1/notify_friend" ...

Processing by ArticlesController#notify_friend as JS

… output omitted ...

[ActiveJob] Enqueued ActionMailer::MailDeliveryJob (Job ID: cdcfdc12-7275-

4faf-bd9a-d546acb54688) to Async(mailers) with arguments: "NotifierMailer",

"email_friend", "deliver_now", ….

Redirected to http://localhost:3000/articles/1

Completed 200 OK in 42ms (ActiveRecord: 0.7ms | Allocations: 19614)

… output omitted ...

Started GET "/articles/1" …

[ActiveJob] [ActionMailer::MailDeliveryJob] Performing...

[ActiveJob] [ActionMailer::MailDeliveryJob] [cdcfdc12-7275-4faf-bd9a-

d546acb54688] Delivered mail … (2292.7ms)

[ActiveJob] [ActionMailer::MailDeliveryJob] [cdcfdc12-7275-4faf-bd9a-

d546acb54688] Performed ... in 2337.68ms

Reading logs can be a bit tricky, so we omitted some output to focus on the

important parts. We see that the response to the “notify_friend” request was drastically

reduced from somewhere in the realm of 2 seconds to 40 milliseconds. We can now

process about 50 of these requests in the time it used to take to handle one!

One might be tempted to say, “Big deal, 2 seconds isn’t long at all.” However, in a

production environment, a performance increase like this is very valuable. Not only will

your users appreciate a snappier response time but forcing browsers to wait for the email

to be delivered (like the illustration of the Post Office at the beginning of this chapter)

will lead to long lines of customers waiting for someone to be able to handle their

request. They’ll eventually get tired of waiting and give up or receive an error. However,

with a job framework like Active Job, we can easily defer certain time-consuming tasks to

be performed later for an easy win.

While we’re at it, let’s go ahead and convert our other mailer deliveries to use Active

Job too. Listings 13-5 and 13-6 show where to change our remaining usages of deliver to

deliver_later in order to speed up our response times.

Chapter 13 aCtive Job

393

Listing 13-5. Sending “Comment added” Mailer Asynchronously https://gist.

github.com/nicedawg/c28d5a14e7182d606ef5bf01b68779ee

class Comment < ApplicationRecord

 belongs_to :article

 validates :name, :email, :body, presence: true

 validate :article_should_be_published

 after_create :email_article_author

 def article_should_be_published

 errors.add(:article_id, 'is not published yet') if article && !article.

published?

 end

 def email_article_author

 NotifierMailer.comment_added(self).deliver_later

 end

end

Listing 13-6. Sending “Draft article created” Mailer Asynchronously https://

gist.github.com/nicedawg/64cda2012f5dcf9662561480f0c3ba31

class DraftArticlesMailbox < ApplicationMailbox

 before_processing :require_author

 def process

 article = author.articles.create!(

 title: mail.subject,

 body: mail.body,

)

 DraftArticlesMailer.created(mail.from, article).deliver_later

 end

 private

 def require_author

Chapter 13 aCtive Job

https://gist.github.com/nicedawg/c28d5a14e7182d606ef5bf01b68779ee
https://gist.github.com/nicedawg/c28d5a14e7182d606ef5bf01b68779ee
https://gist.github.com/nicedawg/64cda2012f5dcf9662561480f0c3ba31
https://gist.github.com/nicedawg/64cda2012f5dcf9662561480f0c3ba31

394

 bounce_with DraftArticlesMailer.no_author(mail.from) unless author

 end

 def author

 @author ||= User.find_by(draft_article_token: token)

 end

 def token

 mail.to.first.split('@').first

 end

end

 Summary
In this chapter, we learned about Active Job and the types of problems it solves. To

illustrate some of Active Job’s capabilities, we created a silly game using Active Job and

learned how to invoke a job synchronously and asynchronously via the rails console. We

then learned how to retry and discard jobs in reaction to certain types of errors.

Finally, we learned how easy it is to convert our mail deliveries to use Active Job and

saw how it greatly improved response times when a request attempted to deliver an email.

While we stuck with Rails’ default :async adapter for convenience, we learned that we

should choose a more robust job backend for production usage—but that our Job classes

wouldn’t necessarily need to change when switching backends.

What’s next? While testing out our improvements to our email delivery, you may

have realized that our “Email a Friend” form isn’t very robust. If you submit it with blank

or invalid information, our blog acts like that’s perfectly fine and even says, “Successfully

sent a message to your friend.” If submitting this form led to the creation of an Active

Record model, we could simply add validations to that model to fix this problem, but it

doesn’t create an instance of an Active Record model. In the next chapter, we’ll explore

Active Model and learn how we can use it to add validations and other helpful things to

classes which aren’t stored in the database.

Chapter 13 aCtive Job

395
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_14

CHAPTER 14

Active Model
We learned in previous chapters that Active Record gives us the tools we need to perform

a variety of activities on our models. For example, we added validations to our User

model to make sure email addresses are unique and valid. We also added a callback to

our Comment model to email the article’s author anytime a comment is created. We

were able to pass instances of these models to the form_with helper in their respective

form partials to get default values and error messages with minimal effort. Powerful stuff!

But at the end of the previous chapter, we realized that our “Email a Friend” form

is lacking these features. Currently, if one were to fill out that form without populating

any values or by supplying an invalid email address, our blog application would happily

accept those invalid values and even claim to have successfully sent the email!

We could create a new Active Record model to represent these “Email a Friend”

submissions to give us validations, callbacks, and other Active Record goodies, but

that would require us to create a database table to store these submissions. That’s not

necessarily wrong, but sometimes we want these benefits of Active Record without

needing the database-related functionality. (In our example, we don’t have a desire to

store these “Email a Friend” submissions—just to validate them.)

We could also reinvent the wheel and make our own validation functions, our own

callback mechanisms, and other features we need. But that’s time-consuming and error-

prone.

What if we could have the parts of Active Record we need, without the parts we don’t

need? This is precisely where Active Model comes in; in fact, you might be surprised

to learn that Active Record validations, callbacks, and many other features are actually

supplied by Active Model!

In this chapter, we’ll learn how to mix in some of the most commonly used Active

Model modules into POROs (Plain Old Ruby Objects) to gain some of the best features of

Active Record in models which don’t need database storage.

https://doi.org/10.1007/978-1-4842-5716-6_14#DOI

396

After a brief tour of some of the most commonly used Active Model modules, we’ll

improve our blog application by using Active Model to improve how we handle “Email a

Friend” submissions.

 A Tour of Active Model
Like many well-designed libraries, Active Model is composed of several modules, each

focused on a specific set of behaviors. This type of organization allows the developer to

choose which parts of Active Model they need, rather than being forced to include the

whole set of behaviors.

In this section, we’ll explore some of the most commonly used modules in Active

Model and learn how they can enhance our POROs. For illustration, let’s build a Car

class, which will have nothing to do with our blog application. After we’ve toured some

of the most commonly used modules of Active Model, we’ll leave this Car class behind

and go to work improving our blog application.

Let’s add a simple Car class to app/models/car.rb, as shown in Listing 14-1.

Listing 14-1. Basic Car Class to Help Illustrate Active Model Modules

https://gist.github.com/nicedawg/a1ba973abc0a29df829ef46ab78b20de

class Car

 attr_accessor :make, :model, :year, :color

 def paint(new_color)

 self.color = new_color

 end

end

Notice that our Car class does not inherit from any parent classes. That’s perfectly

fine! We defined a few attributes and added a paint method which will change our car’s

color, but that’s it. Let’s open our rails console (or reload! an existing one) and see what

this simple class can do:

> rails c

irb(main):001:0> c = Car.new(make: 'Mazda', model: 'B3000', year: 1998,

color: 'green')

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/a1ba973abc0a29df829ef46ab78b20de

397

Traceback (most recent call last):

 3: from (irb):9

 2: from (irb):9:in `new'

 1: from (irb):9:in `initialize'

ArgumentError (wrong number of arguments (given 1, expected 0))

irb(main):002:0> c = Car.new

=> #<Car:0x00007fe42bab6528>

irb(main):003:0> c.make = 'Mazda'

=> "Mazda"

irb(main):004:0> c.model = 'B3000'

=> "B3000"

irb(main):005:0> c.year = 1998

=> 1998

irb(main):006:0> c.color = 'green'

=> "green"

irb(main):007:0> c

=> #<Car:0x00007fe42a9f9118 @make="Mazda", @model="B3000", @year=1998,

@color="green">

We tried to instantiate a new car by supplying its attributes in the constructor—

the new method. That works with Active Record models, but not this Car class. So we

instantiated a new car with no arguments and assigned each attribute a value one by

one. That worked as expected, but not being able to supply a hash of attributes and their

values to the constructor will be inconvenient. Hopefully, we can fix that.

 ActiveModel::Attributes
Good news—we can fix that! As it turns out, ActiveModel::AttributeAssignment supplies

the very thing we need. First, let’s include the module in our Car class and override the

initialize method so that it matches Listing 14-2.

Chapter 14 aCtive Model

398

Listing 14-2. Including ActiveModel::AttributeAssignment in the Car Class

https://gist.github.com/nicedawg/96ffbaed32abc8ef78acc90149345343

class Car

 include ActiveModel::AttributeAssignment

 attr_accessor :make, :model, :year, :color

 def initialize(attributes = {})

 assign_attributes(attributes) if attributes

 super()

 end

 def paint(new_color)

 self.color = new_color

 end

end

In the preceding listing, we included the ActiveModel::AttributeAssignment module

in our Car class. Generally, that means that our Car class gains new methods from the

module we included. One such method we gained is assign_attributes—a method that

takes a hash of key-value pairs and uses the corresponding setter for each key to assign

the value from the hash.

Another thing that warrants explanation is our initialize method. Every Ruby object

has an initialize method, usually supplied by a parent class. Whenever the new message

is sent to a class, Ruby creates a new object from the class and then calls the initialize

method on that new object. We wanted to be able to assign a hash of attributes when we

call Car.new, so this is the right place to do it! Our initialize method takes an argument

(with the default being an empty hash) and then calls the assign_attributes method on

our car object with that hash, if it exists.

Finally, we call super(), to make sure that any initialize methods on our parent

classes are called as well. The parentheses after the call to super might strike you as

strange—it’s not typical Ruby code style to affix empty parentheses to method calls.

However, super is a little special; with no parentheses, its default behavior is to send the

arguments of the method it’s in to its parents also. That’s often helpful, but in our case, it

would cause an error, as our parent class does not expect any arguments.

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/96ffbaed32abc8ef78acc90149345343

399

That was a little tedious. For a feature we might like to use frequently—the ability

to assign attributes via our model’s constructor—this feels a little like the tedious

boilerplate code which we’ve come to expect that Ruby on Rails can help us avoid. Don’t

worry; later in this chapter, we’ll learn how to avoid needing to take these steps.

Now that we’ve made these changes, let’s reload our console and see what happens:

irb(main):008:0> reload!

irb(main):009:0> c = Car.new(make: 'Mazda', model: 'B3000', year: 1998,

color: 'green')

=> #<Car:0x00007fc56fedc5d8 @make="Mazda", @model="B3000", @year=1998,

@color="green">

irb(main):010:0> c.assign_attributes(color: 'blue')

=> {"color"=>"blue"}

irb(main):011:0> c

=> #<Car:0x00007fc56faba608 @make="Mazda", @model="B3000", @year=1998,

@color="blue">

We’re making progress! Slowly, but surely, our Car model is becoming a little easier

to work with—thanks to ActiveModel::AttributeMethods.

 ActiveModel::Callbacks
Next, let’s use our paint method to change our car’s color to black:

irb(main):012:0>c.paint('black')

=> "black"

irb(main):013:0> c

=> #<Car:0x00007fe42a9f9118 @make="Mazda", @model="B3000", @year=1998,

@color="black">

That worked just fine, as we expected it would. However, we remembered that

if you change your car’s color, you’re supposed to notify your local Department of

Motor Vehicles. Also, we’d like to remind people to keep their new paint jobs waxed for

protection. We could certainly do these things in our paint method, but if this was an

Active Record object, we’d be able to do these in callbacks to keep our paint method

focused. With the ActiveModel::Callbacks module, we can do just that! Let’s update our

Car model to match Listing 14-3 to add support for callbacks to our class.

Chapter 14 aCtive Model

400

Listing 14-3. Extending Our Car Class with ActiveModel::Callbacks

https://gist.github.com/nicedawg/0bcaa23b2450a9d81859ed28d7089719

class Car

 include ActiveModel::AttributeAssignment

 extend ActiveModel::Callbacks

 attr_accessor :make, :model, :year, :color

 define_model_callbacks :paint

 before_paint :keep_it_waxed

 after_paint :notify_dmv

 def initialize(attributes = {})

 assign_attributes(attributes) if attributes

 super()

 end

 def paint(new_color)

 run_callbacks :paint do

 Rails.logger.info "Painting the car #{new_color}"

 self.color = new_color

 end

 end

 private

 def keep_it_waxed

 Rails.logger.warn "Be sure to keep your new paint job waxed!"

 end

 def notify_dmv

 Rails.logger.warn "Be sure to notify the DMV about this color change!"

 end

end

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/0bcaa23b2450a9d81859ed28d7089719

401

First, we extended our class with the ActiveModel::Callbacks module. Why extend

rather than include? The main reason is that ActiveModel::Callbacks adds class methods

to our class, while ActiveModel::AttributeAssignment added instance methods. If in

doubt, consult the source code of the module you wish to use in your class, or use your

favorite search engine to find example usage.

Next, we used the class method define_model_callbacks to register a new lifecycle

event—namely, :paint—for which we might want to run code before, after, or around

that event.

Then, we configured our class to run keep_it_waxed before the car is painted and to

run notify_dmv after the car is painted. (We added those methods as private methods,

which simply log some output.)

Finally, we modified our paint method to call run_callbacks :paint. (The fact that

we named our callback event :paint and the fact it happens in a method called paint

are just a coincidence. The callback name does not need to match any method names.)

By wrapping our assignment of color in the run_callbacks block, this provides enough

information for our code to know when to run any applicable callback methods. We also

added a logging statement inside the callback to indicate when the color is actually being

changed.

Let’s reload our rails console and try it out:

irb(main):014:0> reload!

irb(main):015:0> c = Car.new(make: 'Mazda', model: 'B3000', year: 1998,

color: 'green')

irb(main):016:0> c.paint('gray')

Be sure to keep your new paint job waxed!

Painting the car gray

Be sure to notify the DMV about this color change!

=> "gray"

Alright! We see that our registered callback methods were performed in the right

order. Once again, Active Model has added some powerful behavior to our Car class

with not too much effort. However, we just realized we have a slight flaw in our logic

surrounding notifying the DMV about color changes. Often, someone might paint their

car the same color to repair paint damage, but to keep the same look. In that case, there’s

no need to notify the DMV. We only need to notify them if the color actually changed.

Chapter 14 aCtive Model

402

 ActiveModel::Dirty
We need to modify our Car class to only notify the DMV if the paint color actually

changed—not when the car was repainted the same color.

If we were notifying the DMV in our paint method, we could simply compare the

requested color to the current color. But we chose to notify the DMV in a before_paint

callback and no longer have access to the requested color.

The ActiveModel::Dirty can help us here. Active Record uses this module to keep

track of which attributes have changed. By including ActiveModel::Dirty in our Car class,

we can achieve the same functionality, albeit with a little more work.

You might wonder, why is this module called Dirty? Often, in programming, an

entity is called “dirty” if it has been modified, but the new values have not been saved or

finalized. Since this module helps us keep track of which attributes have been changed

(but not finalized), Dirty is an appropriate name.

Let’s update our Car model to match Listing 14-4 to include ActiveModel::Dirty

and make the associated changes so that we only notify the DMV if the color actually

changed.

Listing 14-4. Including ActiveModel::Dirty in Our Car Class

https://gist.github.com/nicedawg/97a87d1f4bd19f7577bd500fbe51632a

class Car

 include ActiveModel::AttributeAssignment

 extend ActiveModel::Callbacks

 include ActiveModel::Dirty

 attr_accessor :make, :model, :year, :color

 define_attribute_methods :color

 define_model_callbacks :paint

 before_paint :keep_it_waxed

 after_paint :notify_dmv, if: :color_changed?

 def initialize(attributes = {})

 assign_attributes(attributes) if attributes

 super()

 end

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/97a87d1f4bd19f7577bd500fbe51632a

403

 def paint(new_color)

 run_callbacks :paint do

 Rails.logger.info "Painting the car #{new_color}"

 color_will_change! if color != new_color

 self.color = new_color

 end

 end

 private

 def keep_it_waxed

 Rails.logger.warn "Be sure to keep your new paint job waxed!"

 end

 def notify_dmv

 Rails.logger.warn "Be sure to notify the DMV about this color change!"

 changes_applied

 end

end

First, we included the ActiveModel::Dirty module to add methods to our class which

can help keep track of which attributes’ values have changed. But unlike with Active

Record, we don’t get this behavior on our attributes automatically—we must define

which attributes will be tracked and must manually set when an attribute’s value is

changing and when we should consider the change to be complete.

To declare that we want to track the “dirty” status of the color attribute, we add the

define_attribute_methods :color line to our class. If we had more attributes we wanted to

track, we could add them to this same line.

Next, we added a condition to our notify_dmv callback, so that we only perform

notify_dmv if the color actually changed.

However, since this model is not an Active Record model, it’s up to us to keep track

of when the color attribute has changed and when we should consider the changes to be

applied. So we call the color_will_change! method in our paint method only if the new

color does not match the current color. By calling color_will_change!, the color attribute

is now considered “dirty,” and color_changed? will return true.

Finally, in our notify_dmv method, after having warned the user, we call changes_applied

to clear the “dirty” status from our attributes. If we had not done this, any subsequent calls to

color_changed? would return true—even if we’re repainting the car with the same color!

Chapter 14 aCtive Model

404

Let’s try out our new code changes in the rails console:

irb(main):017:0> reload!

irb(main):018:0> c = Car.new(make: 'Mazda', model: 'B3000', year: 1998,

color: 'green')

=> #<Car:0x00007fc57171dd40 @make="Mazda", @model="B3000", @year=1998,

@color="green">

irb(main):019:0> c.paint('black')

Be sure to keep your new paint job waxed!

Painting the car black

Be sure to notify the DMV about this color change!

=> "black"

irb(main):020:0> c.paint('black')

Be sure to keep your new paint job waxed!

Painting the car black

=> "black"

irb(main):021:0> c.paint('red')

Be sure to keep your new paint job waxed!

Painting the car red

Be sure to notify the DMV about this color change!

=> "red"

After reloading the console and re-instantiating our Car object with the color green,

we painted it black and saw the warning to notify the DMV, as we expected. Next, we

repainted the car black. As we hoped, we did not see the DMV warning. Finally, to be

certain, we painted the car red and saw the DMV warning again.

Our Car class is certainly becoming more featureful. Another wishlist item of ours is

validation. Will we be able to add Active Record–style validations to our Car class?

 ActiveModel::Validations
As we’ve seen in previous chapters, being able to validate our models is essential. Active

Record makes it easy and elegant to validate models—but our Car class is not an Active

Record model. Are we doomed to reinvent the wheel?

No! In fact, you may have guessed by now that Active Record actually gets its

validation functionality from Active Model. So let’s update our Car class to match

Listing 14-5 so that we can benefit from Active Model’s Validations module.

Chapter 14 aCtive Model

405

Listing 14-5. Including ActiveModel::Validations in Our Car Class

https://gist.github.com/nicedawg/a68604460656afe78f6a0739477d7918

class Car

 include ActiveModel::AttributeAssignment

 include ActiveModel::Dirty

 include ActiveModel::Validations

 attr_accessor :make, :model, :year, :color

 validates :make, :model, :year, :color, presence: true

 validates :year, numericality: { only_integer: true, greater_than: 1885,

less_than: Time.zone.now.year.to_i + 1 }

 define_attribute_methods :color

 define_model_callbacks :paint

 before_paint :keep_it_waxed

 after_paint :notify_dmv, if: :color_changed?

 def initialize(attributes = {})

 assign_attributes(attributes) if attributes

 super()

 end

 def paint(new_color)

 run_callbacks :paint do

 Rails.logger.info "Painting the car #{new_color}"

 color_will_change! if color != new_color

 self.color = new_color

 end

 end

 private

 def keep_it_waxed

 Rails.logger.warn "Be sure to keep your new paint job waxed!"

 end

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/a68604460656afe78f6a0739477d7918

406

 def notify_dmv

 Rails.logger.warn "Be sure to notify the DMV about this color change!"

 changes_applied

 end

end

First, we included ActiveModel::Validations into our class. If you look closely, we

also removed ActiveModel::Callbacks. Why? It turns out that ActiveModel::Validations

already includes ActiveModel::Callbacks, so we don’t need to include it separately.

Next, we added validations to ensure that all of our attributes are present and also to

ensure that the year is reasonable.

Now, let’s use our rails console to check our validations:

irb(main):022:0> reload!

irb(main):023:0> c = Car.new(make: 'Mazda', model: 'B3000', year: 1998,

color: 'green')

=> #<Car:0x00007fc56fbcda68 @make="Mazda", @model="B3000", @year=1998,

@color="green">

irb(main):024:0> c.valid?

=> true

irb(main):025:0> c = Car.new(make: 'Tesla', model: 'Cybertruck', year:

2022, color: 'shiny metal')

=> #<Car:0x00007fc56fbf73b8 @make="Tesla", @model="Cybertruck", @year=2022,

@color="shiny metal">

irb(main):026:0> c.valid?

=> false

irb(main):027:0> c.errors.full_messages.to_sentence

=> "Year must be less than 2021"

There we have it! Simply by including ActiveModel::Validations, we gained the ability

to define validation rules, to check an object’s validity, and to see the validation errors—

just like we’ve done in previous chapters with Active Record.

There are more Active Model modules we could explore, but we’ve covered some

of the most commonly used modules. However, we’re not quite ready to apply our

knowledge to our blog application; there’s one more Active Model module to cover.

Chapter 14 aCtive Model

407

 ActiveModel::Model
So far, we’ve added attribute assignment, callbacks, dirty tracking, and validation to our

Car class by adding various Active Model modules to our class and making relevant code

changes.

Though we’ve made significant enhancements to our Car class with not that much

code, it is beginning to feel a little heavy. We miss the elegance of Active Record classes

which give us so much functionality for free.

There’s a bit of bad news too: our Car class is not ready to be used in our Rails

app the same way we can use Active Record objects throughout the app. Rails favors

convention over configuration, and Active Record objects follow suit. We can pass an

instance of an Active Record object to a path helper, to a form_with helper, to a render

call… and Rails does the right thing. Unfortunately, as our Car class currently stands,

using instances of the Car class in Action Pack and Action View will require more

configuration than convention.

Yes, there are some more Active Model modules we could include to change our Car

class to play more nicely with Action Pack and Action View, but we’re already starting to

feel that our Car class is getting a little too complicated.

Thankfully, we have ActiveModel::Model to rescue us. The Model module from

Active Model is a bit of a super-module. ActiveModel::Model itself includes the

AttributeAssignment and Validations modules, as well as a few more (Conversion,

Naming, Translation) which will help our Car model play nicely with Action Pack and

Action View. It also implements the behavior which we added manually in our initialize

method.

In other words, simply by including this module and then removing some code, we’ll

have more functionality than when we started!

Let’s improve our Car model by changing it to match Listing 14-6.

Listing 14-6. Including ActiveModel::Model in Our Car Class

https://gist.github.com/nicedawg/f38da1df450cc5860eebb420cc47220a

class Car

 include ActiveModel::Dirty

 include ActiveModel::Model

 attr_accessor :make, :model, :year, :color

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/f38da1df450cc5860eebb420cc47220a

408

 validates :make, :model, :year, :color, presence: true

 validates :year, numericality: { only_integer: true, greater_than: 1885,

less_than: Time.zone.now.year.to_i + 1 }

 define_attribute_methods :color

 define_model_callbacks :paint

 before_paint :keep_it_waxed

 after_paint :notify_dmv, if: :color_changed?

 def paint(new_color)

 run_callbacks :paint do

 Rails.logger.info "Painting the car #{new_color}"

 color_will_change! if color != new_color

 self.color = new_color

 end

 end

 private

 def keep_it_waxed

 Rails.logger.warn "Be sure to keep your new paint job waxed!"

 end

 def notify_dmv

 Rails.logger.warn "Be sure to notify the DMV about this color change!"

 changes_applied

 end

end

As you can see, we included ActiveModel::Model and removed the modules

we no longer need to manually include. We also removed our initialize method as

ActiveModel::Model gives us the ability to assign attributes in our class’s constructor.

If you’d like to, reload your rails console and try out the features again—assigning

attributes in the constructor, the callbacks, tracking change status, and validations. It all

still works, with a little less code!

Chapter 14 aCtive Model

409

But the additional modules which ActiveModel::Model has included have given us

some new functionality, so that instances of our Car class will work smoothly with Action

Pack and Action View.

For instance, ActiveModel::Model includes ActiveModel::Naming, which adds

a method called model_name to our class. Various Action Pack and Action View

components will use the values of the ActiveModel::Name object it returns in order to

generate routes, parameter keys, translation keys, and more. See the following example:

irb(main):028:0> reload!

Reloading...

=> true

irb(main):029:0> c = Car.new(make: 'Mazda', model: 'B3000', year: 1998,

color: 'green')

=> #<Car:0x00007fc5715e4c80 @make="Mazda", @model="B3000", @year=1998,

@color="green">

irb(main):030:0> c.model_name

=> #<ActiveModel::Name:0x00007fc571607c08 @name="Car", @klass=Car,

@singular="car", @plural="cars", @element="car", @human="Car",

@collection="cars", @param_key="car", @i18n_key=:car, @route_key="cars",

@singular_route_key="car">

Now that we’ve explored various Active Model modules and learned how to enhance

our simple Car class to behave more like an Active Record module, we’re ready to apply

what we’ve learned to our blog.

 Enhancing Our Blog with Active Model
You might remember that the issue which spawned this chapter (besides the fact that

it’s valuable to know about Active Model) is that our “Email a Friend” form is not up

to our standards; it doesn’t validate the input and claims to have “successfully sent the

message” even if the user left all the fields blank or entered a syntactically invalid email

address in the form!

We weren’t sure how to handle this, because we didn’t really want to create an Active

Record model for “Email a Friend” submissions. At the moment, we have no need to

store or retrieve these submissions. And we didn’t want to reinvent the wheel or bloat

our controller by adding validation code and error messaging in an unconventional way.

Chapter 14 aCtive Model

410

But now that we know how to create a model that mostly behaves like the Active

Record models we’re used to working with, we’re ready to fix this.

 Create an EmailAFriend Model
Using what we’ve learned from Active Model, let’s create an EmailAFriend model in app/

models/email_a_friend.rb. Make sure it matches the code in Listing 14-7.

Listing 14-7. EmailAFriend Model in app/models/email_a_friend.rb

https://gist.github.com/nicedawg/45fd55a2f9527675b18c8505352e8463

class EmailAFriend

 include ActiveModel::Model

 attr_accessor :name, :email

 validates :name, :email, presence: true

 validates :email, format: { with: URI::MailTo::EMAIL_REGEXP }

end

This model is simple enough. We included ActiveModel::Model to gain validations

and other methods which will let the EmailAFriend model work well with Action Pack and

Action View. The validator which checks the format of the email address uses a regular

expression which is provided by the URI module—a part of any standard Ruby installation.

(Note: This validator only checks that the email address is syntactically valid—that is to say,

that it adheres to the rules for the format of an email address. It does not ensure that the

domain is valid or that it accepts email or that a mailbox exists for that user.)

If we try out our model in the rails console, it looks good so far:

irb(main):031:0> reload!

irb(main):032:0> email_a_friend = EmailAFriend.new(name: 'Brady', email:

'brady.somerville@gmail.com')

=> #<EmailAFriend:0x00007fc575826800 @name="Brady", @email="brady.

somerville@gmail.com">

irb(main):033:0> email_a_friend.valid?

=> true

irb(main):034:0> email_a_friend = EmailAFriend.new(name: 'Brady', email:

'brady.somerville')

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/45fd55a2f9527675b18c8505352e8463

411

=> #<EmailAFriend:0x00007fc57281bae8 @name="Brady", @email="brady.

somerville">

irb(main):035:0> email_a_friend.valid?

=> false

irb(main):036:0> email_a_friend.errors.full_messages.to_sentence

=> "Email is invalid"

Now that our model can validate that a name and properly formatted email address

were supplied, we can rework our controller and views to make use of our new model.

 Update Controller/Views to Use Our New Model
Now that our EmailAFriend model is in place, let’s update our blog application to

use it. First, we will modify the show action in our ArticlesController to provide a new

EmailAFriend object. Update your ArticlesController to match Listing 14-8.

Listing 14-8. Provide a New EmailAFriend Object to ArticlesController#show

https://gist.github.com/nicedawg/69a3789f84e91a63e68345ab7d4be814

class ArticlesController < ApplicationController

 ... code omitted ...

 # GET /articles/1

 # GET /articles/1.json

 def show

 @email_a_friend = EmailAFriend.new

 end

 ... code omitted ...

end

Next, we need to update our view layer to use this new instance variable to build the

form. Let’s modify app/views/articles/_notify_friend.html.erb to match Listing 14-9 to

do just that.

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/69a3789f84e91a63e68345ab7d4be814

412

Listing 14-9. Use @email_a_friend in app/views/articles/_notify_friend.html.erb

https://gist.github.com/nicedawg/b985133d8c917cb3367953ba4dc6ee0c

<%= form_with(model: @email_a_friend, url: notify_friend_article_

path(article), id: 'email_a_friend') do |form| %>

 <% if @email_a_friend.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(@email_a_friend.errors.count, "error") %>

prohibited this from being submitted:</h2>

 <% @email_a_friend.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :name, 'Your name' %>

 <%= form.text_field :name %>

 </div>

 <div class="field">

 <%= form.label :email, "Your friend's email" %>

 <%= form.text_field :email %>

 </div>

 <div class="actions">

 <%= form.submit 'Send' %> or

 <%= link_to 'Cancel', '#', onclick: "document.querySelector('#notify_

friend').style.display='none';return false;" %>

 </div>

<% end %>

Nothing surprising there. As we’ve done before, we simply added model:

@email_a_friend to tell the form_with helper that we wanted our form to be based

on the object we passed. We also told the form_with helper we wanted the resulting

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/b985133d8c917cb3367953ba4dc6ee0c

413

form to have the id “email_a_friend,” which will be handy in a minute. Finally, we also

added a snippet of code similar to what we’ve used elsewhere in order to display any

error messages in the form.

If you were to try out the Email a Friend form now, you would see that nothing has

really changed yet. That’s to be expected, as we haven’t yet added the code to make sure

the Email a Friend submission was valid.

To do that, let’s go back to the ArticlesController and change its notify_friend action

to match Listing 14-10.

Listing 14-10. Validating Email a Friend in ArticlesController#notify_friend

https://gist.github.com/nicedawg/5dc3292f1944af645df85afd9c627753

class ArticlesController < ApplicationController

 ... code omitted ...

 def notify_friend

 @email_a_friend = EmailAFriend.new(email_a_friend_params)

 if @email_a_friend.valid?

 NotifierMailer.email_friend(@article, @email_a_friend.name, @email_a_

friend.email).deliver_later

 redirect_to @article, notice: 'Successfully sent a message to your

friend'

 else

 render :notify_friend, status: :unprocessable_entity

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_article

 @article = Article.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def article_params

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/5dc3292f1944af645df85afd9c627753

414

 params.require(:article).permit(:title, :cover_image, :remove_cover_

image, :location, :excerpt, :body, :published_at, category_ids: [])

 end

 def email_a_friend_params

 params.require(:email_a_friend).permit(:name, :email)

 end

end

First, note the new private method we added at the bottom—email_a_friend_

params. It’s always good practice to make sure that we whitelist the params we expect to

receive. This has the effect of saying “the only params we’ll accept for an EmailAFriend

model are name and email.”

Now take a close look at the changes we made to the notify_friend action. We

instantiate a new EmailAFriend object using the params submitted from our form. If the

object is valid, we do what we’ve always done—we schedule the email to be delivered,

and we redirect with a success notice. However, instead of just grabbing the name

and email straight from the params hash, we now get them from our instance of the

EmailAFriend class.

Finally, we added an else clause. If the submission was not valid, we need to show the

form again with the relevant error message. We also return a status of :unprocessable_

entity, which translates to HTTP status code 422.

We have one last thing to do. When an “Email a Friend” submission is invalid, we

render a :notify_friend template—but that doesn’t exist yet! We know that the submission

is sent via Ajax, so we will need to create a new JavaScript template in app/views/

articles/notify_friend.js.erb. Let’s add that now, as shown in Listing 14-11.

Listing 14-11. Adding app/views/articles/notify_friend.js.erb

https://gist.github.com/nicedawg/b4bd7f04722ca6ad14e518bb0829b539

document.querySelector('#email_a_friend').innerHTML = "<%= escape_javascript

render partial: 'notify_friend', locals: { article: @article } %>";

When this JS template is rendered, it instructs the browser to find the element

with the id “email_a_friend”—which is our “Email a Friend” form—and replaces its

content with the output of the notify_friend partial which we’re already using. When

this template is rendered as the result of the submission being invalid, it will include the

error messages that explain why the form couldn’t be submitted.

Chapter 14 aCtive Model

https://gist.github.com/nicedawg/b4bd7f04722ca6ad14e518bb0829b539

415

 Try It Out
Now everything’s in place. Try it out! Try submitting a blank “Email a Friend” form; you

should see error messages about Name and Email being blank and Email being invalid.

Try adding a Name but not an Email; you should see the error messages about Email, but

not Name. Try adding an invalid Email; you should see an error message stating that the

email address is invalid. Finally, submit valid information, and you should be redirected

with a success message just like before!

 Summary
In this chapter, we covered the use of several Active Model modules and saw how we

can use them to enhance our POROs (Plain Old Ruby Objects) with Active Record–

type behaviors. We then learned that ActiveModel::Model includes a few of the most

commonly used modules and most importantly gives our model what it needs to play

nice with Action Pack and Action View conventions.

There are some Active Model modules we did not cover, and we didn’t exhaustively

cover each module, but that’s okay. Knowing that Active Model exists and understanding

the types of things it can do is good enough for now. When you’re ready for more

information about Active Model, a good place to start is the official Rails guide, found at

https://guides.rubyonrails.org/active_model_basics.html. Also, don’t be afraid

to find the source code and look through it. It’s true that sometimes the source code may

include things you don’t fully understand, but often you can get the basic idea. A lot of

Rails code—Active Model included—is well designed and documented and is much

more accessible than you might think. You might even learn some new tricks!

What’s next? We’ll take a brief look at Action Cable—an exciting component of Rails

which uses WebSockets to add some “real-time” capabilities to our applications.

Chapter 14 aCtive Model

https://guides.rubyonrails.org/active_model_basics.html

417
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_15

CHAPTER 15

Action Cable
 Introduction
The backbone of web development has been—and still is—the traditional request cycle;

the client makes an HTTP request, and the server handles the request by performing

some action and returning an HTTP response. In the context of a browser-based

application, a human being is usually the initiator of this cycle, by clicking a link or

submitting a form, for example.

Over time, though, web applications themselves have sought to be the initiator. For

example, web-based email clients have an arguably richer UI when new mail shows

up automatically, not just when the user refreshes the page. Imagine how frustrating

it would be to use a web-based instant messaging service where you only see new

messages when you reload the page.

Web developers have often met the demands of these richer UI needs through

polling—periodically making Ajax requests to check if any new data might warrant

action. For example, that web-based email client might have some JavaScript that calls

an API endpoint to check for new mail. This strategy has helped build multimillion-

dollar software projects and has worked amazingly well, but it does have some problems

of its own; for example, the overhead of repeatedly checking for new information (when

quite likely there is none) can become a critical performance issue for the server and

even sometimes the client.

WebSockets solved that problem with the wide adoption of the WebSocket API by

most commonly used browsers. Instead of browsers needing to constantly poll the server

for new data, browsers can establish—and keep open—a connection through which

either side can send messages. For example, that web-based email client doesn’t have to

keep checking for new mail; the page can just sit there, and the server will tell it when it

has new mail! This strategy can be much more efficient, making your users happier and

hopefully reducing server costs too.

https://doi.org/10.1007/978-1-4842-5716-6_15#DOI

418

Rails developers have already been using WebSockets in their applications by using

gems such as faye-websocket, websocket-rails, and others. However, Rails 5 introduced an

integrated approach with Action Cable.

In this chapter, we’ll first try to get our mental model straight; Action Cable

introduces a few new concepts that can be tricky to keep straight, so we’ll do our

best to firm up our understanding before moving on. Then, we’ll briefly discuss the

configuration of Action Cable and then get to work applying Action Cable to our blog

application; we’ll add an impressive but simple feature—in-page notifications when a

new article is posted.

 Concepts
Action Cable introduces a lot of new terminology into Rails—connections, channels,

streams, broadcasting, subscriptions, and more. It’s worth our time to get familiar with

these terms before moving on; otherwise, it will be easy to get confused when diving into

the code.

To aid our understanding of these concepts, we’ll use Cable TV as an analogy.

Analogies are by nature somewhat flawed, and this author doesn’t actually know how

Cable TV really works, but this analogy may help nonetheless.

The base of the Action Cable stack is the connection, represented by

ActionCable::Connection. This connection represents an actual WebSocket connection.

A user of your application will usually have, at most, one connection per browser

window (or tab). The connection typically doesn’t care what type of data it might send or

receive; it’s simply an established method of communication. In our Cable TV analogy,

we can think of the physical connection of the cable to our TVs. Each TV must be

connected to the cable provider in order to watch Cable TV.

The next layer of the Action Cable stack is the channel, represented by

ActionCable::Channel. A channel is a logical (as opposed to physical) division within

a connection. Channels are often organized according to interests, or purposes. (For

instance, our blog app might have an ArticlesChannel, a CommentsChannel, and a

UsersChannel.) Communications sent through these channels all take place within the

same connection, but they’re separated by naming conventions. Back to our analogy,

we can watch many channels over a single connection. (Thankfully, we don’t need a

separate connection for each channel!)

Chapter 15 aCtion Cable

419

Another important Action Cable term is streams. Streams are yet another logical

division within channels. For example, an ArticlesChannel may have a stream named

“articles:42”, which handles sending and receiving data specifically regarding the article

with id 42. Our Cable TV analogy begins to break down a bit, but perhaps this is similar

to the way that some TV channels have specific “sub-channels” for viewers in different

time zones.

Another important Action Cable concept is subscriptions. Users can only send and

receive data over channels to which they have subscribed. With Action Cable, this is

done by some JavaScript being run by the user’s browser. With Cable TV, this is done by

sending your Cable TV provider some money every month. But the idea is the same; you

may only stream data from channels to which you’ve subscribed.

One last Action Cable concept we’ll mention is broadcasting. With Action Cable,

a broadcast is when the server sends data to a channel’s stream so that any listening

subscribers can receive it. Thinking about Cable TV, this makes a lot of sense. Cable TV

channels don’t keep a list of TVs to which they need to send their streaming content;

they simply broadcast it, and only subscribers who are tuned in at that moment will

be able to receive that data. (Of course, on-demand video and DVRs complicate the

analogy.)

Hopefully, taking the time to describe these concepts and making a naive analogy

to Cable TV was helpful. One wonders if the Rails developers had Cable TV in mind

when developing Action Cable; the naming of its various components seems to beg

the analogy. Whether they did or not, it does demonstrate the power of analogies and

thoughtful class names when developing; whenever we can, we should strive for our

classes and concepts to have names that paint vivid pictures of what they do in a broad

sense and how they relate to other components of the system in which they live.

So how does Action Cable fit in with what we’ve known so far? Does Action Cable

replace our traditional request cycle of submitting HTTP requests and receiving HTTP

responses?

Rarely in web development would Action Cable replace our HTTP request and

response cycle; rather, it works within it. Here’s how:

First, a web page would be requested by a user entering an address in their browser

or clicking a link, for example. They make an HTTP request and receive an HTTP

response, typically with HTML, JavaScript, and CSS in the response.

Chapter 15 aCtion Cable

420

Then, while the web page is loaded, perhaps an Action Cable connection would be

established, and the browser may subscribe to one or more Action Cable channels. This

connection would stay open, with both the client and server waiting for any messages

sent through these channels.

Perhaps some data would be broadcasted through streams in those channels from

the server to the browser; the browser may then execute some JavaScript in response to

the data received and update the UI or even request a new web page.

Or perhaps the user will initiate some action that causes data to be streamed from

the client to the server through a channel, and the server may decide to execute some

Ruby code in response to the data received.

While this introduction was rather dense, hopefully taking the time to build a mental

model of Action Cable was worth the effort. Now that we understand the purpose Action

Cable serves, let’s take a quick look at how to configure it before we dive into using it in

our application.

 Configuration
Thankfully, like other Rails components we’ve looked at, Action Cable works great out

of the box in development mode. However, like other Rails components we’ve looked

at, additional configuration is necessary to ensure a robust production environment.

We won’t need to change our configuration in this chapter. Table 15-1 shows a brief

overview of the most common configuration options, what they’re used for, and why one

might want to use them.

Chapter 15 aCtion Cable

421

 Application
Time to put our knowledge to use! For the sake of illustration (and for having a super-

fancy blog), we’ll add a cool new feature—“new article notifications”—so that visitors

who are currently viewing the site will see an alert pop-up on the page they’re currently

viewing to inform them of a new article that was posted while they were reading.

To add this new feature, we’ll need to add some functionality to both the server side

of our application and the client side.

Table 15-1. Common Action Cable Configuration Options

Option Description

adapter Specifies which type of message queue service to use, which handles

the data sent between server and client. acceptable values are :async,
:redis, and :postgres. :async is suitable for development but not

production. :postgres and :redis are more robust options for production,

but require additional configuration and running services. these values

are conventionally set in config/cable.yml and allow environment-specific

settings, similar to config/database.yml

allowed_request_

origins

Specifies which origins are allowed to make requests of your action

Cable server. in development, this is set by default to allow requests from

localhost. in a production environment, you most likely want this set to the

domain of your web application. You may choose to disable this whitelist of

allowed origins by setting action_cable.disable_request_forgery_

protection = true, but this could be a security risk and should be

chosen carefully.

worker_pool_size For performance, to avoid running action Cable logic in the main server

thread, action Cable creates a number of threads dedicated for its own use.

With this setting, you can configure how many threads to use. More isn't

always better; finding the right size can require careful analysis.

mount_path by default, action Cable request Urls are constructed with a base of

“/cable”. this setting allows a custom base path for action Cable Urls.

Chapter 15 aCtion Cable

422

On the server side, we’ll create an ArticlesChannel, meant to be used for various

Action Cable communications relating to articles. We’ll then modify our Article model

to broadcast a message over a stream in that channel when a new article has been

published.

On the client side, we’ll add some JavaScript to automatically subscribe visitors to

that channel and to react to data received over that stream, so that when the server sends

the “New Article” message, their browser can do the work to display the notification in

“real time.”

 Server-Side Changes
 ApplicationCable::Connection

At the bottom of the Action Cable stack, we find ApplicationCable::Connection. Though

we won’t need to change it in our blog, we’ll talk about it briefly. Take a look at app/

channels/application_cable/connection.rb, as shown in Listing 15-1.

Listing 15-1. ApplicationCable::Connection in app/channels/

application_cable/connection.rb

https://gist.github.com/nicedawg/f986c253814b6eda79989f8c83c9b27f

module ApplicationCable

 class Connection < ActionCable::Connection::Base

 end

end

Similar to other Rails components we’ve seen, Action Cable provides a base class

in our app, which inherits from the library’s base class. This gives us a convenient place

to override any functionality at this layer of the stack. A frequent use case would be to

add an identifier here, as shown in https://guides.rubyonrails.org/action_cable_

overview.html#connection-setup. For instance, we may want to only allow Action

Cable connections to be established by logged-in users or users with certain privileges.

This isn’t the case in our blog—most of our users will not be logged in, but just know that

this is possible.

Chapter 15 aCtion Cable

https://gist.github.com/nicedawg/f986c253814b6eda79989f8c83c9b27f
https://guides.rubyonrails.org/action_cable_overview.html#connection-setup
https://guides.rubyonrails.org/action_cable_overview.html#connection-setup

423

 ApplicationCable::Channel

The next layer in the Action Cable stack is ApplicationCable::Channel. Again, we

won’t need to change it for the features we’ve planned for our blog, but it’s still worth

mentioning. Take a look at app/channels/application_cable/channel.rb as shown in

Listing 15-2.

Listing 15-2. ApplicationCable::Channel in app/channels/application_cable/

channel.rb

https://gist.github.com/nicedawg/4a0ceb9894c3f84026a0d01c2554c8a2

module ApplicationCable

 class Channel < ActionCable::Channel::Base

 end

end

Similar to ApplicationCable::Connection, ApplicationCable::Channel starts out as a

class which simply inherits from ActionCable::Channel::Base, but provides a place for us

to add functionality which could apply to any Channel classes we add to our app.

 ArticlesChannel

Now that we’ve got the lay of the land, let’s get to work! You may remember from the

“Concepts” section that Action Cable channels are similar to Action Pack controllers in

some regards. Channels should be organized into logical units; since we’re adding the

ability to push notifications from the server to the client when a new article is published,

it makes sense to create an ArticlesChannel.

Let’s create ArticlesChannel in app/channels/articles_channel.rb, as shown in

Listing 15-3.

Listing 15-3. ArticlesChannel in app/channels/articles_channel.rb

https://gist.github.com/nicedawg/35ad4063d663aaa3c871f5f2da38ddda

class ArticlesChannel < ApplicationCable::Channel

 def subscribed

 stream_from "articles:new"

 end

end

Chapter 15 aCtion Cable

https://gist.github.com/nicedawg/4a0ceb9894c3f84026a0d01c2554c8a2
https://gist.github.com/nicedawg/35ad4063d663aaa3c871f5f2da38ddda

424

First, notice that our ArticlesChannel class inherits from ApplicationCable::Channel.

This endows our ArticlesChannel class with the functionality it needs so it can behave

like an Action Cable channel.

Next, we implemented the subscribed method. This method is called

whenever a client subscribes to the ArticlesChannel. When a client subscribes to

our ArticlesChannel, we connect them with a stream within this channel called

“articles:new”. The name of this stream isn’t significant; we didn’t have to use a

semicolon, nor is there any magical convention. However, we should name our streams

in a way that clearly indicates the stream’s purpose for our own sanity.

Finally, on the server side, we need to broadcast data to this channel’s stream we just

created when appropriate. For this feature, we want to broadcast to this stream whenever

an article has been published. Sounds simple enough, but we must remember that an

article can be created and published at the same time or an article could be created as a

draft article but not yet published or a published article could also be updated. Since we

want to be careful not to send notifications for unpublished articles or notifications for

articles which were already published, we have to think carefully about how we’ll do this.

We want to broadcast a notification whenever an article is saved (whether created or

updated), but only if it went from not being published to being published.

Let’s modify our Article model to broadcast a notification to our new “articles:new”

stream in this scenario, as shown in Listing 15-4.

Listing 15-4. Broadcasting “New Article” Message When an Article Is Published

https://gist.github.com/nicedawg/f46dfa59f351a012d26d47f71c42d86a

class Article < ApplicationRecord

 validates :title, :body, presence: true

 belongs_to :user

 has_and_belongs_to_many :categories

 has_many :comments

 has_one_attached :cover_image

 attr_accessor :remove_cover_image

 after_save { cover_image.purge if remove_cover_image == '1' }

 after_save :broadcast_new_article

 has_rich_text :body

Chapter 15 aCtion Cable

https://gist.github.com/nicedawg/f46dfa59f351a012d26d47f71c42d86a

425

 scope :published, -> { where.not(published_at: nil) }

 scope :draft, -> { where(published_at: nil) }

 scope :recent, -> { where('articles.published_at > ?', 1.week.ago.to_date) }

 scope :where_title, -> (term) { where("articles.title LIKE ?",

"%#{term}%") }

 def long_title

 "#{title} - #{published_at}"

 end

 def published?

 published_at.present?

 end

 def owned_by?(owner)

 return false unless owner.is_a?(User)

 user == owner

 end

 private

 def broadcast_new_article

 if published? && saved_change_to_published_at?

 ActionCable.server.broadcast(

 "articles:new",

 new_article: ArticlesController.render(

 partial: 'articles/new_article_notification',

 locals: { article: self }

)

)

 end

 end

end

First, we added an after_save callback. Then, in our new broadcast_new_article

method, we broadcast the data about the recently saved article only if it is currently

published and if the recent save changed the value of published_at.

Chapter 15 aCtion Cable

426

The saved_change_to_published_at? method warrants discussion. In the previous

chapter, we discussed various methods which the ActiveModel::Dirty module adds to

our Active Model (and therefore Active Record)–based classes. Sometimes we want to

know if an attribute’s value will change. However, in this context, we want to know if

it did change after a successful save. ActiveModel::Dirty doesn’t know anything about

persisting data to the database, so it can’t help us there. But Active Record adds a

method to each of our persisted attributes in the form of saved_change_to_{attr}?. So we

made use of that helpful method to only send the broadcast when we want to.

Then we used ActionCable.server.broadcast to send some data through the

“articles:new” stream. The first argument is the name of the stream we wish to broadcast

on. (This matches the name we used in the ArticlesChannel.) The remaining arguments

are the data we wish to broadcast, which could be anything we want! We decided to pass

an argument called “new_article,” which will contain the HTML we want to send to the

client to display. In order to construct that HTML, we called ArticlesController.render

with a partial which we haven’t yet defined and passed a local variable “article” with the

value of “self,” which is the Article object which was just saved.

Note that we didn’t have to broadcast HTML to the stream; we could have sent the

individual attributes of the article which we need for the notification as a hash, and the

client side would receive that hash in JSON form and could have constructed the HTML

to show the notification. Either approach is fine, but for our purposes, sending HTML is

easier.

So, to wrap up our server-side changes for this feature, let’s create this new_article_

notification partial we referenced earlier. Create a new partial in app/views/articles/_

new_article_notification.html.erb to match Listing 15-5.

Listing 15-5. Partial View Template for New Article Notifications

https://gist.github.com/nicedawg/170ebe6de3d4b14fcfdffa7129008713

<div id="new-article-notification">

 <h3>New Article Published!</h3>

 <%= link_to article.title, article %>

</div>

Simple enough! We don’t need to show a lot of content in our notification. We

decided, however, to give the outer container of this markup an id so we can reference it

in the client-side code.

Chapter 15 aCtion Cable

https://gist.github.com/nicedawg/170ebe6de3d4b14fcfdffa7129008713

427

We’ve finished building the server-side portions of our feature; now, when an article

is published, an HTML representation of a notification is broadcasted with Action Cable.

However, at this point, we’re only sending the data. Let’s move on to the client-side

changes so that browsers can receive the data and display the notification.

 Client-Side Changes
First, we’ll add some JavaScript to subscribe to the channel we created, so that we can

receive and display notifications when an article is published.

Let’s add this JavaScript to app/javascript/channels/articles_channel.js, as shown in

Listing 15-6.

Listing 15-6. Subscribing to the “New Article” Stream

https://gist.github.com/nicedawg/1bed41f4adc3bc30099180e4e00db653

import consumer from "./consumer"

consumer.subscriptions.create("ArticlesChannel", {

 received(data) {

 if (data.new_article) {

 this.displayNewArticleNotification(data.new_article);

 }

 },

 displayNewArticleNotification(newArticle) {

 const body = document.querySelector('body');

 body.insertAdjacentHTML('beforeend', newArticle);

 const newArticleNotification = document.querySelector('#new-article-

notification');

 setTimeout(() => {

 body.removeChild(newArticleNotification);

 }, 3000);

 }

})

First, we import consumer into our JavaScript. We didn’t create this file; rather,

Rails supplied it for us. This import gives us a consumer object we can use to create

subscriptions to the channels which Action Cable serves. Using our Cable TV analogy

Chapter 15 aCtion Cable

https://gist.github.com/nicedawg/1bed41f4adc3bc30099180e4e00db653

428

from earlier, a consumer can be thought of as a Cable TV subscriber. They only need one

connection, but can choose to subscribe to zero or more channels.

Next, we used consumer.subscriptions.create to subscribe to the ArticlesChannel we

created earlier. The second argument to the create function call is a Javascript object

with a couple of functions we defined.

The first function, received, is a function which we must implement if we wish to

act on broadcasted data received from the channel we subscribed to. The broadcasted

data is passed to our received function. In our implementation, we check to see if

the broadcasted data includes a new_article property. If it does, then we call another

function which we created to handle new article notifications.

The second function, displayNewArticleNotification, is a function we wrote. We could

have put all the logic for displaying a new article notification in the received function,

but it’s good practice to keep functions small for maintainability when possible. In

this function, we insert the HTML for the new article notification (which the server

constructed and sent) into the body of the page and then set a timer to automatically

remove the notification in 3 seconds.

By this point, everything should be working! However, the notifications won’t be very

noticeable because we’re stuffing them down at the bottom of the page. And they won’t

look very good. Our visitors may not even notice them. Let’s add some CSS to place these

notifications in the top-right corner of the page. Let’s add some styles to app/assets/

stylesheets/articles.scss so that it matches Listing 15-7.

Listing 15-7. Styling New Article Notifications in articles.scss

https://gist.github.com/nicedawg/8dc15f36e36ffc495464b551222d6f27

#new-article-notification {

 background-color: lightgray;

 max-width: 50%;

 position: fixed;

 top: 10px;

 right: 10px;

 padding: 10px;

 border-radius: 10px;

 z-index: 10;

 box-shadow: 3px 5px #888;

}

Chapter 15 aCtion Cable

https://gist.github.com/nicedawg/8dc15f36e36ffc495464b551222d6f27

429

This isn’t a book about CSS or visual design; there are undoubtedly better ways

of styling these notifications. But these styles are good enough for now! We give the

notification a background color so it stands out. We restrict the width to 50% so it doesn’t

cover the whole screen. We make the notification’s position “fixed” so that it’s positioned

relative to the viewport (the portion of the web page the user is viewing). This ensures

the notification is always visible, no matter where the user has scrolled. We use top and

right to position the notification 10 pixels from the top and right of the viewport, so it’s

near (but not butting up against) the top-right corner. We add a little padding to the

notification and give it slightly rounded corners for aesthetics. We bump up the z-index

a little so that it will display “on top of” any elements it may intersect with and give the

notification a little drop shadow to give the appearance of floating above the page.

 Try It Out
That’s it! It’s time to try out our “finished” product. We’ll want to use two browser

windows to see the full effect. Let’s use one browser window to create a published article

and a second browser window to observe our notification.

So in your first browser window, go ahead and pull up the “New Article” form, but

don’t submit it yet.

Then, in your second window, go to the home page, or view an article show page; it

doesn’t really matter which page of our blog your second window is viewing.

Finally, with both browsers visible if possible, create a new article in your first

browser window, and watch the notification appear nearly instantly in your second

browser window—with no refreshing (or polling) necessary. (Remember that we set

up our notifications to disappear after 3 seconds, so look quickly!) If everything went

according to plan, your notification should look something like Figure 15-1.

Chapter 15 aCtion Cable

430

Pretty neat! To get here, we did have to talk about a lot of new concepts, but looking

back I hope you’ll agree that Action Cable makes it relatively easy to add real-time

functionality to your application with WebSockets.

If this didn’t work for you, don’t worry! Take a look at your Rails server output for

indications of server-side errors, and look at your browser’s console for indications of client-

side errors. Often, there’s an error message that points you straight to the culprit. Sometimes

it’s not so easy, so review the previous code listings and make sure your code matches.

 Summary
In this chapter, we covered a lot of new ground. We invested the time to understand how

WebSockets satisfy a need for efficient bidirectional server communication and how they can

lead to richer user experiences. We then learned how Action Cable supplies a framework for

working with WebSockets in Rails and how to configure it for production use. Then, we dove

in and added a cool new feature to our blog with the power of Action Cable.

We only scratched the surface of Action Cable; for more information, a good place to start

is the Rails guide, at https://guides.rubyonrails.org/action_cable_overview.html.

What’s next? As our blog application has grown in complexity through the

chapters, it has become more fragile; making a change in one area of our app may have

unintended consequences in other areas of our app. One way to guard against this is

to have a robust automated test suite, so that your code will tell you there’s a problem

before your users do. In the next chapter, we will dip our toes into the deep topic of

testing your Rails application.

Figure 15-1. New article notification via Action Cable

Chapter 15 aCtion Cable

https://guides.rubyonrails.org/action_cable_overview.html

431
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_16

CHAPTER 16

Testing Your Application
When an application is in its infancy, its developers may be able to keep a complete

mental model of the whole system. Changes to the system are relatively easy to reason

about, easy to implement, and easy to verify they’re working as intended.

However, most applications change over time. And as they grow, developers lose

the ability to keep a complete mental model of the whole system. When that happens,

bugs are introduced more frequently, as a seemingly innocuous change in one part of

the application can have surprising and unintended consequences in another area of

the code. Developers start to feel this burden; changes take longer to reason about, are

harder to implement, and are more time-consuming to verify. Increasingly, it feels like

every release introduces new bugs, and even bug fixes introduce new bugs.

When we start breaking our application more frequently, we get nervous about

introducing changes. Perhaps we know how we want to add a new feature, but we deem

it too risky and settle for compromises in code quality. For example, maybe instead of

changing a critical code path to support a new feature, we’ll add an if statement to take

another nearly identical but slightly different code path for our new feature, so that if we

break something, at least it will only be the new feature we’re breaking.

These compromises in code quality—sometimes referred to as technical debt—are

easier for now, but harder to deal with later; a future requirement may necessitate

changing both of these critical code paths; perhaps at that point in the future, we’ll

feel brave enough to do what we wanted in the first place. But if we were reluctant to

change one critical piece of code, we probably won’t want to change two critical pieces

of code. So maybe we’ll just tack on another and another and so on. Left unchecked, this

technical debt grows until the application is nearly unmaintainable.

How can we, as developers, avoid this? Automated testing is one of the most

important things we can do to improve the quality of our code, reduce the cost of

change, and keep our software (relatively) bug-free. Rails (and the Ruby community at

large) takes testing seriously. Not surprisingly, Rails goes out of its way to make testing

hassle-free.

https://doi.org/10.1007/978-1-4842-5716-6_16#ESM

432

The basic idea of automated testing is simple: you write code that exercises your

program and tests your assumptions. Instead of just opening a browser and adding a

new user manually to check whether the process works, you write a test that automates

the process—something repeatable. With a test in place, every time you modify the code

that adds a new user, you can run the test to see if your change worked—and, more

important, whether your seemingly innocuous change broke something else.

If you stop and think about it, you’re already testing your software. The problem is

that you’re doing it manually, often in an ad hoc fashion. You may make a change to the

way users log in, and then you try it in your browser. You make a change to the sign-up

procedure, and then you take it for a spin. As your application grows in size, it becomes

more and more difficult to manually test like this, and eventually you miss something

important. Even if you’re not testing, you can be sure that your users are. After all, they’re

the ones using the application in the wild, and they’ll find bugs you never knew existed.

The best solution is to replace this sort of visual, ad hoc inspection with automatic

checking.

Testing becomes increasingly important when you’re refactoring existing code.

Refactoring is the process of improving the design of code without changing its behavior.

The best way to refactor is with a test in place acting as a safety net. Because refactoring

shouldn’t result in an observable change in behavior, it shouldn’t break your tests either.

It’s easy, therefore, to see why many programmers won’t refactor without tests.

Given the importance placed on testing, it may seem odd that this book leaves a

discussion of this until Chapter 16. Ideally, you should be writing tests as you go, never

getting too far ahead without testing what you’ve written. But we decided that explaining

how to test would be overwhelming while you were still learning the basics of Ruby and

the Rails framework. Now that you have a good deal of knowledge under your belt, it’s

time to tackle testing.

Note If you need to get the code at the exact point where you finished
Chapter 15, download the zip file from www.apress.com and extract it onto
your computer.

Chapter 16 testIng Your applICatIon

http://www.apress.com

433

 How Rails Handles Testing
Because Rails is an integrated environment, it can make assumptions about the best

ways to structure and organize your tests. Rails provides

 1. Test directories for controller, model, mailer, helper, system, and

integration tests (and more)

 2. Fixtures for easily working with database data

 3. An environment explicitly created for testing

The default Rails skeleton generated by the rails command creates a directory just

for testing. If you open it, you’ll see subdirectories for each of the aforementioned test

types:

test

 |-- channels <-- Action Cable tests

 |-- controllers <-- controller tests

 |-- fixtures <-- test data

 |-- helpers <-- helper tests

 |-- integration <-- integration tests

 |-- jobs <-- Active Job tests

 |-- mailboxes <-- Action Mailbox tests

 |-- mailers <-- Action Mailer tests

 |-- models <-- model tests

 |-- system <-- system tests

Several of these directories should look familiar. You can probably imagine what

types of things will be tested in the channels, controllers, helpers, jobs, mailboxes,

mailers, and models directories. But a few directories probably won’t look familiar.

Fixtures? Integration? System? What are these for? We’ll cover integration and system

tests later in the chapter, but let’s take a quick look at fixtures now.

Fixtures are textual representations of table data written in YAML—a data

serialization format. Fixtures are loaded into the database before your tests run; you use

them to populate your database with data to test against. Look at the users fixtures file in

test/fixtures/users.yml, as shown in Listing 16-1.

Chapter 16 testIng Your applICatIon

434

Listing 16-1. Users Fixtures in test/fixtures/users.yml

Read about fixtures at https://api.rubyonrails.org/classes/ActiveRecord/

FixtureSet.html

one:

 email: MyString

 password: MyString

two:

 email: MyString

 password: MyString

Rails generated the users fixtures file for us when we generated the User model. As

you can see, the file has two fixtures, named one and two. Each fixture has both attributes

email and password set to MyString; but, as you recall, you renamed the password

column hashed_password back in Chapter 6. Let’s update the users fixtures file to reflect

the new column name and use meaningful data. Listing 11-2 shows the updated fixture.

Listing 16-2. Updated Users Fixtures in test/fixtures/users.yml:

https://gist.github.com/nicedawg/393f21dc9e39a70be49b18970a8967ad

Read about fixtures at https://api.rubyonrails.org/classes/ActiveRecord/

FixtureSet.html

eugene:

 email: eugene@example.com

 hashed_password: e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4 # => secret

lauren:

 email: lauren@example.com

 hashed_password: e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4 # => secret

Remember that every time we generated a model or a controller while building the

blog application, Rails automatically generated test files for us. This is another example of

its opinionated nature—Rails thinks we should test, so it goes out of its way to remind us.

You may also recall that Rails created three SQLite databases for the blog application:

one for development (which is all you’ve been using thus far), one for production, and

one for testing. Not surprisingly, Rails uses the testing database just for testing.

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/393f21dc9e39a70be49b18970a8967ad

435

Rails drops and re-creates this test database on every run of the test suite. Make sure

you don’t list your development or production database in its place, or all your data will

be gone.

 Unit Testing Your Rails Application
You know that Rails generated some tests automatically. Let’s open one of them now and

take a look. Let’s start with the Article test, located in test/models/article_test.rb,

as shown in Listing 16-3.

Listing 16-3. Generated Article Unit Test in test/models/article_test.rb

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase

 # test "the truth" do

 # assert true

 # end

end

Although there’s not much to it (all it does is show you how to test that true is, in

fact, true), this test gives you a template from which to build your real tests. It has the

following elements:

 1. The test class is a subclass of ActiveSupport::TestCase, which is

Rails’ enhanced version of the Minitest::Test class, which comes

from the Ruby testing framework, minitest.

 2. Tests are implemented as blocks using the test method, with the first

parameter as the description of that test—"the truth" in this case.

 3. Within a test case, assertions are used to test expectations. The

“Testing with Assertions” section later in this chapter explains

how these work.

If you peek inside the test/models directory, you’ll see a similar test case for every

model we’ve generated so far: Article, Comment, Category, User, and Profile. Each

looks almost exactly the same as the Article test. Let’s run the unit tests now using the

rails test:models command from your command prompt and see what happens:

Chapter 16 testIng Your applICatIon

436

$ rails test:models

Run options: --seed 50142

Running:

Finished in 0.140507s, 0.0000 runs/s, 0.0000 assertions/s.

0 runs, 0 assertions, 0 failures, 0 errors, 0 skips

In this case, there are no tests yet (the ones generated are commented out). If there

were tests and the test passed, you would see a . (dot) character. When the test case

produces an error, you would see an E. If any assertion fails to return true, you would see

an F. Finally, when the test suite is finished, it prints a summary.

Also, you may have noticed that your seed was different. By default, your tests are

run with a random seed value so that your tests are run in a different order each time.

That helps us avoid writing order-dependent tests by making sure each test can pass

independently of which tests have run before.

Also, we ran rails test:models because we only want to run the tests within our test/

models directory right now. We could run rails test to run most of our tests (more on that

later) or rails test test/models/article_test.rb to run the tests in a specific file or even rails

test test/models/article_test.rb:26 to run a specific test case within a file based on the

provided line number. See rails test -h for more information.

 Testing the Article Model
Let’s test the Article model. If you recall from Chapter 5, one of the first things you did

with your Article model was basic CRUD operations. Well, testing that you can create,

read, update, and delete articles is a great place to start. Here’s a quick summary of the

specific things you test in this chapter:

 1. Creating a new article

 2. Finding an article

 3. Updating an article

 4. Destroying an article

Before you begin, you’ll need to create a few fixtures (remember that a fixture is a

textual representation of test data).

Chapter 16 testIng Your applICatIon

437

 Creating Fixtures

Let’s create a fixture for an article so we can test it. Open the test/fixtures/articles.

yml file and replace its content with the code as shown in Listing 16-4.

Listing 16-4. Articles Fixtures in test/fixtures/articles.yml:

https://gist.github.com/nicedawg/27d1df26c994bbd0c7579498cd8d91e7

welcome_to_rails:

 user: eugene

 title: "Welcome to Rails"

 published_at: <%= 3.days.ago %>

We named this fixture welcome_to_rails so our tests can refer to it clearly. We

declared eugene (a users fixture we added in the previous step) as the owner of the

article, gave it a title, and used a little ERb to set the published_at datetime to 3 days

ago. Our article still needs a body, but we can’t declare it here; you may remember that

when we added Action Text in Chapter 11, the body attribute was moved to Action Text’s

storage, so we’ll need to modify our ActionText::RichText fixtures file, found in test/

fixtures/action_text/rich_texts.yml so that it matches Listing 16-5.

Listing 16-5. Action Text Fixtures in test/fixtures/action_text/rich_texts.yml:

https://gist.github.com/nicedawg/210608fc3d5730b49032c73ce1d500fe

welcome_to_rails_body:

 record: welcome_to_rails (Article)

 name: body

 body: <p>Rails is such a nice web framework written in ruby</p>

Here, we named this fixture welcome_to_rails_body, because that accurately defines

this fixture. Its record value is a special syntax that identifies the type (Article) and id

(welcome_to_rails) of the record to which this rich text belongs. The name indicates

which attribute of the parent record it belongs to, and the body value declares the

contents of this Action Text record. This fixture is a little more complicated than the

previous ones, because it’s a polymorphic record, as you might remember from

Chapter 11, but even then, fixtures still make it easy to work with.

The data in our fixtures files will be inserted automatically into our test database

before our tests run. With our fixtures in place, we’re ready to start creating test cases!

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/27d1df26c994bbd0c7579498cd8d91e7
https://gist.github.com/nicedawg/210608fc3d5730b49032c73ce1d500fe

438

Tip Fixtures are parsed by erb before they’re loaded, so you can use erb in
them just as you can in view templates. this is useful for creating dynamic dates,
as we did in published_at: <%= 3.days.ago %>.

The following sections present the test cases one at a time, beginning with create.

 Adding a Create Test

Open the test/models/article_test.rb file and create the first test case by deleting

the test "the truth" method and replacing it with a test called test "should create

article." Your file should look like Listing 16-6.

Listing 16-6. The Create Article Test in test/models/article_test.rb:

https://gist.github.com/nicedawg/e0d35b3317dbd1040ad93688f8db605d

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase

 test 'should create article' do

 article = Article.new

 article.user = users(:eugene)

 article.title = 'Test Article'

 article.body = 'Test body'

 assert article.save

 end

end

The "should create article" test case is standard article creation fare. We

created a new article in the same way we would create one from the console. The only

real difference is on the last line of the test case—assert article.save. We know that article.

save will return true if the save was successful and that it will return false if the save

failed. assert is a method available to us in our tests which will mark the test as successful

if given a true value and mark the test as failed if given a false value. Therefore, if the

article saves successfully, the test passes; otherwise, it fails.

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/e0d35b3317dbd1040ad93688f8db605d

439

Note Fixtures can be accessed in your test cases by name. use
fixture(:name), where fixture is the plural name of the model and :name
is the symbolized name of the fixture you’re after. this returns an active record
object on which you can call methods. here, you get at the eugene users fixture
using users(:eugene).

Let’s run our new test to see if it passes:

$ rails test:models

Run options: --seed 13876

Running:

.

Finished in 0.285145s, 3.5070 runs/s, 3.5070 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Just as the output from the test says, you ran one test (test "should create

article"), which included one assertion (assert article.save), and everything

passed. Life is good!

A best practice is to test your tests. That may sound silly, but it’s easy to write a test

that gives you a false positive. (This is why some developers prefer to write failing tests

before writing the code that makes them pass.) A quick check for the test we just wrote

would be to comment out the line in our test where we set the article’s title; since the

article requires a title, the test should fail. Give it a try!

The assert method is one of many assertion methods available to us. Before we

go any further, let’s take a closer look at assertions as they pertain to minitest and

ActiveSupport::TestCase.

 Testing with Assertions

Assertions are statements of expected outcome. If the assertion turns out to be correct,

the assertion passes. If the assertion turns out to be false, the assertion fails, and

minitest reports a failure.

Chapter 16 testIng Your applICatIon

440

While one could get by with only the assert method, many more assertion methods

are available to us for convenience; minitest ships with a bevy of built-in assertions, and

Rails adds some of its own. First, let’s look at some of the most commonly used minitest

assertions as shown in Table 16-1.

As you might have noticed, most of these assertion methods support an optional

parameter to supply a custom failure message if desired. Including a custom failure

message in most cases is not necessary, but it may occasionally be helpful.

Also, note that some methods show a klass argument. Why the misspelling? In Ruby,

class is a keyword; when using a variable to store a reference to a class, we can’t use class

as the variable name; it’s common practice to use the name klass.

Table 16-1. Standard minitest Assertion Methods

Assertion Method Description

assert(test, msg = nil) Fails unless test is truthy.

assert_empty(object, msg = nil) Fails unless object is empty.

assert_equal(expected, actual, msg = nil) Fails unless exp == act.

assert_in_delta(expected_float, actual_float,

delta = 0.001, msg = nil)

Fails unless expected_float is within delta of

actual_float.

assert_includes(collection, object, msg = nil) Fails unless collection includes object.

assert_instance_of(klass, object, msg = nil) Fails unless object is an instance of the klass class.

assert_kind_of(klass, object, msg = nil) Fails unless object is a kind of klass. (note: unlike

assert_instance_of, which checks the object’s

class directly, assert_kind_of considers the object's

ancestors.)

assert_match(matcher, object, msg = nil) Fails unless matcher =~ object.

assert_nil(object, msg = nil) Fails unless object is nil.

assert_raises(exception_class, msg) do

 ...

end

Fails unless block raises an exception of type

exception_class.

assert_respond_to(object, method,
msg = nil)

Fails unless object responds to a method named

method.

Chapter 16 testIng Your applICatIon

441

Minitest also provides refute variations of these methods, which simply inverse

the logic of the corresponding assertion. For example, refute_empty will pass when the

provided object isn't empty. However, for backward compatibility with test-unit, Rails’

previous built-in testing framework (and arguably for readability), Rails provides aliases

for these refute variations such as these: assert_not_empty, assert_not_equal, assert_no_

match, and so on.

While we showed some of the most common assertion methods, there are more. When

you find that an assertion is overly complicated and hard to read, it may be a good idea to

check https://guides.rubyonrails.org/testing.html#rails-meets- minitest to see if

perhaps a different assertion method would make your test more readable.

 Adding a Find Test

Now that we know more about assertion methods, we’re ready to add more tests. Next on

the list is testing that we can successfully find an article. We’ll use the data in the fixture

we created to help us. Add the method shown in Listing 16-7 after the "should create

article" test.

Listing 16-7. Test Case for Finding an Article in test/models/article_test.rb:

https://gist.github.com/nicedawg/71fbefeec56ce2ada47e956d3115b243

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase

 test 'should create article' do

 article = Article.new

 article.user = users(:eugene)

 article.title = 'Test Article'

 article.body = 'Test body'

 assert article.save

 end

 test 'should find article' do

 article_id = articles(:welcome_to_rails).id

 assert_nothing_raised { Article.find(article_id) }

 end

end

Chapter 16 testIng Your applICatIon

https://guides.rubyonrails.org/testing.html#rails-meets-minitest
https://gist.github.com/nicedawg/71fbefeec56ce2ada47e956d3115b243

442

Our new test verifies that we can find an article of the given id. First, we grab the

id attribute from the fixture, and then we test that we can use Article.find to retrieve

it. We use the assertion assert_nothing_raised because we know that find raises an

exception if the record can’t be found. If no exception is raised, we know that finding

works. Again, run the test and see what happens:

$ rails test test/models

Run options: --seed 22750

Running:

..

Finished in 0.249469s, 8.0170 runs/s, 4.0085 assertions/s.

2 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Sure enough, finding works! So far, so good.

 Adding an Update Test

Next, let’s test updating an article. Add the test "should update article" case, as

shown in Listing 16-8.

Listing 16-8. Test Case for Updating an Article in test/models/article_test.rb:

https://gist.github.com/nicedawg/24dc226151646294245b7c1f2380dd0b

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase

 test 'should create article' do

 article = Article.new

 article.user = users(:eugene)

 article.title = 'Test Article'

 article.body = 'Test body'

 assert article.save

 end

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/24dc226151646294245b7c1f2380dd0b

443

 test 'should find article' do

 article_id = articles(:welcome_to_rails).id

 assert_nothing_raised { Article.find(article_id) }

 end

 test 'should update article' do

 article = articles(:welcome_to_rails)

 article.update(title: 'New title')

 assert_equal 'New title', article.reload.title

 end

end

First, we find the “Welcome to Rails” article from our fixtures file, and then we update

the article with a new title and assert that when the article is reloaded, it has the new

title. Once again, run the test and see what happens:

$ rails test:models

Run options: --seed 25358

Running:

...

Finished in 0.270023s, 11.1102 runs/s, 7.4068 assertions/s.

3 runs, 2 assertions, 0 failures, 0 errors, 0 skips

 Adding a Destroy Test

Only one more test to go: destroy. We’ll find an article, destroy it, and assert that Active

Record raises an exception when you try to find it again. Listing 16-9 shows the test.

Listing 16-9. Test Case for Destroying an Article in test/models/article_test.rb:

https://gist.github.com/nicedawg/813a3e5f9bf5d3fdbfe888a2dc4e3360

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase

 test 'should create article' do

 article = Article.new

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/813a3e5f9bf5d3fdbfe888a2dc4e3360

444

 article.user = users(:eugene)

 article.title = 'Test Article'

 article.body = 'Test body'

 assert article.save

 end

 test 'should find article' do

 article_id = articles(:welcome_to_rails).id

 assert_nothing_raised { Article.find(article_id) }

 end

 test 'should update article' do

 article = articles(:welcome_to_rails)

 article.update(title: 'New title')

 assert_equal 'New title', article.reload.title

 end

 test 'should destroy article' do

 article = articles(:welcome_to_rails)

 article.destroy

 assert_raise(ActiveRecord::RecordNotFound) { Article.find(article.id) }

 end

end

The assert_raise assertion takes as an argument the class of the exception you

expect to be raised for whatever you do inside the given block. Because you’ve deleted

the article, you expect Active Record to respond with a RecordNotFound exception when

you try to find the article you just deleted by id. Run the test and see what happens:

$ rails test test/models

Run options: --seed 26110

Running:

....

Finished in 0.275000s, 14.5455 runs/s, 10.9091 assertions/s.

4 runs, 3 assertions, 0 failures, 0 errors, 0 skips

Chapter 16 testIng Your applICatIon

445

We’ve done it! We’ve successfully tested the happy path for each CRUD operation for

our Article model.

 Testing Validations
We have a few validations on our Article model, specifically for the presence of a title

and body. Because we want to make sure these are working as expected, we should test

them too. Let’s add the method shown in Listing 16-10 to our test to prove that we can’t

create invalid articles.

Listing 16-10. Test Case for Validations in test/models/article_test.rb:

https://gist.github.com/nicedawg/603e64d1846086488873757624745245

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase

 test 'should create article' do

 article = Article.new

 article.user = users(:eugene)

 article.title = 'Test Article'

 article.body = 'Test body'

 assert article.save

 end

 test 'should find article' do

 article_id = articles(:welcome_to_rails).id

 assert_nothing_raised { Article.find(article_id) }

 end

 test 'should update article' do

 article = articles(:welcome_to_rails)

 article.update(title: 'New title')

 assert_equal 'New title', article.reload.title

 end

 test 'should destroy article' do

 article = articles(:welcome_to_rails)

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/603e64d1846086488873757624745245

446

 article.destroy

 assert_raise(ActiveRecord::RecordNotFound) { Article.find(article.id) }

 end

 test 'should not create an article without title nor body' do

 article = Article.new

 assert !article.save

 assert_not_empty article.errors[:title]

 assert_not_empty article.errors[:body]

 assert_equal ["can't be blank"], article.errors[:title]

 assert_equal ["can't be blank"], article.errors[:body]

 end

end

This is pretty straightforward, although you may have to read it a few times before it

clicks. First, we instantiate a new Article object in the local variable article. Without

having given it any attributes, we expect it to be invalid, so we assert that article.save

returns false. (Notice the !, which negates truth). Next, we access the errors hash to

explicitly check for the attributes we expect to be invalid:

assert_not_empty article.errors[:title]

assert_not_empty article.errors[:body]

We also want to check that the validation responses are what we expect. To do this,

we use the assert_equal assertion. Here’s its basic syntax:

assert_equal(expected, actual)

To check the error messages, we again access the errors hash, but this time we ask

for the specific messages associated with the given attribute:

 assert_equal ["can't be blank"], article.errors[:title]

 assert_equal ["can't be blank"], article.errors[:body]

Finally, we assert that article.save returns false using !article.save. Run the

test one more time:

Chapter 16 testIng Your applICatIon

447

$ rails test:models

Run options: --seed 28498

Running:

.....

Finished in 0.335649s, 14.8965 runs/s, 32.7723 assertions/s.

5 runs, 11 assertions, 0 failures, 0 errors, 0 skips

Feels good, doesn’t it? Our tests pass now, but any application being used is likely

to change as requirements change. What if one day we decide to make a change to the

Article model and remove the validation requirements for the title attribute? If that

were to happen, our test would fail. If you want to try it, open the Article model in app/

models/article.rb and remove :title from the validates line which checks for presence,

and then run the tests again.

When our requirements change, we often need to update our tests. We recommend

updating the tests first (which should make them fail) and then updating the code (which

makes them pass). This is also known as test-driven development (TDD).

Though we added several tests for our Article model, we certainly didn’t test

everything that the Article model can do—nor did we write unit tests for our other

models—but hopefully we’ve gained a good understanding of how to write unit tests for

our models. Next, we’ll learn how to test another critical component of our application—

our controllers.

 Functional Testing Your Controllers
Tests to specifically check your controllers are called functional tests. When we tested

our models, we didn’t test them in the context of the web application—there were no

web requests and responses, nor were there any URLs to contend with. This focused

approach lets you hone in on the specific functionality of the model and test it in

isolation. Alas, Rails is great for building web applications; and although unit testing

models is important, it’s equally important to test the full request/response cycle.

Chapter 16 testIng Your applICatIon

448

 Testing the Articles Controller
Functional tests aren’t that much different from unit tests. The main difference is that

Rails sets up request and response objects for us; these objects act just like the live

requests and responses we get when running the application via a web server. If we open

the articles controller test in test/controllers/articles_controller_test.rb

(which Rails generated for us when we scaffolded the articles controller in an earlier

chapter) and examine the first few lines, as shown in Listing 16-11, we can see how this is

done.

Listing 16-11. Setup of a Controller Test in test/controllers/articles_

controller_test.rb

require 'test_helper'

class ArticlesControllerTest < ActionDispatch::IntegrationTest

 # ...

end

Just as in the unit test we worked with earlier, the first thing we do is require test_

helper. The test_helper.rb file sets up some common environment variables and

generally endows minitest with specific methods that make testing Rails applications

easier.

Note You can think of test_helper as being akin to application_helper.
any methods you define here are available to all your tests.

Notice that ArticlesControllerTest is a subclass of ActionDispatch::Integratio

nTest, which performs some magic for us behind the scenes. It gives our tests the ability

to send HTTP requests to our controller, make assertions against the response from

the controller, and make assertions on the cookies, flash, and session hashes which our

controller action may have modified. It also prepares three instance variables for us to

use in our tests: the first is @controller as an instance variable of ArticlesController,

after which it instantiates both @request and @response variables, which are instances of

ActionDispatch::Request and ActionDispatch::TestResponse, respectively.

Chapter 16 testIng Your applICatIon

449

Most of the time, we don’t need to worry about all this. Still, it’s important to know

what’s going on. Because the test we’re looking at was created by the scaffold generator,

it has quite a bit more code than we would get from the standard controller generator.

There’s a problem with this code, though: these test cases will not pass—at least not

without some modification. Warts and all, this gives us a good start and serves well as a

template.

As you look over the articles controller test file, notice that each test case tests a

specific request for an action on the controller. There’s a test for every action: index,

show, new, create, edit, update, and destroy. Let’s walk through each test case, making

adjustments as we go.

 Creating a Test Helper Method
Before we start testing our ArticlesController actions, we realize that in order to create

an article, our application expects a logged-in user. In fact, it’s conceivable that many of

our tests may expect a logged-in user. This is a perfect job for a test helper, because it can

be shared across many tests. We’ll create a helper method called login_as that accepts a

user’s name and makes the necessary request to log them in. We can use this method for

any test case that requires a login.

While we’re editing our test_helper file, we’ll go ahead and include the

Turbolinks::Assertions module into the ActionDispatch::IntegrationTest; doing so

will make sure that when we make assertions about being redirected in response to a

Turbolinks request, our tests will still work seamlessly.

To begin, open test/test_helper.rb in your editor and make the highlighted changes,

as shown in Listing 16-12.

Listing 16-12. The login_as Test Helper in test/test_helper.rb:

 https://gist.github.com/nicedawg/304592e83622cafa9297747d40dcab1f

ENV['RAILS_ENV'] ||= 'test'

require_relative '../config/environment'

require 'rails/test_help'

class ActiveSupport::TestCase

 # Run tests in parallel with specified workers

 parallelize(workers: :number_of_processors)

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/304592e83622cafa9297747d40dcab1f

450

 # Setup all fixtures in test/fixtures/*.yml for all tests in alphabetical order.

 fixtures :all

 # Add more helper methods to be used by all tests here...

 ActionDispatch::IntegrationTest.include Turbolinks::Assertions

 def login_as(user)

 post session_url(email: users(user).email, password: 'secret')

 end

end

The login_as method is pretty simple. It simply takes the provided fixture id for a

user and sends a POST request to session_url—just like a real user of our app would—

with their email address and password.

Now that we’ve created a handy shortcut to log in a user during our tests and

included the Turbolinks::Assertions module, we’re ready to proceed with our tests,

beginning with the index action.

 Getting ArticlesControllerTest to Pass
Since we changed the id of our articles fixture in a previous step, we need to update the

setup method in our test. (If we tried to run the test without making this change, every

single test case in this file would fail with an error like “No fixture named ‘one’ found for

fixture set ‘articles.’”) Modify your test/controllers/articles_controller_test.rb so that it

matches Listing 16-13.

Listing 16-13. Updated Setup for test/controllers/articles_controller_test.rb:

 https://gist.github.com/nicedawg/b3c1492071238170aca06160f4a5061c

require 'test_helper'

class ArticlesControllerTest < ActionDispatch::IntegrationTest

 setup do

 @article = articles(:welcome_to_rails)

 end

 test "should get index" do

 get articles_url

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/b3c1492071238170aca06160f4a5061c

451

 assert_response :success

 end

 test "should get new" do

 get new_article_url

 assert_response :success

 end

 test "should create article" do

 assert_difference('Article.count') do

 post articles_url, params: { article: { body: @article.body, excerpt:

@article.excerpt, location: @article.location, published_at:

@article.published_at, title: @article.title } }

 end

 assert_redirected_to article_url(Article.last)

 end

 test "should show article" do

 get article_url(@article)

 assert_response :success

 end

 test "should get edit" do

 get edit_article_url(@article)

 assert_response :success

 end

 test "should update article" do

 patch article_url(@article), params: { article: { body: @article.body,

excerpt: @article.excerpt, location: @article.location, published_at:

@article.published_at, title: @article.title } }

 assert_redirected_to article_url(@article)

 end

 test "should destroy article" do

 assert_difference('Article.count', -1) do

 delete article_url(@article)

 end

Chapter 16 testIng Your applICatIon

452

 assert_redirected_to articles_url

 end

end

The setup method is executed before every test case. In this case, the setup

method assigns the :welcome_to_rails article record from the fixtures to an

instance variable @article; the @article variable is available to all test cases in the

ArticlesControllerTest class.

Our controller tests define methods that correspond to HTTP verbs (get, post,

patch, and delete) and provide our route helpers, which we can use to make requests.

The first line of the "should get index" test makes a GET request for the index action

using get articles_url. Here’s the full syntax you use for these requests:

http_method(path, parameters, headers, env, xhr, as)

In the case of the "should get index" test, we have no parameters to submit

along with the request, so our call is simple. It makes a GET request to the index action

just as if you had done so with a browser. Try looking at your log/test.log file as you run a

controller test; you should see output that looks just like your server output when using

your application with a browser in development mode.

After the request has been made, we use assert_response :success to prove that the

request had a successful HTTP response code.

The assert_response assertion is a custom assertion defined by Rails (i.e., it’s not

part of the standard minitest library), and it does exactly what its name implies: it

asserts that the actual response status matches the expected status.

Every time you make an HTTP request, the server responds with a status code. When

the response is successful, the server returns a status code of 200. When an error occurs,

it returns 500. And when the browser can’t find the resource being requested, it returns

404. In our assertion, we used the shortcut :success, which is the same as 200. We could

have used assert_response(200), but it’s easier to remember words like success or

error than HTTP status codes, which is why we avoid using the numeric codes whenever

possible. Table 16-2 lists the shortcuts available when using assert_response.

Chapter 16 testIng Your applICatIon

453

Tip You can pass an explicit status code number to assert_response, such as
assert_response(501) or its symbolic equivalent assert_response(:not_
implemented). see https://www.iana.org/assignments/http-status-
codes/http-status-codes.xhtml for the full list of codes and default
messages you can use.

Let’s run the test for the index action. (Note: This command assumes your code

matches the preceding listing. If not, you may need to adjust the line number used in the

command to ensure you’re running the right test.)

$ rails test test/controllers/articles_controller_test.rb:8

Run options: --seed 30227

Running:

.

Finished in 0.559850s, 1.7862 runs/s, 1.7862 assertions/s.

1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Good! Our index action test case passes. It’s true that all we tested was the status

code of the response; we didn’t test that the correct content was included in the response

or the right view templates were rendered, for example. This used to be possible with

Rails out of the box, but Rails 5 removed this from controller tests, because they felt

that controller tests should be focused on the effects of executing a particular controller

action, not the details of how it does it.

Table 16-2. Status Code Shortcuts Known to

assert_response

Symbol Meaning

:success status code was 200.

:redirect status code was in the 300–399 range.

:missing status code was 404.

:error status code was in the 500–599 range.

Chapter 16 testIng Your applICatIon

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

454

So why would we write a controller test if we’re going to write another kind of test

that also runs our controller actions, but with richer tools for assertions? Well, often

we might not. But as you gain experience writing more tests, you’ll see there are always

trade-offs involved; for example, tests which use an actual browser to more accurately

simulate a user’s experience may be a more accurate test of your system as a whole, but

those tests are magnitudes slower than a controller test.

A common strategy is to use faster tests to cover the full range of all possible

scenarios in your application while using slower (but more thorough) tests to cover your

application’s critical paths.

It is possible, by adding the rails-controller-testing to our project, to add the ability to

assert instance variable assignments and which templates were rendered back into our

controller tests, but we’ll follow the recommendations of the Rails team; besides, we’ll

learn later in this chapter how to write other types of tests which will give us richer tools

for verifying the content of a response.

Okay, back to our tests. Let’s run the entire ArticlesControllerTest and see where we

stand:

$ rails test test/controllers/articles_controller_test.rb

Run options: --seed 8758

Running:

F

Failure:

ArticlesControllerTest#test_should_get_new [/Users/brady/Sites/beginning-

rails- 6-blog/test/controllers/articles_controller_test.rb:15]:

Expected response to be a <2XX: success>, but was a <302: Found> redirect

to <http://www.example.com/login>

Response body: <html><body>You are being <a href="http://www.example.com/

login">redirected.</body></html>

rails test test/controllers/articles_controller_test.rb:13

... more failures omitted ...

Finished in 0.483794s, 14.4690 runs/s, 16.5360 assertions/s.

7 runs, 8 assertions, 5 failures, 0 errors, 0 skips

Chapter 16 testIng Your applICatIon

455

Oh my. Out of our seven test cases, five failed. Don’t worry; often, there’s a single root

cause which, when fixed, can clear up multiple test cases.

Looking at the preceding failure output, we see that the “should get new” test case

failed because we expected it to be successful, but instead it redirected to the login page.

Of course! We only allow logged-in users to access the new article form, to create an

article, to edit an article, to update an article, and to destroy an article!

So let’s use the login_as test helper method we created where it’s needed and see if our

tests will now pass. Modify test/controllers/articles_controller.rb to match Listing 16-14.

Listing 16-14. Adding login_as to Test Cases in ArticlesControllerTest:

https://gist.github.com/nicedawg/ec58c6d0b771078a308580fbc2c1743c

require 'test_helper'

class ArticlesControllerTest < ActionDispatch::IntegrationTest

 setup do

 @article = articles(:welcome_to_rails)

 end

 test "should get index" do

 get articles_url

 assert_response :success

 end

 test "should get new" do

 login_as :eugene

 get new_article_url

 assert_response :success

 end

 test "should create article" do

 login_as :eugene

 assert_difference('Article.count') do

 post articles_url, params: { article: { body: @article.body, excerpt:

@article.excerpt, location: @article.location, published_at:

@article.published_at, title: @article.title } }

 end

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/ec58c6d0b771078a308580fbc2c1743c

456

 assert_redirected_to article_url(Article.last)

 end

 test "should show article" do

 get article_url(@article)

 assert_response :success

 end

 test "should get edit" do

 login_as :eugene

 get edit_article_url(@article)

 assert_response :success

 end

 test "should update article" do

 login_as :eugene

 patch article_url(@article), params: { article: { body: @article.body,

excerpt: @article.excerpt, location: @article.location, published_at:

@article.published_at, title: @article.title } }

 assert_redirected_to article_url(@article)

 end

 test "should destroy article" do

 login_as :eugene

 assert_difference('Article.count', -1) do

 delete article_url(@article)

 end

 assert_redirected_to articles_url

 end

end

Chapter 16 testIng Your applICatIon

457

Let’s run our test again and see if we made a dent in our test failures:

$ rails test test/controllers/articles_controller_test.rb

Run options: --seed 42474

Running:

.......

Finished in 0.675501s, 10.3627 runs/s, 13.3234 assertions/s.

7 runs, 9 assertions, 0 failures, 0 errors, 0 skips

Hurrah! Our tests pass now! We could declare victory and end on a high note, but we

realize that these tests were supplied by our scaffolding; while they’re very useful to have,

they only cover the happy path—that is to say, they only make assertions on what we

think of as typical interactions.

 Handling Edge Cases
However, we often want our tests to cover edge cases. For instance, we only allow the

owner of an article to edit the article. We don’t allow just any logged-in user to edit any

article. To be sure we don’t accidentally remove this security restriction, we should write

tests that cover the scenario of user A trying to edit user B’s article.

Let’s add tests to prove that logged-in users who are not the owner are not allowed

to edit, update, or destroy another’s article. Let’s modify ArticlesControllerTest in test/

controllers/articles_controller_test.rb to match Listing 16-15.

Listing 16-15. Handling Security in ArticlesControllerTest

https://gist.github.com/nicedawg/36039c7dd6feed0883c526a924e712d7

require 'test_helper'

class ArticlesControllerTest < ActionDispatch::IntegrationTest

 setup do

 @article = articles(:welcome_to_rails)

 end

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/36039c7dd6feed0883c526a924e712d7

458

 test "should get index" do

 get articles_url

 assert_response :success

 end

 test "should get new" do

 login_as :eugene

 get new_article_url

 assert_response :success

 end

 test "should create article" do

 login_as :eugene

 assert_difference('Article.count') do

 post articles_url, params: { article: { body: @article.body, excerpt:

@article.excerpt, location: @article.location, published_at:

@article.published_at, title: @article.title } }

 end

 assert_redirected_to article_url(Article.last)

 end

 test "should show article" do

 get article_url(@article)

 assert_response :success

 end

 test "should get edit" do

 login_as :eugene

 get edit_article_url(@article)

 assert_response :success

 end

 test "should raise RecordNotFound when non-owner tries to get edit" do

 login_as :lauren

 assert_raises(ActiveRecord::RecordNotFound) do

 get edit_article_url(@article)

 end

 end

Chapter 16 testIng Your applICatIon

459

 test "should update article" do

 login_as :eugene

 patch article_url(@article), params: { article: { body: @article.body,

excerpt: @article.excerpt, location: @article.location, published_at:

@article.published_at, title: @article.title } }

 assert_redirected_to article_url(@article)

 end

 test "should raise RecordNotFound when non-owner tries to update article" do

 login_as :lauren

 assert_raises(ActiveRecord::RecordNotFound) do

 patch article_url(@article), params: { article: { body: @article.

body, excerpt: @article.excerpt, location: @article.location,

published_at: @article.published_at, title: @article.title } }

 end

 end

 test "should destroy article" do

 login_as :eugene

 assert_difference('Article.count', -1) do

 delete article_url(@article)

 end

 assert_redirected_to articles_url

 end

 test "should raise RecordNotFound when non-owner tries to destroy

article" do

 login_as :lauren

 assert_raises(ActiveRecord::RecordNotFound) do

 delete article_url(@article)

 end

 end

end

As you can see, we added additional tests next to our existing edit, update, and

destroy tests which assert that an exception is raised when a user attempts to modify an

article which they don't own. In each case, we logged in as Lauren (because we know

Chapter 16 testIng Your applICatIon

460

our articles fixture is owned by Eugene) and attempted the edit/update/delete operation

which Eugene was able to successfully complete, but verified that Lauren was unable to

do so. Very powerful!

Looking at our articles controller, it seems our controller test has covered most of its

functionality; however, we realize we haven’t yet covered the notify_friend action. Let’s

modify our ArticlesControllerTest in tests/controllers/articles_controller_test.rb to add

a couple of tests to cover the scenarios when a reader submits the “Email a Friend” form

with both valid and invalid information, as shown in Listing 16-16.

Listing 16-16. Covering notify_friend in ArticlesControllerTest

https://gist.github.com/nicedawg/b1da893b01ff4e3e3eff5778ef8b912f

require 'test_helper'

class ArticlesControllerTest < ActionDispatch::IntegrationTest

 setup do

 @article = articles(:welcome_to_rails)

 end

 # ... code omitted for brevity ...

 test "should raise RecordNotFound when non-owner tries to destroy

article" do

 login_as :lauren

 assert_raises(ActiveRecord::RecordNotFound) do

 delete article_url(@article)

 end

 end

 test "should redirect to article url when submitting valid email a friend

form" do

 post notify_friend_article_url(@article), params: {

 email_a_friend: { name: 'Joe', email: 'joe@example.com' }

 }, xhr: true

 assert_redirected_to article_url(@article)

 end

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/b1da893b01ff4e3e3eff5778ef8b912f

461

 test "should respond with unprocessable_entity when submitting invalid

email a friend form" do

 post notify_friend_article_url(@article), params: {

 email_a_friend: { name: 'Joe', email: 'notAnEmail' }

 }, xhr: true

 assert_response :unprocessable_entity

 end

end

The first test proves that when a valid “Email a Friend” form submission is sent to the

ArticlesController, the response is a redirect to the article show page. And the next test

proves that when invalid data is sent, an HTTP status code for “unprocessable entity” is

returned. Note that we supplied an additional option to our post calls which we haven’t

used yet—xhr: true. We know that these requests to submit the “Email a Friend” form use

Ajax, so we set xhr: true so that the request will indicate it expects a JavaScript response.

Now that we’ve added these test cases, let’s run the entire controller test again and

see what happens:

$ rails test test/controllers/articles_controller_test.rb

Run options: --seed 9405

Running:

F

Failure:

ArticlesControllerTest#test_should_redirect_to_article_url_when_submitting_

valid_email_a_friend_form [/Users/brady/Sites/beginning-rails-6-blog/test/

controllers/articles_controller_test.rb:77]:

Expected response to be a Turbolinks visit to <http://www.example.com/

articles/517600287> but was a visit to <http://www.example.com/login>.

Expected "http://www.example.com/articles/517600287" to be === "http://www.

example.com/login".

rails test test/controllers/articles_controller_test.rb:73

F

Chapter 16 testIng Your applICatIon

462

Failure:

ArticlesControllerTest#test_should_respond_with_unprocessable_entity_when_

submitting_invalid_email_a_friend_form [/Users/brady/Sites/beginning-rails-

6-blog/test/controllers/articles_controller_test.rb:84]:

Expected response to be a <422: unprocessable_entity>, but was a <200: OK>

Response body: Turbolinks.clearCache()

Turbolinks.visit("http://www.example.com/login", {"action":"replace"}).

Expected: 422

 Actual: 200

rails test test/controllers/articles_controller_test.rb:80

..........

Finished in 0.763068s, 15.7260 runs/s, 20.9680 assertions/s.

12 runs, 16 assertions, 2 failures, 0 errors, 0 skips

Hmm. Our new tests failed. Looking closely at the failure output, we see both

responses redirected to the login path. What? We don’t require a visitor to be logged in to

send an email to a friend, do we?

In fact, we do! This was clearly an oversight on our part (perhaps you realized this

earlier). Looking at the top of ArticlesController, we require authentication for all actions

except for index and show. When we added the notify_friend action in a previous chapter,

we should have also excluded notify_friend from requiring authentication. Not only can

tests help prevent future bugs, they can help us find current bugs! Let’s fix this bug in our

application by modifying ArticlesController in app/controllers/articles_controller.rb to

match Listing 16-17.

Listing 16-17. Fix Bug in ArticlesController Which Required Authentication to

Send Email to a Friend

https://gist.github.com/nicedawg/68d8c626d3f3dd9cf37d6bdb56c93f87

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show, :notify_friend]

 before_action :set_article, only: [:show, :notify_friend]

 # ... code omitted for brevity ...

end

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/68d8c626d3f3dd9cf37d6bdb56c93f87

463

Run the test again, and we should see that our ArticlesController now passes all of

its tests.

In case you’re still on the fence about whether writing automated tests is worth the

effort, try running this entire test file again and observe how long it takes to run; quite

likely, it takes less than one second. Consider how long it would take to verify these

scenarios manually—a few minutes at best. (And if you’re like me, you might forget to

manually verify one or two of them.) Also consider the fact that writing tests helped us

find an embarrassing bug!

We’ve covered some of the most common scenarios when writing controller tests,

but testing is a deep topic. When you’re ready for more information, the Rails guide

at https://guides.rubyonrails.org/testing.html#functional-tests-for-your-

controllers is a great resource.

Next, we’ll take a look at other types of tests we can write.

 Running the “Full” Test Suite
Up until this point, we’ve been using the rails test command with arguments, in order

to run certain tests. But we mentioned that if we run the rails test command with no

arguments, it runs most of the tests. (It will exclude any system tests, which we’ll describe

later.)

So let’s try running the rails test command and see if we have any more broken tests:

$ rails test

Run options: --seed 40931

Running:

.........E

Error:

NotifierMailerTest#test_email_friend:

ArgumentError: wrong number of arguments (given 0, expected 3)

 app/mailers/notifier_mailer.rb:2:in `email_friend'

 test/mailers/notifier_mailer_test.rb:6:in `block in

<class:NotifierMailerTest>'

rails test test/mailers/notifier_mailer_test.rb:4

.....E

Chapter 16 testIng Your applICatIon

https://guides.rubyonrails.org/testing.html#functional-tests-for-your-controllers
https://guides.rubyonrails.org/testing.html#functional-tests-for-your-controllers

464

Error:

DraftArticlesMailerTest#test_no_author:

ArgumentError: wrong number of arguments (given 0, expected 1)

 app/mailers/draft_articles_mailer.rb:8:in `no_author'

 test/mailers/draft_articles_mailer_test.rb:6:in `block in <class:DraftA

rticlesMailerTest>'

rails test test/mailers/draft_articles_mailer_test.rb:4

...

Finished in 0.704911s, 26.9538 runs/s, 38.3027 assertions/s.

19 runs, 27 assertions, 0 failures, 2 errors, 0 skips

Looking closely at the failures, we see we have a couple of mailer tests which need

attention. That makes sense; we used the Rails generator to create these mailer classes,

but never updated their tests to reflect the changes we made. Let’s fix these mailer tests.

 Mailer Tests
Mailers can be just an integral part of your application as controllers and models and

deserve to be tested as well. Again, Rails gives us tools to make doing so as easy as

possible.

We saw in the previous section that we have some failing mailer tests, since we didn’t

update the generated tests when we updated our mailers, so let’s fix that.

First, let’s focus on the failure from our NotifierMailerTest. Looking at the test (in

test/mailers/notifier_mailer_test.rb) and the mailer (in app/mailers/notifier_mailer.rb)

side by side, we see that the problem is that in the test, we’re not passing any parameters

to the email_friend method. We also see that our test’s assertions are no longer valid.

Let’s edit our NotifierMailerTest to fix the test, as shown in Listing 16-18.

Listing 16-18. Fixing NotifierMailerTest

https://gist.github.com/nicedawg/c467c97ddfce1dbfd99bf6641ed2e06f

require 'test_helper'

class NotifierMailerTest < ActionMailer::TestCase

 def setup

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/c467c97ddfce1dbfd99bf6641ed2e06f

465

 @article = articles(:welcome_to_rails)

 @sender_name = 'Reed'

 @receiver_email = 'to@example.com'

 end

 test "email_friend" do

 mail = NotifierMailer.email_friend(@article, @sender_name, @receiver_email)

 assert_emails 1 do

 mail.deliver_now

 end

 assert_equal "Interesting Article", mail.subject

 assert_equal ["to@example.com"], mail.to

 assert_equal ["from@example.com"], mail.from

 assert_match "Your friend, #{@sender_name}", mail.body.encoded

 assert_match @article.title, mail.body.encoded

 end

end

First, we added a setup method to run before the test, to fetch the article and set the

sender and receiver information. We could have done this in the test itself, but this helps

keep the test clearer and encourages reuse for future tests.

Then, we passed the parameters that NotifierMailer.email_friend expects. This fixes

the immediate problem our previous test run showed us, but we made some more

changes.

After that, we used a special assertion method—assert_emails—which Action

Mailer provides to prove that if we call deliver_now on the mailer object, one email is

“delivered.”

Then, we updated the existing assertions to match what we expect the email to

look like. We could have chosen to ensure that every character in the body of the email

is exactly what we expect, but we decided to just check for the critical pieces. (As

mentioned before, writing tests involves trade-offs; writing extremely thorough tests may

give you more confidence, but it takes longer to write the tests, and the tests become too

brittle—too easily broken by insignificant changes.)

Chapter 16 testIng Your applICatIon

466

After updating this mailer test, let’s run the test again:

$ rails test test/mailers/notifier_mailer_test.rb

Run options: --seed 46405

Running:

E

Error:

NotifierMailerTest#test_email_friend:

ActionView::Template::Error: Missing host to link to! Please provide the

:host parameter, set default_url_options[:host], or set :only_path to true

 app/views/notifier_mailer/email_friend.html.erb:6

 app/mailers/notifier_mailer.rb:10:in `email_friend'

 test/mailers/notifier_mailer_test.rb:14:in `block (2 levels) in

<class:NotifierMailerTest>'

 test/mailers/notifier_mailer_test.rb:13:in `block in

<class:NotifierMailerTest>'

rails test test/mailers/notifier_mailer_test.rb:10

Finished in 0.279585s, 3.5767 runs/s, 0.0000 assertions/s.

1 runs, 0 assertions, 0 failures, 1 errors, 0 skips

Now we have a new error, which is a form of progress! This error may look familiar;

back in Chapter 12, we had to configure this default_url_options setting to send emails

in development. We need to also configure this setting for our test environment. Modify

your config/environments/test.rb file to match Listing 16-19.

Listing 16-19. Configuring Action Mailer Default URL Host in Test Environment

https://gist.github.com/nicedawg/b99964ceadc6f2bd4efef52e14caabbc

The test environment is used exclusively to run your application's

test suite. You never need to work with it otherwise. Remember that

your test database is "scratch space" for the test suite and is wiped

and recreated between test runs. Don't rely on the data there!

Rails.application.configure do

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/b99964ceadc6f2bd4efef52e14caabbc

467

 # Settings specified here will take precedence over those in config/

application.rb.

 # ... settings omitted for brevity ...

 config.action_mailer.perform_caching = false

 # Tell Action Mailer not to deliver emails to the real world.

 # The :test delivery method accumulates sent emails in the

 # ActionMailer::Base.deliveries array.

 config.action_mailer.delivery_method = :test

 config.action_mailer.default_url_options = { host: 'http://example.com' }

 # Print deprecation notices to the stderr.

 config.active_support.deprecation = :stderr

 # Raises error for missing translations.

 # config.action_view.raise_on_missing_translations = true

end

Now, running the NotifierMailer test again should show success! We still have a

failing DraftArticlesMailer test, though. Let’s quickly fix that. Let’s modify our code in

test/mailers/draft_articles_mailer_test.rb to match Listing 16-20.

Listing 16-20. Fixing DraftArticlesMailerTest

https://gist.github.com/nicedawg/f03b344103e4a4f66370fe668b8be576

require 'test_helper'

class DraftArticlesMailerTest < ActionMailer::TestCase

 test "no_author" do

 mail = DraftArticlesMailer.no_author('to@example.org')

 assert_equal "Your email could not be processed", mail.subject

 assert_equal ["to@example.org"], mail.to

 assert_equal ["from@example.com"], mail.from

 assert_match "Please check your draft articles email address and try

again.", mail.body.encoded

 end

end

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/f03b344103e4a4f66370fe668b8be576

468

These fixes were fairly minor; we provided the parameter which no_author expected

and updated a couple of assertions to match reality. Now, try running the rails test

command again. Success!

We only scratched the surface of Action Mailer tests, and we haven’t even talked

about Action Cable tests, Active Job tests, or Action Mailbox tests. Entire books are

devoted to testing the Rails framework; we won’t cover all types of testing here, but

hopefully you feel more comfortable with testing Rails applications than you did before.

We’re not quite done with testing yet, though. Up to this point, we’ve covered unit

test models and mailers, as well as writing functional controller tests which gave us the

ability to quickly make some assertions about our controller’s behavior, but we realized

those controller tests had some limitations. We’d like to have some tests—even if they’re

slower—that approach testing the actual user experience.

 System Testing
Rails defines one more type of test, and it’s the highest level of the bunch. System tests

go much further than the controller tests we wrote earlier. Unlike controller tests, which

basically just look for response codes, system tests can span multiple controllers and

actions with full session support. System tests either are run by a Rack::Test driver,

which is like a barebones simulated web browser, or can even be run by an actual

browser installed on your workstation! They’re the closest you can get to simulating

actual interaction with a web application. They test that the individual pieces of your

application integrate well together.

It should be noted that Rails also supports another, similar type of test, called

integration tests, though many developers feel there’s too much overlap between

controller tests, integration tests, and system tests and opt for leaving integration tests

out of their test suite. We won’t cover integration tests in this chapter, but check out

https://guides.rubyonrails.org/testing.html#integration-testing if you’d like to

learn more.

 System Testing the Blog Application
Let’s get started by writing some system tests. In fact, we already have one; in an earlier

chapter, when we used the generator to scaffold our articles controller, Rails created the

test/system/articles_test.rb file for us. Let’s go ahead and try to run it:

Chapter 16 testIng Your applICatIon

https://guides.rubyonrails.org/testing.html#integration-testing

469

$ rails test:system

Run options: --seed 27728

Running:

Capybara starting Puma...

* Version 4.3.1 , codename: Mysterious Traveller

* Min threads: 0, max threads: 4

* Listening on tcp://127.0.0.1:55167

... output omitted ...

[Screenshot]: /Users/brady/Sites/beginning-rails-6-blog/tmp/screenshots/

failures_test_updating_a_Article.png

E

Error:

ArticlesTest#test_updating_a_Article:

StandardError: No fixture named 'one' found for fixture set 'articles'

 test/system/articles_test.rb:5:in `block in <class:ArticlesTest>'

... output omitted ...

Finished in 5.770051s, 0.6932 runs/s, 0.0000 assertions/s.

4 runs, 0 assertions, 0 failures, 4 errors, 0 skips

First of all, you may have been surprised to see that when running this system test,

suddenly some Chrome browser windows opened and closed; don’t worry—your

workstation hasn’t gone crazy! System tests in Rails are configured to use Chrome by

default; those windows were actually launched by running the system test.

Looking at the test output, we see our tests failed, but for a familiar reason; we need

to update the fixture name. We’ll fix that in a moment, but let’s keep looking at this test

output.

First, we see “Capybara starting Puma…”; Capybara is a gem which Rails now

includes and configures by default which gives your system tests the ability to control

a real browser and to help make assertions. Puma is a Ruby server that can handle web

requests and pass them to your Rails app. System tests start their own server so that the

Chapter 16 testIng Your applICatIon

470

test environment is kept isolated from your development environment. It’s possible to

change Capybara and Puma configuration in your test environment, but it’s nice to know

it works out of the box.

Also, notice how when a test fails, a screenshot is generated; this can be very useful!

Those browser windows flew by so fast, we wouldn’t have had a chance to see what was

wrong; but the screenshot taken at the point of failure can sometimes help us debug our

system tests.

Before we fix our fixture reference in our test, let’s make a quick change so that when

we run our system tests, Chrome windows don’t take over our screen. Our system tests

can continue to use Chrome in “headless” mode, which simply means in a way that

isn’t visible on your workstation. Let’s switch to headless Chrome by modifying test/

application_system_test_case.rb to match Listing 16-21.

Listing 16-21. Switching System Tests to Use Headless Chrome by Default

https://gist.github.com/nicedawg/17d775d3bea48b5274e15f5bed9b41b5

require "test_helper"

class ApplicationSystemTestCase < ActionDispatch::SystemTestCase

 driven_by :selenium, using: :headless_chrome, screen_size: [1400, 1400]

end

As you can see, this ApplicationSystemTestCase class is a convenient place to change

defaults for our system tests. It was using selenium—a library which knows how to

control web browsers—to control Chrome, with a given screen size. By changing this to

headless_chrome, our system tests will still run with the Chrome browser, but invisibly.

It’s also possible to use other browsers, like Firefox and others; see https://github.com/

teamcapybara/capybara#selenium for more information.

Run the system tests again with rails test:system; we should see the same failures as

before, but without browser windows popping up during the test run. But now you know

how easy it is to switch back to using visible Chrome windows if you want.

Okay, let’s get back to fixing our system test. First, let’s fix our immediate problem—

the reference to our articles fixture. Modify the reference in the setup method of your

test/system/articles_test.rb so it matches Listing 16-22.

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/17d775d3bea48b5274e15f5bed9b41b5
https://github.com/teamcapybara/capybara#selenium
https://github.com/teamcapybara/capybara#selenium

471

Listing 16-22. Fixing Articles Fixture Reference in test/system/articles_test.rb

https://gist.github.com/nicedawg/a16e2ae42319be3641ca9d4bb57f0827

require "application_system_test_case"

class ArticlesTest < ApplicationSystemTestCase

 setup do

 @article = articles(:welcome_to_rails)

 end

 test "visiting the index" do

 visit articles_url

 assert_selector "h1", text: "Articles"

 end

 test "creating a Article" do

 visit articles_url

 click_on "New Article"

 fill_in "Body", with: @article.body

 fill_in "Excerpt", with: @article.excerpt

 fill_in "Location", with: @article.location

 fill_in "Published at", with: @article.published_at

 fill_in "Title", with: @article.title

 click_on "Create Article"

 assert_text "Article was successfully created"

 click_on "Back"

 end

 test "updating a Article" do

 visit articles_url

 click_on "Edit", match: :first

 fill_in "Body", with: @article.body

 fill_in "Excerpt", with: @article.excerpt

 fill_in "Location", with: @article.location

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/a16e2ae42319be3641ca9d4bb57f0827

472

 fill_in "Published at", with: @article.published_at

 fill_in "Title", with: @article.title

 click_on "Update Article"

 assert_text "Article was successfully updated"

 click_on "Back"

 end

 test "destroying a Article" do

 visit articles_url

 page.accept_confirm do

 click_on "Destroy", match: :first

 end

 assert_text "Article was successfully destroyed"

 end

end

We fixed the reference to our articles fixture, but before running our system test

again, let’s take a closer look at how this test works.

First, the overall structure looks familiar; just like the other tests we’ve written, there’s

an optional setup method, and each test case is declared just like we’ve done before.

However, we see some new methods in our test cases; visit is a Capybara method

which tells our browser to navigate to a particular URL. assert_selector is another

Capybara method which lets us make assertions like “there is an H1 tag with the text

’Articles’.” click_on is another Capybara method which finds a button or link with the

provided text (or even CSS selector) and tells the browser to click it. fill_in is yet another

Capybara method that fills in an input field with provided data.

Capybara provides a vast array of methods (with options) to give you the ability to

perform almost any browser function in your system tests; by default, Capybara only

interacts with visible elements and will typically wait up to a couple of seconds for a

given element to appear on the screen. There are too many methods and options to list

here; visit https://github.com/teamcapybara/capybara#the-dsl for more information

when you’re ready.

Chapter 16 testIng Your applICatIon

https://github.com/teamcapybara/capybara#the-dsl

473

Running the system test again, we see new errors. (Remember, that’s progress!)

$ rails test:system

Run options: --seed 6356

Running:

... output omitted ...

E

Error:

ArticlesTest#test_creating_a_Article:

Capybara::ElementNotFound: Unable to find link or button "New Article"

 test/system/articles_test.rb:15:in `block in <class:ArticlesTest>'

rails test test/system/articles_test.rb:13

Finished in 5.833557s, 0.6857 runs/s, 0.1714 assertions/s.

4 runs, 1 assertions, 0 failures, 3 errors, 0 skips

We see that our tests for creating, updating, and destroying an article failed, due to

being unable to find links or buttons with the given tests. Similar to our controller test

earlier in this chapter, we realize that only logged-in users are allowed to perform these

actions, so we’ll need to add code to sign in a user for these tests.

Also, we remember that we only show the Edit and Destroy links when the logged-in

author is hovering over the title, so we’ll need to add a hover command to those tests in

order for those tests to pass. Also, this generated test wasn’t updated to reflect that we

changed the article body to be handled by Action Text nor to reflect that the Published At

field is a series of select boxes instead of a text input.

Let’s edit our test in test/system/articles_test.rb to match Listing 16-23 to address

these problems. We’ll explain further after the listing.

Listing 16-23. Fixing Articles System Test in test/system/articles_test.rb

https://gist.github.com/nicedawg/9e37f7000fd9761762c312bfcd92d24b

require "application_system_test_case"

class ArticlesTest < ApplicationSystemTestCase

 setup do

Chapter 16 testIng Your applICatIon

https://gist.github.com/nicedawg/9e37f7000fd9761762c312bfcd92d24b

474

 @article = articles(:welcome_to_rails)

 @user = users(:eugene)

 end

 def sign_in(user)

 visit login_url

 fill_in "email", with: user.email

 fill_in "password", with: 'secret'

 click_button "Login"

 end

 def fill_in_rich_text(locator, content)

 find(locator).base.send_keys(content)

 end

 def set_datetime_select(locator, datetime)

 select datetime.strftime("%Y"), from: "#{locator}_1i" # Year

 select datetime.strftime("%B"), from: "#{locator}_2i" # Month

 select datetime.strftime("%-d"), from: "#{locator}_3i" # Day

 select datetime.strftime("%H"), from: "#{locator}_4i" # Hour

 select datetime.strftime("%M"), from: "#{locator}_5i" # Minutes

 end

 test "visiting the index" do

 visit articles_url

 assert_selector "h1", text: "Articles"

 end

 test "creating a Article" do

 sign_in(@user)

 visit articles_url

 click_on "New Article"

 fill_in_rich_text("#article_body", @article.body)

 fill_in "Excerpt", with: @article.excerpt

 fill_in "Location", with: @article.location

 set_datetime_select("article_published_at", @article.published_at)

Chapter 16 testIng Your applICatIon

475

 fill_in "Title", with: @article.title

 click_on "Create Article"

 assert_text "Article was successfully created"

 end

 test "updating a Article" do

 sign_in(@user)

 visit articles_url

 find(".article a", match: :first).hover

 find(".article .actions a", text: "Edit").click

 fill_in_rich_text("#article_body", @article.body)

 fill_in "Excerpt", with: @article.excerpt

 fill_in "Location", with: @article.location

 set_datetime_select("article_published_at", @article.published_at)

 fill_in "Title", with: @article.title

 click_on "Update Article"

 assert_text "Article was successfully updated"

 end

 test "destroying a Article" do

 sign_in(@user)

 visit articles_url

 find(".article a", match: :first).hover

 find(".article .actions a", text: "Delete").click

 assert_text "Article was successfully destroyed"

 end

end

Whew! It took several changes, and some of them were complicated; we’ll explain

the changes, but don’t worry if these changes don’t seem self-evident. It took this author

several tries, Internet searches, and debugging using test output and screenshots to

Chapter 16 testIng Your applICatIon

476

figure it out. System tests are often more tedious to implement and more fragile (since

minor changes anywhere in the application can cause them to break), but the effort is

worth it.

First, we loaded the eugene user in our setup method so we can log him in when

necessary.

Next, we created a sign_in method which takes a user and performs the necessary

Capybara operations to log them in. This method would be a great candidate for moving

to our ApplicationSystemTestCase class so it can be shared between multiple system

tests, but this is fine for now.

Next, we realized we couldn’t simply fill_in "Body", as test failures indicate that

element didn’t exist (or wasn’t visible). Of course, we replaced the simple text area

for an article’s body with the Action Text control in an earlier chapter. Unfortunately,

there doesn’t seem to be an elegant way to populate the content for an Action Text rich

text field, so we resort to some lower-level Capybara methods. We use find to grab a

reference to a particular DOM element and then use base.send_keys to simulate typing

into a specific element. Since this was a little tricky to figure out, we decided to make it

a method called fill_in_rich_text; again, this would be a great candidate for sharing and

should probably be moved elsewhere, but it’s fine for now.

Next, we realized that fill_in "Published at" wouldn’t work, as our Published At field

isn’t a simple text box, but rather a series of select boxes. Again, since this was tricky

to figure out, we made it a separate method called set_datetime_select. Like our other

custom methods, this is a great candidate for sharing between other system tests, but it’s

fine here for now.

For our creating an Article test, we added a call to sign in the user, replaced the

commands to populate the body and published_at fields with our custom commands,

and removed the final click_on "Back" command because we had made changes to our

app that rendered that final command invalid.

Our changes to the updating an Article test were similar, though we couldn’t just

click_on "Edit"; we had to use some commands to find the first article link and hover over

it and then click the Edit link within the article’s .actions DOM element.

Finally, our changes to the destroying an Article test were similar, except we had

to remove the page.accept_confirm method, since our “Delete” link doesn’t trigger a

confirmation dialog when clicked.

Chapter 16 testIng Your applICatIon

477

Running our system tests now, we should see sweet success:

$ rails test:system

Run options: --seed 29652

Running:

Capybara starting Puma...

* Version 4.3.1 , codename: Mysterious Traveller

* Min threads: 0, max threads: 4

* Listening on tcp://127.0.0.1:50734

... output omitted ...

....

Finished in 6.055268s, 0.6606 runs/s, 0.6606 assertions/s.

4 runs, 4 assertions, 0 failures, 0 errors, 0 skips

Notice the runtime of our system tests; we only had four tests, but they took 6

seconds to run. Compared to our other tests—19 tests that took less than 1 second—

system tests are quite a bit slower. It’s true that 6 seconds is not long at all, but imagine

your application having hundreds of system tests; soon, the entire test suite may take 15,

20, 30, or even 60 minutes to run! As mentioned earlier, a challenge of writing automated

tests for your application is deciding which types of tests to write for certain features of

your application.

For fun, try running the tests again with visible Chrome by changing the reference

to :headless_chrome in your test/application_system_test_case.rb file back to :chrome. If

you watch closely, you’ll see the browser windows open and start navigating, filling out

forms, and submitting forms by themselves!

 Summary
This chapter served as an introduction to the Rails philosophy behind testing and

stressed its importance as part of the development cycle. We toured some of the most

common types of tests—unit tests for our models, controller tests, mailer tests, and

system tests, but we only scratched the surface.

Chapter 16 testIng Your applICatIon

478

While it’s not feasible to cover everything there is to know about testing your Rails

application in this chapter, hopefully you gained a good foundation and know where to

look for more information.

Hopefully you’ve also understood how testing is an important part of the

development cycle. Despite the fact that we left it until near the end of this book, it’s not

something we should treat as an afterthought. Now that you know how to write a Rails

application and how to test it, you can combine the steps: write some code, and then

test it. As you get into the code/test rhythm (or better yet, test/code), you’ll find that you

can write better, more reliable software. And you may sleep a little better at night too,

knowing that your code changes have a safety net.

We should also mention that Rails’ default testing framework, minitest, is only

a default choice. There are several other test frameworks available for the Ruby

community. In fact, test frameworks become almost like a religion to developers. RSpec

(https://rspec.info/) is a very popular choice, as is test-unit (https://test-unit.

github.io/), which was actually the default Rails test framework before minitest. There

is also Cucumber (https://cucumber.io/), which uses a language called Gherkin that

lets you write tests in a more human-friendly manner.

No matter which framework you decide to use, make sure you test early and often.

Not only does it ensure your application does what you expect but it is also frequently

used as a source of documentation by developers moving into your project for the first

time.

The next chapter will look at preparing your applications for a global audience

through the use of Rails’ built-in internationalization and localization support.

Chapter 16 testIng Your applICatIon

https://rspec.info/
https://test-unit.github.io/
https://test-unit.github.io/
https://cucumber.io/

479
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_17

CHAPTER 17

Internationalization
Internationalization in Rails used to be a complex task until Rails version 2.2 came out

with internationalization and localization support built in. Since then, launching an

application in another language or even multiple languages has become a relatively

simple task.

What is internationalization, and why do we care? According to Wikipedia:

Internationalization is the process of designing a software application so that
it can be adapted to various languages and regions without engineering
changes. Localization is the process of adapting internationalized software
for a specific region or language by translating text and adding locale-specific
components.

— https://en.wikipedia.org/wiki/Internationalization_and_
localization)

This chapter explains internationalization and localization support in Rails. First,

we’ll set up internationalization in our blog application with English as the main

language; then we’ll localize it to another language; and, finally, we’ll support both

languages and allow users to pick the language they want.

Internationalization and localization are long words, so developers use short names

for them. The short name for internationalization is i18n, which is the first and the last

letters of the word with the count of how many characters are in between. Following the

same logic, localization’s short name is l10n.

Note If you need to get the code at the exact point where you finished Chapter 16,
download the source code zip file from the book’s page on www.apress.com and
extract it on your computer.

https://doi.org/10.1007/978-1-4842-5716-6_17#DOI
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
http://www.apress.com

480

 Internationalization Logic in Rails
The i18n and l10n support in Rails is based on a single module that takes care of all

the translation and locale changes for you; this module is called I18n and is added to

your Rails application automatically by the i18n gem, which is a dependency of the

activesupport gem, which is in turn a dependency of Rails.

I18n’s main method is translate, which simply looks up locale-specific content by

looking for a translation text in a locale file, normally located in config/locales.

Locales are like languages but are more specific to regions. For example, en

represents English in general, whereas en-us represents US English and en-uk

represents UK English. In Rails, those differences are reflected in the translation files,

mainly for localization options like time, date formats, and currency.

If you look in the config/locales directory, you’ll see a file called en.yml; it’s a

YAML file that defines the English translations for your application. Open the file, and

you’ll see something similar to the code in Listing 17-1.

Listing 17-1. The Default English Locale File in config/locales/en.yml

Files in the config/locales directory are used for internationalization

and are automatically loaded by Rails. If you want to use locales other

than English, add the necessary files in this directory.

#

To use the locales, use `I18n.t`:

#

I18n.t 'hello'

#

In views, this is aliased to just `t`:

#

<%= t('hello') %>

#

To use a different locale, set it with `I18n.locale`:

#

I18n.locale = :es

#

This would use the information in config/locales/es.yml.

#

Chapter 17 InternatIonalIzatIon

481

The following keys must be escaped otherwise they will not be retrieved by

the default I18n backend:

#

true, false, on, off, yes, no

#

Instead, surround them with single quotes.

#

en:

'true': 'foo'

#

To learn more, please read the Rails Internationalization guide

available at https://guides.rubyonrails.org/i18n.html.

en:

 hello: "Hello world"

These locale files are written in the YAML format. It starts with the locale symbol,

which is also the translation file name; in this case, it’s en. Then, the file lists the

translations in a key-value pair style: the en.yml example defines the translation of hello

as “Hello world.”

Now, let’s see the translation in action by trying the I18n module in the console.

Launch it with rails console:

>> I18n.translate "hello"

=> "Hello world"

>> I18n.t "hello"

=> "Hello world"

We pass the key to the translate method, and it returns the corresponding value

from the current locale, which in our case is English. The I18n module has the t method

as an alias for the translate method, which you used in the previous example.

In Rails, there is the concept of a "current locale." At any time, we can determine

the current locale by calling the I18n.locale method. When you don’t set the locale

yourself, it’s set to a default locale, normally en. You can access the default locale by

calling I18n.default_locale. Let’s check the current locale and the default locale in our

rails console:

Chapter 17 InternatIonalIzatIon

482

>> I18n.locale

=> :en

>> I18n.default_locale

=> :en

To change the locale or the default locale, we can use the I18n.locale= and I18n.

default_locale= methods. Let’s try to change the locale to Brazilian Portuguese, for

which the locale symbol is pt-br:

>> I18n.locale = 'pt-br'

I18n::InvalidLocale ("pt-br" is not a valid locale)

>> I18n.available_locales

=> [:en]

Trying to change our locale to Brazilian Portuguese failed with an error saying it’s

not valid. Of course, ‘pt-br’ is a valid locale code, but we ran I18n.available_locales to

see which locales our application allows and found our application does not allow pt-br.

Only en is available by default. To change that, let’s edit our config/application.rb to

match Listing 17-2.

Listing 17-2. Allowing Brazilian Portuguese Locale in config/application.rb

https://gist.github.com/nicedawg/c945ddb11ff1a79d3f3e46f0a430c85e

require_relative 'boot'

require 'rails/all'

Require the gems listed in Gemfile, including any gems

you've limited to :test, :development, or :production.

Bundler.require(*Rails.groups)

module Blog

 class Application < Rails::Application

 # Initialize configuration defaults for originally generated Rails

version.

 config.load_defaults 6.0

 # Settings in config/environments/* take precedence over those

specified here.

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/c945ddb11ff1a79d3f3e46f0a430c85e

483

 # Application configuration can go into files in config/initializers

 # -- all .rb files in that directory are automatically loaded after

loading

 # the framework and any gems in your application.

 I18n.available_locales = [:en, :'pt-br']

 end

end

Now, let’s exit our rails console and restart it to pick up our configuration change and

try again:

>> I18n.available_locales

=> [:en, :"pt-br"]

>> I18n.locale = 'pt-br'

=> "pt-br"

>> I18n.translate('hello')

=> "translation missing: pt-br.hello"

First, we checked I18n.available_locales after making our configuration change and

see that pt-br is now available for our application to use. Next, we set the current locale to

pt-br, and then we tried to look up the translation for "hello," but received a string saying

the translation is missing.

To define the translation for hello in Brazilian Portuguese, let’s create a new

translation file named after the locale symbol pt-br.yml in config/locales, as shown in

Listing 17-3.

Listing 17-3. The Brazilian Portuguese Locale File in config/locales/pt-br.yml:

https://gist.github.com/nicedawg/e7d2a090aebc9994c147e6ae1ada408d

pt-br:

 hello: "Ola mundo"

Rails doesn’t reload locale files automatically, unlike other files. So let’s exit the

console, restart it to make sure Rails loads the new translation file, and try again:

>> I18n.locale

=> :en

>> I18n.locale = 'pt-br'

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/e7d2a090aebc9994c147e6ae1ada408d

484

=> "pt-br"

>> I18n.t "hello"

=> "Ola mundo"

That’s how simple it is! All we need are the translation files, each with several

translations in key-value pairs. We access those translations by passing the

corresponding key to the I18n.translate method or its alias I18n.t.

Rails manages all of its internals using the I18n module. For example, all the

Active Record validation messages we saw in Chapters 5 and 6 are called by using the

translate method and referring to a translation key. If you change the locale, Rails has

no translation for those error messages. Check it out:

>> I18n.locale = 'pt-br'

=> "pt-br"

>> article = Article.new

=> # <Article id: nil, title: nil, published_at: nil, created_at: nil,

updated_at: nil, excerpt: nil, location: nil, user_id: nil>

>> article.save

=> false

>> article.errors.full_messages

=> ["Title translation missing: pt-br.activerecord.errors.models.article.

attributes.title.blank", "Body translation missing: pt-br.activerecord.

errors.models.article.attributes.body.blank", "User translation missing:

pt-br.activerecord.errors.models.article.attributes.user.required"]

Active Record tried to get the translations for the error messages, but it couldn’t find

them in the Brazilian Portuguese translation file. Thankfully, these helpful messages

include the missing i18n keys. So let’s add them by updating pt-br.yml so it looks like

the code in Listing 17-4.

Listing 17-4. Updated Brazilian Portuguese Locale File in config/locales/pt-br.

yml: https://gist.github.com/nicedawg/e3bc0ab4810e66f99570baa7685e39bd

pt-br:

 hello: "Ola mundo"

 activerecord:

 errors:

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/e3bc0ab4810e66f99570baa7685e39bd

485

 models:

 article:

 attributes:

 title:

 blank: não pode ficar em branco

 body:

 blank: não pode ficar em branco

 user:

 required: deve existir

Notice how we nested the keys. The “translation missing” message we saw earlier

in the console included a list of names: pt-br, activerecord, errors, models, article,

attributes, body, and blank. Those names represent the path inside the pt-br

translation file. I18n calls the blank key, for example, by using dots to connect it and

its parents; the translate call which Rails tried to use behind the scenes was I18n.

translate('activerecord.errors.models.article.attributes.title.blank').

Now that we have added the translations, let’s try it from the console again. (Don’t

forget to restart your console!)

>> I18n.locale = 'pt-br'

=> "pt-br"

>> article = Article.new

=> # <Article id: nil, title: nil, published_at: nil, created_at: nil,

updated_at: nil, excerpt: nil, location: nil, user_id: nil>

>> article.save

=> false

>> I 18n.translate('activerecord.errors.models.article.attributes.title.

blank')

=> "não pode ficar em branco"

>> article.errors.full_messages

=> ["Title não pode ficar em branco", "Body não pode ficar em branco",

"User deve existir"]

Congratulations! You just translated the error messages for the validations on our

Article model’s title, body, and user attributes to Brazilian Portuguese. Now that we

understand how I18n works, let’s set it up in our blog application.

Chapter 17 InternatIonalIzatIon

486

 Setting Up i18n in the Blog Application
Rails at its core uses i18n, but so far our application’s code hasn’t been using it. We’ll

need to make sure that all hardcoded text and strings in our code are replaced with a call

to the I18n.translate method.

This may sound like a lot of work, but it’s fairly simple in this case because our

application is still small. We encourage you to use the I18n.translate method in your

project as early as possible; it’s only a little bit of work up front, but you’ll avoid having to

do a lot of work later; it gets more difficult as your project grows.

Let’s begin with our models. The only one that has a hardcoded string is the Comment

model, which includes a custom validation with an error message. Let’s replace this

error message with an I18n.t call to a key and add that key to our en.yml translation file.

Listing 17-5 shows how the Comment model should look after our changes.

Listing 17-5. Updated Comment Model in app/models/comment.rb:

https://gist.github.com/nicedawg/ed1cfec6013e4b8319ad334f7e0aa646

class Comment < ApplicationRecord

 belongs_to :article

 validates :name, :email, :body, presence: true

 validate :article_should_be_published

 after_create :email_article_author

 def article_should_be_published

 errors.add(:article_id, I18n.t('comments.errors.not_published_yet')) if

article && !article.published?

 end

 def email_article_author

 NotifierMailer.comment_added(self).deliver_later

 end

end

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/ed1cfec6013e4b8319ad334f7e0aa646

487

Notice how we used the dot notation in the comments.errors.not_published_yet

key. It’s good practice to keep the locale file organized; doing so helps us find the

translation more easily when our file gets bigger. Because the error message is added to

the comment object, we add it under comments; and because it’s an error message, we drill

a step deeper and place it under errors.

Don’t forget to add the translation to your en.yml translation file. It should look like

Listing 17-6 after we clean it up and update it with the new translation. (Notice that we

removed the "Hello world" translation since we don’t need it.)

Listing 17-6. Updated English Locale File in config/locales/en.yml: https://

gist.github.com/nicedawg/d248b48ab77675319f185c148d7afe0b

en:

 comments:

 errors:

 not_published_yet: is not published yet

Now, let’s move on to localizing our controllers. If you check all the controllers, you’ll

see that each of our controllers has hardcoded strings in their flash messages. First, let’s

fix ArticlesController. Listing 17-7 shows how it should look after our changes.

Listing 17-7. Updated ArticlesController in app/controllers/articles_controller.

rb: https://gist.github.com/nicedawg/8b8fe899b5a3079ceb1932f81fd0b3c8

class ArticlesController < ApplicationController

 before_action :authenticate, except: [:index, :show, :notify_friend]

 before_action :set_article, only: [:show, :notify_friend]

 # ... code omitted for brevity ...

 # POST /articles

 # POST /articles.json

 def create

 @article = current_user.articles.new(article_params)

 respond_to do |format|

 if @article.save

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/d248b48ab77675319f185c148d7afe0b
https://gist.github.com/nicedawg/d248b48ab77675319f185c148d7afe0b
https://gist.github.com/nicedawg/8b8fe899b5a3079ceb1932f81fd0b3c8

488

 format.html { redirect_to @article, notice: t('articles.create_

success') }

 format.json { render :show, status: :created, location: @article }

 else

 format.html { render :new }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /articles/1

 # PATCH/PUT /articles/1.json

 def update

 @article = current_user.articles.find(params[:id])

 respond_to do |format|

 if @article.update(article_params)

 format.html { redirect_to @article, notice: t('articles.update_

success') }

 format.json { render :show, status: :ok, location: @article }

 else

 format.html { render :edit }

 format.json { render json: @article.errors, status: :unprocessable_

entity }

 end

 end

 end

 # DELETE /articles/1

 # DELETE /articles/1.json

 def destroy

 @article = current_user.articles.find(params[:id])

 @article.destroy

 respond_to do |format|

 format.html { redirect_to articles_url, notice: t('articles.destroy_

success') }

Chapter 17 InternatIonalIzatIon

489

 format.json { head :no_content }

 end

 end

 def notify_friend

 @email_a_friend = EmailAFriend.new(email_a_friend_params)

 if @email_a_friend.valid?

 NotifierMailer.email_friend(@article, @email_a_friend.name, @email_a_

friend.email).deliver_later

 redirect_to @article, notice: t('articles.notify_friend_success')

 else

 render :notify_friend, status: :unprocessable_entity

 end

 end

 # … code omitted for brevity ...

end

There are two things to notice here. First, we simply used the t method without the I18n

module, unlike what we did in the console and the model; that’s because the I18n module

is integrated with Action Pack to keep things cleaner in the controllers, helpers, and views.

Second, we also nested the messages under articles—again, to keep things cleaner.

Let’s do the same with the other controllers, also nesting them under their

corresponding name: users controller translations will go under users, the comments

controller will go under comments, the application controller will go under application,

and the sessions controller will go under session.

Updating the rest of the controllers is fairly simple, albeit a little tedious. Rather than

fill this chapter with lengthy code listings for each controller, you can either replace the

remaining hardcoded strings from the remaining controllers yourself, using Listing 17-9

as a guide for which I18n keys to use, or you can download the updated files from

www.apress.com.

Next, let’s look at our view templates. They’re very similar, so let’s just look at a single

view template here. Listing 17-8 shows the article partial after using translations, with

changes in bold.

Chapter 17 InternatIonalIzatIon

http://www.apress.com

490

Listing 17-8. Updated article Partial in app/views/articles/_article.html.erb:

https://gist.github.com/nicedawg/8af9eb4565c3667b02015446863609dd

<div class="article">

 <h3>

 <%= link_to article.title, article %>

 <% if article.owned_by? current_user %>

 <%= link_to t('general.edit'), edit_article_path(article) %>

 <%= link_to t('general.delete'), article, confirm: t('general.are_

you_sure'), method: :delete %>

 <% end %>

 </h3>

 <hr>

 <% if article.cover_image.attached? %>

 <%= image_tag article.cover_image.variant(resize_to_limit: local_

assigns.fetch(:cover_image_options, [200, 200])) %>

 <hr>

 <% end %>

 <%= article.body %>

</div>

As with our controllers, so many of our view templates have hardcoded strings to

replace, that it’s not feasible to list all the code changes in this chapter. Instead, using

Listing 17-9 as a guide, let’s go through each of our view templates, replacing hardcoded

strings with the corresponding I18n keys. Alternatively, you can download the updated

files from www.apress.com.

After updating your code, we’re one step away from completing the i18n setup.

We still need to add the translations to the default locale file, config/locales/en.yml.

Listing 17-9 shows the updated translation file.

Listing 17-9. English Locale File After Implementing i18n Support in config/

locales/en.yml: https://gist.github.com/nicedawg/0836f3cc393bbc5308346

73c4878e7d9

en:

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/8af9eb4565c3667b02015446863609dd
http://www.apress.com
https://gist.github.com/nicedawg/0836f3cc393bbc530834673c4878e7d9
https://gist.github.com/nicedawg/0836f3cc393bbc530834673c4878e7d9

491

 general:

 are_you_sure: Are you sure?

 back: Back

 cancel: Cancel

 create: Create

 delete: Delete

 edit: Edit

 editing: Editing

 footer: A simple blog built for the book Beginning Rails 6

 email_a_friend: Email a friend

 search: Search

 send_email: Send email

 show: Show

 title: Blog

 update: Update

 your_name: Your name

 your_friend_email: Your friend's email

 or: or

 application:

 access_denied: Please log in to continue

 articles:

 editing_article: Editing Article

 listing_articles: Listing Articles

 new_article: New Article

 article: article

 create_success: Article was successfully created.

 update_success: Article was successfully updated.

 destroy_success: Article was successfully destroyed.

 articles: Articles

 notify_friend_success: Successfully sent a message to your friend

 remove_this_image: Remove this image

 new_article_published: New Article Published!

 users:

 new_user: New user

 edit_password: Edit Password

Chapter 17 InternatIonalIzatIon

492

 editing_user: Editing user

 create_success: User successfully added.

 update_success: Updated user information successfully.

 sessions:

 email: Email

 password: Password

 login: Login

 logout: Logout

 successful_login: Logged in successfully

 invalid_login: Invalid login/password combination

 logout_success: You successfully logged out

 comments:

 name: Name

 email: Email

 body: Body

 comments: Comments

 new_comment: New comment

 create_success: Thanks for your comment

 create_failure: Unable to add comment

 destroy_success: Comment deleted

 add: Add

 errors:

 not_published_yet: is not published yet

While we may have missed some strings here and there and though it was a little

tedious, it wasn’t too difficult to add i18n support to our blog.

Let’s restart our Rails server to be sure the most recent locale configuration is loaded

and then browse through the site; we shouldn’t see any differences yet, as we just moved

the hardcoded strings from our controllers and view templates into our locale file.

Although i18n support is in place, we’re still using English as our locale. To really see

i18n in action, let’s change the locale and try Brazilian Portuguese.

Chapter 17 InternatIonalIzatIon

493

 Localizing the Blog Application to Brazilian
Portuguese
Localizing an i18n-ready Rails application is amazingly simple. All we have to do is add

a new translation file and configure our Rails application to use that locale as the default

locale, and we’re good to go.

In this section, we will localize our blog application for Brazilian Portuguese. As

mentioned earlier, since the locale symbol for Brazilian Portuguese is pt-br, we must

change the config/locales/pt-br.yml file. We will use the same keys as our English

translation file, but with Brazilian Portuguese text instead of English.

This separation between the translation files and our application code is very

helpful; it gives us the ability to send the translation file to a translator, for example.

When we get it back, we just plug it into our application, and we’re all set. Listing 17-10

shows the newly created Brazilian Portuguese translation file.

Listing 17-10. Brazilian Portuguese Locale File in config/locales/pt-br.yml:

https://gist.github.com/nicedawg/fc77bc122698a71c960883954f66a231

pt-br:

 general:

 are_you_sure: Tem certeza?

 back: Volta

 cancel: Cancelar

 create: Criar

 delete: Apagar

 edit: Editar

 editing: Editando

 footer: Um blog simples desenvolvido para o livro

 email_a_friend: Avisar um amigo

 search: Pesquisar

 send_email: Mandar email

 show: Mostrar

 title: Blog

 update: Atualizar

 your_name: Seu nome

 your_friend_email: O email do seu amigo

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/fc77bc122698a71c960883954f66a231

494

 or: ou

 application:

 access_denied: "Por favor, efetue o login para continuar"

 articles:

 editing_article: Editando Artigo

 listing_articles: Listando Artigos

 new_article: Novo Artigo

 article: artigo

 create_success: Artigo foi criado com sucesso.

 update_success: Artigo foi atualizado com sucesso.

 articles: artigos

 notify_friend_success: Seu amigo foi avisado a respeito desse artigo

 remove_this_image: Remova esta imagem

 users:

 new_user: Novo Usuario

 edit_password: Editar senha

 editing_user: Editando usuario

 create_success: Usuario editado com sucesso.

 update_success: Usuario atualizado com sucesso.

 sessions:

 email: Email

 password: Senha

 login: Logar

 logout: Desconectar

 successful_login: Logado com sucesso

 invalid_login: Senha ou Email invalidos

 logout_success: Voce desconectou do sistem com sucesso

 comments:

 name: Nome

 email: Email

 body: Conteudo

 comments: Comentarios

 new_comment: Novo Comentario

 create_success: Obrigado pelo comentario

 create_failure: Nao foi possivel adicionar o comentario

Chapter 17 InternatIonalIzatIon

495

 destroy_success: Comentario deletado

 add: Adicionar

 errors:

 not_published_yet: ainda nao foi publicado

 activerecord:

 errors:

 models:

 article:

 attributes:

 title:

 blank: "não pode ficar em branco"

 body:

 blank: "não pode ficar em branco"

 user:

 required: deve existir

 date:

 formats:

 default: "%d/%m/%Y"

 short: "%d de %B"

 long: "%d de %B de %Y"

 day_names:

 - Domingo

 - Segunda

 - Terça

 - Quarta

 - Quinta

 - Sexta

 - Sábado

 abbr_day_names:

 - Dom

 - Seg

 - Ter

 - Qua

 - Qui

Chapter 17 InternatIonalIzatIon

496

 - Sex

 - Sáb

 month_names:

 - Janeiro

 - Fevereiro

 - Março

 - Abril

 - Maio

 - Junho

 - Julho

 - Agosto

 - Setembro

 - Outubro

 - Novembro

 - Dezembro

 abbr_month_names:

 - Jan

 - Fev

 - Mar

 - Abr

 - Mai

 - Jun

 - Jul

 - Ago

 - Set

 - Out

 - Nov

 - Dez

 order:

 - :day

 - :month

 - :year

Chapter 17 InternatIonalIzatIon

497

Now we’ve added these translations for Brazilian Portuguese—but our blog

application won’t use them yet. One way we can see them in action is to change the

default locale of our app from en to pt-br. Let’s do that by adding a configuration to your

config/application.rb file. Listing 17-11 shows the updated config/application.rb file with

the added lines in bold.

Listing 17-11. Setting the Default Locale to Brazilian Portuguese in config/

application.rb: https://gist.github.com/nicedawg/2243de835fb57064e993311

f479687dc

require_relative 'boot'

require 'rails/all'

Require the gems listed in Gemfile, including any gems

you've limited to :test, :development, or :production.

Bundler.require(*Rails.groups)

module Blog

 class Application < Rails::Application

 # Initialize configuration defaults for originally generated Rails

version.

 config.load_defaults 6.0

 # Settings in config/environments/* take precedence over those

specified here.

 # Application configuration can go into files in config/initializers

 # -- all .rb files in that directory are automatically loaded after

loading

 # the framework and any gems in your application.

 I18n.available_locales = [:en, :'pt-br']

 I18n.default_locale = 'pt-br'
 end

end

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/2243de835fb57064e993311f479687dc
https://gist.github.com/nicedawg/2243de835fb57064e993311f479687dc

498

Restart your Rails server, and check out your new Brazilian Portuguese blog application!

We localized the application in two simple steps: adding the translation files and setting up

the locale. Figure 17-1 shows the blog application with its Brazilian Portuguese face.

Figure 17-1. Brazilian Portuguese localized interface

We may have missed some strings to translate here and there, but you get the idea!
Also, it’s worth noting that our internationalization and localization work so far has

only dealt with our user interface—not with our data. For example, the link to login and
logout is localized—but our article titles and bodies are not. This isn’t an oversight, but
a real distinction; as developers, we know what our UI will consist of, so we can include
translations of our UI text with our code changes. However, data is by nature dynamic;
how reasonable would it be, for example, to deploy new changes to our config/locale
files every time an author publishes a new article?

In order to localize our data—in our case, article titles and bodies, for example—
other solutions such as mobility (https://github.com/shioyama/mobility) and
globalize (https://github.com/globalize/globalize) are helpful. Typically, solutions
like these add additional storage to fields you wish to translate (like article titles and
bodies), allowing editors to supply content for each locale and for your Rails app to
display the correct translated content based on the locale. We won’t cover using a gem
like these in this chapter, but just know that these types of solutions exist.

 Bilingual Blog
We learned earlier that all it takes to change the locale is to set the I18n.locale configuration
to the locale of choice. How about giving users the power to do that themselves? To do so,
we’ll implement a controller filter that sets the locale depending on user input and provides

the user with a language selector from which to choose the locale.

Chapter 17 InternatIonalIzatIon

https://github.com/shioyama/mobility
https://github.com/globalize/globalize

499

Let’s create a helper in the application helper called language_selector that shows

the available locales for the user to choose from. Listing 17-12 shows application_

helper with the new helper method in bold.

Listing 17-12. language_selector Helper Method in app/helpers/application_

helper.rb: https://gist.github.com/nicedawg/7a144e3c0e695bfddb23fe593f2

daa85

module ApplicationHelper

 def language_selector

 if I18n.locale == :en

 link_to "Pt", url_for(locale: 'pt-br')

 else

 link_to "En", url_for(locale: 'en')

 end

 end

 def submit_or_cancel(form, name = t("general.cancel"))

 form.submit + " #{t("general.or")} " + link_to(name,

'javascript:history.go(-1);', class: 'cancel')

 end

end

In the language_selector method, we show a link to the language that isn’t currently

selected. We do that by linking to the URL the user is currently on, with an extra :locale

parameter using the url_for helper.

The user should always be able to change the language; so we’ll add this function to

our application layout. Listing 17-13 shows the updated application layout with the new

helper call in bold.

Listing 17-13. Calling language_selector in app/views/layouts/application.html.

erb: https://gist.github.com/nicedawg/1f22173e59a45a6fcf6ec9821452e251

<!DOCTYPE html>

<html>

 <head>

 <title><%= t("general.title") %></title>

 <%= csrf_meta_tags %>

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/7a144e3c0e695bfddb23fe593f2daa85
https://gist.github.com/nicedawg/7a144e3c0e695bfddb23fe593f2daa85
https://gist.github.com/nicedawg/1f22173e59a45a6fcf6ec9821452e251

500

 <%= csp_meta_tag %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-

track': 'reload' %>

 <%= javascript_pack_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <div id="header">

 <h1><%= link_to t("general.title"), root_path %></h1>

 <%= language_selector %>

 <div id="user_bar">

 <% if logged_in? %>

 <%= link_to t("articles.new_article"), new_article_path %> |

 <%= link_to t("users.edit_password"), edit_user_path(current_

user) %> |

 <%= link_to t("sessions.logout"), logout_path %>

 <% else %>

 <%= link_to t("sessions.login"), login_path %>

 <% end %>

 </div>

 </div>

 <div id="main">

 <%= content_tag :p, notice, class: 'notice' if notice.present? %>

 <%= content_tag :p, alert, class: 'alert' if alert.present? %>

 <%= yield %>

 </div>

 <div id="footer">

 <%= t("general.footer") %>

 </div>

 </body>

</html>

Chapter 17 InternatIonalIzatIon

501

Finally, let’s use around_action in our ApplicationController that sets the locale

to the requested locale; adding it here allows us to switch locales from any page. See

https://edgeguides.rubyonrails.org/i18n.html#managing-the-locale-across-

requests for more information; there’s an important warning about using I18n.

with_locale instead of I18n.locale= in your Rails application. With the latter, it’s possible

that some requests may be served with the wrong locale! To avoid this problem, be sure

to use I18n.with_locale when possible. Listing 17-14 shows the updated application

controller with the new additions in bold.

Listing 17-14. Using around_action to Set the Locale in app/controllers/

application_controller.rb: https://gist.github.com/nicedawg/

bb57d52a99a2a3874929da5d8ce19f9a

class ApplicationController < ActionController::Base
 helper_method :current_user, :logged_in?

 around_action :set_locale

 def set_locale(&action)
 session[:locale] = params[:locale] if params[:locale]
 I18n.with_locale(session[:locale] || I18n.default_locale, &action)
 end

 def current_user
 return unless session[:user_id]
 @current_user ||= User.find_by(id: session[:user_id])
 end

 def authenticate
 logged_in? || access_denied
 end

 def logged_in?
 current_user.present?
 end

 def access_denied
 redirect_to(login_path, notice: t('application.access_denied')) and
return false
 end

end

Chapter 17 InternatIonalIzatIon

https://edgeguides.rubyonrails.org/i18n.html#managing-the-locale-across-requests
https://edgeguides.rubyonrails.org/i18n.html#managing-the-locale-across-requests
https://gist.github.com/nicedawg/bb57d52a99a2a3874929da5d8ce19f9a
https://gist.github.com/nicedawg/bb57d52a99a2a3874929da5d8ce19f9a

502

In our around action, we look for a requested locale in the params hash. If one was

present, we store the requested locale in the session. Then, we call I18n.with_locale,

passing it the requested locale (or our default locale as a fallback) and the requested

controller action to execute. This has the effect of setting the desired locale in the

application for the rest of the request, but then cleaning up after itself and reverting back

to the default locale when the request has been completed.

Let’s change the application locale configuration back to English—so users can select

their language of choice—by removing the config.i18n.default_locale line from

config/application.rb (Listing 17-15).

Listing 17-15. Change Our Default Locale Back to "en" in config/application.rb:

https://gist.github.com/nicedawg/90243d4c911513d601e7026dbf298edc

require_relative 'boot'

require 'rails/all'

Require the gems listed in Gemfile, including any gems

you've limited to :test, :development, or :production.

Bundler.require(*Rails.groups)

module Blog

 class Application < Rails::Application

 # Initialize configuration defaults for originally generated Rails

version.

 config.load_defaults 6.0

 # Settings in config/environments/* take precedence over those

specified here.

 # Application configuration can go into files in config/initializers

 # -- all .rb files in that directory are automatically loaded after

loading

 # the framework and any gems in your application.

 I18n.available_locales = [:en, :'pt-br']

 end

end

Chapter 17 InternatIonalIzatIon

https://gist.github.com/nicedawg/90243d4c911513d601e7026dbf298edc

503

Restart your server and try the application, as shown in Figure 17-2.

Figure 17-3. Brazilian Portuguese interface with the language selector link

Figure 17-2. Language selector in the English interface

The application loads in English because it’s the default locale. Click the Pt link, and

see how everything switches to Brazilian Portuguese, as shown in Figure 17-3.

Congratulations! Not only do you have a bilingual blog application but you also know

how easy it is to add more languages.

Chapter 17 InternatIonalIzatIon

504

 Summary
In this chapter, we learned what internationalization and localization are and learned

what it takes to build a multilingual Rails application. We learned how to use the I18n

module to supply translated strings to our application and how to create translation files

to hold these strings for each language we wish to support.

We did the tedious but simple work to prepare our application for i18n support;

we extracted the hardcoded text and strings into translation keys and placed them in a

locale translation file. Then, we localized the application to another language.

Finally, we made a simple but powerful change to our application to allow our blog

readers to decide which language they want to use.

To have shown all of the code changes necessary to completely localize our

application would have been too much. Be sure to check out this book’s companion

source code for a more complete implementation.

The next, and final, chapter in the book will cover how to deploy your Rails apps; up

until this time, our application has only been running on our personal workstations. It’s

time to learn what it takes to publish our Rails application for the whole world to see!

Chapter 17 InternatIonalIzatIon

505
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6_18

CHAPTER 18

Deploying Your Rails
Applications
At some point, you may decide it’s time to share your Rails application with the world.

Though Rails offers a first-class local development environment, it’s not feasible to

host your public-facing web application from your development environment; besides

potentially violating your residential Internet service’s terms of service, you’d have to

deal with dynamic IP addresses, opening your firewall (and a host of potential security

issues), and many more issues. Instead, when you’re ready to launch your application

for public use, you’ll need to deploy your Rails application to a suitable hosting

environment.

Options for hosting web applications have changed a lot over the years. Years ago,

there were two main options—shared hosting or dedicated hosting. With shared hosting,

you would be given limited access to a server used by other customers’ web applications

as well. You would be able to upload files and perhaps configure some settings, but have

limited (or no) access to the command line for advanced usage. Shared hosting was

cheaper, but limited; it worked well for static HTML sites, or even web applications built

in languages such as PHP which often just worked—as long as your application would

work on the versions of the language (and other supporting services) that the shared

hosting environment offered.

Dedicated hosting, on the other hand, gave application developers full control over

their hosting environment; by leasing a physical server in a rack in some data center

somewhere, you would then have (nearly) full control over the server. You could perform

command-line actions as the root user, installing whatever software your hosting

environment needed. While having full control sounds nice, it comes at a cost—in

addition to the higher financial costs of dedicated hosting, the developers had to pay the

higher maintenance costs of correctly configuring their system, keeping up-to-date with

https://doi.org/10.1007/978-1-4842-5716-6_18#DOI

506

security patches, and more. These higher costs, though, were sometimes necessary to

 support web applications written in languages such as Java or which required supporting

services not offered by shared hosting environments.

However, as virtualization technology improved, hosting providers began offering virtual

private servers—a kind of hybrid of shared and dedicated hosting—which gave developers

full control over a shared slice of a server. This brought the financial costs of dedicated

hosting down, but didn’t address the higher maintenance costs of dedicated hosting.

Then, hosting providers began offering what became known as PAAS—Platform

as a Service. Services like Heroku and AWS Elastic Beanstalk gave developers a way to

deploy more sophisticated web applications without having to concern themselves with

server configuration and maintenance, thus attempting to reduce both the financial and

maintenance costs of using dedicated servers.

Why the long history lesson? It’s important to understand the variety of hosting

services available and their strengths and weaknesses and to know which are

appropriate for hosting your Rails application.

Rails applications are not suited for cheap, shared hosting plans as first described

in this section. Why? For example, gems often need the ability to compile code during

installation. Copying your compiled gems from your development environment to the

hosting environment would most likely fail terribly. Also, with Rails applications, the

web server (like Apache or Nginx) needs to be configured to communicate with the Rails

server via a TCP port or socket—it can’t simply load the requested file from the directory,

like PHP or Classic ASP. Most shared hosting plans simply don’t support this.

Rails applications would work great on "dedicated" hosting platforms—whether you’re

leasing a physical server or paying for a virtualized server (like from the AWS EC2 service.)

However, as mentioned before, you’re signing up for lots of server administration. While

there is a vast amount of information available on the Internet to help you configure your

hosting environment, not everyone has the interest or time to learn.

So that brings us to the PAAS option. For many developers, this is a great approach.

While the financial cost of hosting on a PAAS may be slightly higher than hosting on a

virtual server, the maintenance costs are much lower, allowing the application developer

to focus on application development, rather than system administration.

In this chapter, we’ll illustrate deploying a Rails application to Heroku. There are many

fine options, but Heroku is well known and respected for their ease of use and is a great

way for us to get our blog application up for the whole world to see, with minimal effort.

Chapter 18 Deploying your rails appliCations

507

 Set Up an Account with Heroku
The first step in this process is to set up an account with Heroku. Don’t worry, Heroku

offers a free account which doesn’t need a credit card. Point your browser to www.

heroku.com, and you should see something like Figure 18-1.

Figure 18-1. Setting up a Heroku account

Click the Sign Up link and enter an email address. Heroku will then send you an

email with a confirmation link. Once you click that link, you’ll be asked for a password

and password confirmation. You’re now the proud owner of a shiny new Heroku

account. This will let you deploy Rails (and other) apps to your heart’s content.

Heroku has a piece of software that facilitates interacting with your Heroku apps

on your computer. It’s called the Heroku Toolbelt (https://toolbelt.heroku.com/).

Go to that URL and follow the instructions for installing the Heroku Toolbelt in your

development environment. Once it’s been installed, you should be able to run the

heroku command in your CLI and see usage information.

Chapter 18 Deploying your rails appliCations

http://www.heroku.com
http://www.heroku.com
https://toolbelt.heroku.com/

508

 Preparing Your Git Repository
Now that we’ve set up a Heroku account and installed the command-line tools, we’ll
need to make a couple of small changes to our app so we can deploy it. Heroku’s method
of deployment is Git, a tool most developers are already using. If you are unfamiliar with
Git, you can check out Appendix C to get up to speed.

Usually, we’d want to start using version control at the beginning of our project, for
maximum benefit. Having a readily accessible history of all your code changes while
you’re developing is incredibly useful. To keep this book’s focus on Rails, we waited until
now (when we needed it) to introduce the idea.

Unless you have already set up a Git repository for our application, you’ll need to
do so now. Go to the terminal, making sure you’re in the directory where our project is
stored, and type the following command:

$ git init

Initialized empty Git repository in Initialized empty Git repository in /
Users/brady/Sites/beginning-rails-6/.git/

This told Git that we want this directory to be a repository, meaning that Git will
now keep track of the files you want it to. Let’s tell it to keep track of all the files in this
directory and make an initial commit:

$ git add .
$ git commit –m 'Initial Commit'

master (root-commit) ea1c9dd] Initial Commit
 186 files changed, 11061 insertions(+)
 create mode 100644 .browserslistrc
 create mode 100644 .gitignore
...

Your output might be slightly different, but it should add all files to your Git repository.
This means that Git is now keeping track of the files and will notice when you make
changes. You can then either decide to commit those changes or get rid of them. Once you
have committed changes, Git has built-in support for pushing those changes to a remote
server. Likewise, it can pull the changes from a remote server to your local repository.
This is why so many developers use a source control system like Git; it makes it so easy to

collaborate. It also happens to be the way you deploy your application to Heroku.

Chapter 18 Deploying your rails appliCations

509

 Creating Your Heroku App
So let’s tell Heroku we are ready to create an app. The first step is to create the app on

Heroku. You can do this on their web control panel, or you can do it from the command

line. We prefer to use the command-line interface. You need to authenticate the Heroku

Toolbelt you previously installed, but that’s a simple task. Once that is done, you can

move straight into creating your application on Heroku:

$ heroku login

heroku: Press any key to open up the browser to login or q to exit:

Opening browser to https://cli-auth.heroku.com/auth/cli/browser/7921344c-

4ce8- 4fee-96c5-0938c1eb6f83

heroku: Waiting for login...

As prompted, press a key to open your browser to Heroku’s authentication page, and

then click the "Log In" button. When successful, the web page will say you can close it,

and the heroku login command will complete, showing "Logged in as" with your email

address.

Now, we’re ready to create the Heroku instance for our application. We simply need

to run the heroku create command from our terminal, while in our project’s directory:

$ heroku create

Creating app... done, ▯ evening-ocean-78121
https://evening-ocean-78121.herokuapp.com/ | https://git.heroku.com/

evening-ocean-78121.git

Notice that it called the app evening-ocean-78121. If you don’t specify a name,

Heroku will choose a random name for you. If you would like to specify a name, type it

after the Heroku create line, like so:

$ heroku create beginning-rails-6-brady

Creating ▯ beginning-rails-6-brady... done
https://beginning-rails-6-brady.herokuapp.com/ | https://git.heroku.com/

beginning-rails-6-brady.git

Chapter 18 Deploying your rails appliCations

510

Since Heroku names must be unique, you obviously won’t be able to use beginning-

rails- 6-brady, but you can be creative and choose your own, like maybe chunky-bacon.

 Installing PostgreSQL
To support deploying to Heroku, we’ll need to make one more change. We’ve been using

SQLite as our database, but it’s not supported in Heroku. Why? SQLite stores its data in

a file—and filesystems in Heroku are ephemeral, meaning they can suddenly be reset

to their initial state. This may seem like an unfair limitation, but relying on the local

filesystem in production blocks the ability to scale to running your application with more

servers. Also, SQLite just isn’t suited for production usage; it’s fine for a few users at a

time, but is not built to handle much more than that.

Instead, Heroku offers support for PostgreSQL—a much more robust database server

suitable for production environments. While Rails makes it possible to use SQLite locally

but PostgreSQL in production, Heroku strongly recommends switching to PostgreSQL

locally. One reason is that even though Active Record does a great job at abstracting the

differences and keeping the actual database being used easily swappable, it is possible

to write database-specific code, leading to problems only found in the production

environment.

Also, deployments to Heroku will fail if they detect the sqlite3 gem in our Gemfile.

lock file. It’s possible to regenerate our Gemfile.lock file just before each deploy to omit

the sqlite3 gem, but it would be a constant hassle and not worth it in the long run. So let’s

bite the bullet and install PostgreSQL.

Visit www.postgresql.org/download/ and follow the instructions for your

development platform to install PostgreSQL on your system. Some platforms have

downloadable installers, while others have instructions for installing PostgreSQL via

your system’s package manager.

Once successfully installed, you should be able to open a new command prompt and

run psql—PostgreSQL’s command-line tool. You should see something like the following,

though your output may vary:

$ psql -U postgres

Chapter 18 Deploying your rails appliCations

http://www.postgresql.org/download/

511

psql (12.2)

Type "help" for help.

postgres=# select VERSION();

 version

 PostgreSQL 12.2 on x86_64-apple-darwin19.4.0, compiled by Apple clang

version 11.0.3 (clang-1103.0.32.59), 64-bit

(1 row)

postgres=# exit

At this point, PostgreSQL is installed and working on your system. Now it’s time to

configure our Rails application to use PostgreSQL instead of SQLite.

 Switching to PostgreSQL
You may remember that in your application’s folder, there is a file named Gemfile. This

file stores a list of all the “gems” your project uses. Gems are little pieces of code that are

easy to pull into your project to add features. Rails itself is a gem, and when we started

this project, a whole host of gems were pulled in. Along the way, we’ve added a gem or

two ourselves.

To facilitate the easiest out-of-the-box environment for developers, Rails includes

and uses the sqlite gem and configures the databases (in config/database.yml) to use

SQLite by default.

So let’s change our application to use PostgreSQL instead. Let’s edit our Gemfile to

match Listing 18-1.

Listing 18-1. Changing Gemfile to Use PostgreSQL Instead of SQLite https://

gist.github.com/nicedawg/7d2567221075d2ff12a5aa87f3eb57f0

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

ruby '2.6.5'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

Chapter 18 Deploying your rails appliCations

https://gist.github.com/nicedawg/7d2567221075d2ff12a5aa87f3eb57f0
https://gist.github.com/nicedawg/7d2567221075d2ff12a5aa87f3eb57f0

512

gem 'rails', '~> 6.0.2', '>= 6.0.2.1'

Use PostgreSQL as the database for Active Record

gem 'pg'

Use Puma as the app server

gem 'puma', '~> 4.1'

... rest of contents omitted ...

Be sure to remove the line that starts with “gem ‘sqlite3’,” and save the Gemfile. Next,

we’ll run bundle install to install the new gem on our machine and to generate a new

Gemfile.lock (so that other environments will install the same version of our gems):

$ bundle install

When all goes well, you’ll see the list of installed gems scroll by, including our newly

added pg gem. If there’s an error installing the pg gem, it may be that you’re missing a

library needed for its installation. (For example, on Ubuntu, you may need to install the

libpq-dev package.)

After successfully installing the pg gem, we need to let Git know that we want to

commit the changes to the Gemfile and Gemfile.lock files:

$ git add Gemfile Gemfile.lock

$ git commit -m "Replace sqlite gem with pg"

[ch-18 2dcb4f5] Replace sqlite gem with pg

 2 files changed, 4 insertions(+), 4 deletions(-)

We’ve replaced the sqlite3 gem with the pg gem, but our switch to using PostgreSQL

is not yet complete; we need to configure our application to use the right database

adapter. Edit your config/database.yml so that it matches Listing 18-2.

Listing 18-2. Switching to PostgreSQL in config/database.yml https://gist.

github.com/nicedawg/889466f0eb905eb867beae7156c2705d

default: &default

 adapter: postgresql

 pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>

 timeout: 5000

Chapter 18 Deploying your rails appliCations

https://gist.github.com/nicedawg/889466f0eb905eb867beae7156c2705d
https://gist.github.com/nicedawg/889466f0eb905eb867beae7156c2705d

513

development:

 <<: *default

 database: beginning_rails_6_development

Warning: The database defined as "test" will be erased and

re-generated from your development database when you run "rake".

Do not set this db to the same as development or production.

test:

 <<: *default

 database: beginning_rails_6_test

production:

 <<: *default

 database: beginning_rails_6_production

We’re almost done! If you were to restart your Rails app now and try to load it in your

browser, you’d see an error saying “database beginning_rails_6_development does not

exist.” So let’s run the rails db:setup to recreate our databases in PostgreSQL and to use

db/seeds.rb to add some records:

$ rails db:setup

Created database 'beginning_rails_6_development'

Created database 'beginning_rails_6_test'

Restart your Rails server, and click around in your app. Everything should still work

the same as it did before. If you run into trouble that seems like it could be database

related, running rails db:reset is an option, since we don’t have any data we care about.

Installing PostgreSQL may be a little tricky, but switching your Rails app to use it is easy!

 Deploying to Heroku
Now we’re ready to deploy our app! It’s as easy as one command, though be patient; it

will take a few minutes:

$ git push heroku master

Chapter 18 Deploying your rails appliCations

514

Enumerating objects: 1019, done.

Counting objects: 100% (1019/1019), done.

Delta compression using up to 8 threads

Compressing objects: 100% (609/609), done.

Writing objects: 100% (1019/1019), 254.30 KiB | 16.95 MiB/s, done.

Total 1019 (delta 573), reused 691 (delta 378), pack-reused 0

remote: Compressing source files... done.

remote: Building source:

remote:

remote: ! Warning: Multiple default buildpacks reported the ability to

handle this app. The first buildpack in the list below will be used.

remote: Detected buildpacks: Ruby,Node.js

remote: See https://devcenter.heroku.com/articles/

buildpacks#buildpack-detect-order

remote: -----> Ruby app detected

remote: -----> Installing bundler 1.17.3

remote: -----> Removing BUNDLED WITH version in the Gemfile.lock

remote: -----> Compiling Ruby/Rails

remote: -----> Using Ruby version: ruby-2.6.5

remote: -----> Installing dependencies using bundler 1.17.3

remote: Running: bundle install --without development:test --path

vendor/bundle --binstubs vendor/bundle/bin -j4 --deployment

remote: The dependency tzinfo-data (>= 0) will be unused by any of

the platforms Bundler is installing for. Bundler is installing for ruby but

the dependency is only for x86-mingw32, x86-mswin32, x64-mingw32, java. To

add those platforms to the bundle, run `bundle lock --add-platform x86-

mingw32 x86-mswin32 x64-mingw32 java`.

remote: Fetching gem metadata from https://rubygems.org/............

remote: Fetching rake 13.0.1

remote: Installing rake 13.0.1

 ...

remote: -----> Launching...

remote: Released v6

remote: https://evening-ocean-78121.herokuapp.com/ deployed to Heroku

Chapter 18 Deploying your rails appliCations

515

remote:

remote: Verifying deploy... done.

To https://git.heroku.com/evening-ocean-78121.git

 * [new branch] HEAD -> master

There is a lot of output from the command, and your output may differ, but at the

end you will see something like

https://evening-ocean-78121.herokuapp.com/ deployed to Heroku

This means that the deployment worked! Go ahead and visit the URL to view your

app in production (or run heroku open), but don’t get too excited, because it’s certainly

an error page. “We’re sorry, but something went wrong.” How can we tell what went

wrong? We can run the convenient heroku logs command:

$ heroku logs

Look carefully at the output. You’ll see an error that says something like

"PG::UndefinedTable: ERROR: relation “articles” does not exist." We need to create our

database tables! Unfortunately, we can’t simply run the db:setup or db:migrate command

for two reasons: First, trying to create the database fails due to some limitations from

Heroku, as they take care of creating the database their custom way. Second, one of our

migrations (from Chapter 11) has some SQL in it which is specific to SQLite 3. Rather

than modifying the migration file, which has risks not unlike traveling into the past and

changing history, we can run this command to allow us to recreate the database from

our db/schema.rb file, rather than building it back up from scratch using our migrations:

$ heroku run rails db:schema:load DISABLE_DATABASE_ENVIRONMENT_CHECK=1

Setting the "DISABLE_DATABASE_ENVIRONMENT_CHECK" environment variable

was necessary because Rails thankfully tries to protect us from doing destructive things

to our production database.

After successfully creating the database tables, we can view the blog running on

Heroku. It looks good, except it’s rather empty. Let’s populate some records using the

db:seed command:

$ heroku run rails db:seed

Chapter 18 Deploying your rails appliCations

516

Looking at the output, things started out well; the command created a user and
created some categories, but as soon as it tried to create an article, it failed. Reading the
output closely, we see the following error:

Gem::LoadError: Error loading the 'redis' Action Cable pubsub adapter.
Missing a gem it depends on? redis is not part of the bundle. Add it to
your Gemfile.

Ah! By default, Rails configures Action Cable to use a redis adapter in the production
environment. While Heroku does offer a free redis add-on for light usage, they require
a valid credit card on file; though a completely reasonable request, we don’t want to
require that of our readers, so we’ll change our app to use the async adapter for the
production environment instead. (As mentioned in Chapter 15 earlier, this is not
recommended for production environments, but is fine for this illustration.) Change
your config/cable.yml so it matches Listing 18-3.

Listing 18-3. Using Action Cable’s async Adapter in Production—config/cable.
yml https://gist.github.com/nicedawg/9be89c0d6a29a0dbc1cb3786f8b3346e

development:
 adapter: async

test:
 adapter: test

production:
 adapter: async

After saving the change, then let’s commit our changes to Git and redeploy:

$ git add config/cable.yml
$ git commit -m "Use async Action Cable adapter in production"
$ git push heroku master

Now that we’ve hopefully fixed our redis issue, let’s try to seed our database again. If
we simply ran the same db:seed command as before, it would fail because our db/seeds.
rb file is not idempotent; if it were idempotent, we could run it multiple times, and the
overall effect would be as if it had run once. Rather than changing our db/seeds.rb file
(which is a good idea—as db/seeds.rb is best when idempotent) or manually removing
records, we’ll use a command we haven’t used yet:

$ heroku run rails db:seed:replant DISABLE_DATABASE_ENVIRONMENT_CHECK=1

Chapter 18 Deploying your rails appliCations

https://gist.github.com/nicedawg/9be89c0d6a29a0dbc1cb3786f8b3346e

517

Again, we had to add the DISABLE_DATABASE_ENVIRONMENT_CHECK

environment variable to our command, because it’s destructive; it clears all the database

records before it runs db:seed. You wouldn’t want to do this if your database had records

you cared about, but we’re still getting started, so it’s fine.

Now that we have some seed data in our Heroku app, click around. Things should

look mostly normal!

Perhaps you’d like to add another user. Our blog application doesn’t have a section

to allow the creation of new users; we’d previously done that through the rails console

command. Thankfully, Heroku made it easy to access your production rails console.

Let’s add another user:

$ heroku run console

> Running console on ▯ evening-ocean-78121... up, run.4864 (Free)
Loading production environment (Rails 6.0.2.1)

irb(main):001:0> User.create(email: 'brady.somerville@gmail.com', password:

'hunter2', password_confirmation: 'hunter2')

=> #<User id: 4, email: "brady.somerville@gmail.com", hashed_password:

[FILTERED], created_at: "2020-04-25 23:29:45", updated_at: "2020-04-25

23:29:45", draft_article_token: "JQVnjHF5cXVW2VfJb5h5j4YW">

 That’s It!
Feel free to take your newly deployed Rails application for a spin; if you find any

problems, remember to use the heroku logs command to help troubleshoot. (For

example, sending the "Email a Friend" form fails to send the email. If up for a challenge,

use heroku logs to find the error, and use knowledge gained from this book to fix the

problem. You can do it!)

There is one caveat; remember how earlier in this chapter, when talking about

needing to replace SQLite, we mentioned that one reason was because the filesystem

is ephemeral? Our application has another dependency on the local filesystem: Active

Storage. For convenience, it’s configured to store uploaded files on the local filesystem.

However, in Heroku, this means that your uploaded files may suddenly disappear. For

real production usage, we’d want to configure our app to store uploaded files in a service

such as AWS S3. Trying to cover that in this book would’ve been a bit of a detour; if

interested, visit the following URL for more information: https://devcenter.heroku.

com/articles/active-storage-on-heroku.

Chapter 18 Deploying your rails appliCations

https://devcenter.heroku.com/articles/active-storage-on-heroku
https://devcenter.heroku.com/articles/active-storage-on-heroku

518

That’s all there is to deploying your app with Heroku! Anyone with a web browser

now has access to your application. This deployment is suitable for most small apps and

even larger applications if you decide. Heroku allows you to purchase extra “dynos” or

servers to scale your application to support heavier loads. You can do this by visiting

Heroku’s web console.

Sure, we hit a few bumps along the way, but it wasn’t that bad and gave us a chance

to exercise our troubleshooting skills along the way.

Deploying to Heroku is only one of the many different ways you can deploy your

Rails applications. One of the more popular, but more complex, solutions is called

Capistrano (https://github.com/capistrano/capistrano). Capistrano gives you more

control over your app’s deployment steps and is a good option for apps running in more

complex environments than a PAAS. Capistrano deployment is out of the scope of this

book, but knowing that other deployment solutions exist is important.

Whole books could be written on the topics of server configuration and application

deployment, but hopefully this chapter provided you with a quick way to let the masses

use your Rails applications with as little pain as possible.

 Summary
In this chapter, we talked about various types of web hosting, understood a bit about

the hosting needs for a Rails application, and discussed the benefits (and limitations) of

using PAAS options (like Heroku).

Then, we created a Heroku account, created a Heroku app, and configured our

project to be deployed to Heroku via Git. However, we ran into a few bumps—needing to

switch our database to PostgreSQL, reconfiguring Action Cable to use the async adapter

in production (which isn’t recommended, but easiest for now), and then re-seeding our

database. But this gave us a chance to learn a bit more, and now you know how to view

logs from Heroku and open the Rails console in Heroku.

What’s next? While this is the end of our tour of Rails 6, it’s only the beginning of your

journey. While it’s true that there’s always more to learn, we hope we’ve provided you

with the foundational knowledge you need to build the web applications of your dreams.

Chapter 18 Deploying your rails appliCations

https://github.com/capistrano/capistrano

519
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6

 APPENDIX A

Databases 101
Let’s begin with some simple definitions. A database is a piece of software that governs

the storage, retrieval, deletion, and integrity of data. Databases are organized into

tables. Tables have columns (or, if you prefer, fields), and data are stored in rows. If you’re

familiar with spreadsheets, then the idea is fairly similar. Of course, databases blow

spreadsheets out of the water in terms of power and performance.

Some databases are relational—meaning they model their data in a way that

makes use of relationships between tables. In this book, we use SQLite and Postgres,

both of which are relational databases, and you may have seen already how we use

these relationships to associate users with articles, for example. Other databases may

model their data with other, non-relational approaches, such as simple key-value

pairs.

Structured Query Language (SQL) is the standard way of communicating with

relational databases. Using SQL, you can view column information, fetch a particular

row or a set of rows, and search for rows containing certain criteria. You also use

SQL to create, drop, and modify tables, as well as insert, update, and destroy the

information stored in those tables. SQL is a fairly large topic, so a complete treatment

is beyond the scope of this book. That said, you need to know the basics, so consider

this a crash course.

Note The output in this appendix assumes you’ve followed the code in the book
up to Chapter 5. If you read this appendix at a different point and implement the
code, you may get different output.

https://doi.org/10.1007/978-1-4842-5716-6#DOI

520

 Examining a Database Table
The examples in this chapter will use SQLite, as they do throughout this book. If you’re

following along using a different piece of database software or depending on the state of

your database according to your progress throughout this book, some commands may

not work, or the responses you see may be slightly different. While SQLite commands

differ from those offered by other databases, the same general concepts apply.

To start the SQLite utility tool, run the rails dbconsole command from the book’s

project folder on your computer:

$ rails dbconsole

SQLite version 3.28.0 2019-04-15 14:49:49

Enter ".help" for usage hints.

sqlite>

As you can see, you can enter the .help command at the SQLite prompt to see a

helpful list of commands. Knowing how to exit any command-line interface is helpful

too; simply type .exit and press Enter. If that doesn’t work, perhaps your prompt is in a

strange state from an unbalanced quote or something; Ctrl+D will generally allow you to

exit your prompt as well.

To list the tables present in your database, you can use the SQLite .tables command:

sqlite> .tables

articles schema_migrations

As you can see, the database has two tables: articles and schema_migrations. You

don’t get a lot of information about the tables from the .tables command, but that can

be achieved by using the SQLite .schema command:

sqlite> .schema articles

CREATE TABLE IF NOT EXISTS "articles" ("id" integer NOT NULL PRIMARY KEY,

"title" varchar DEFAULT NULL, "body" text, "published_at" datetime DEFAULT

NULL, "created_at" datetime(6) NOT NULL, "updated_at" datetime(6) NOT

NULL, "excerpt" varchar DEFAULT NULL, "location" varchar DEFAULT NULL);

AppendIx A dATAbAses 101

521

The result of this command is an SQL statement that describes all the fields in the

articles table. Each field has a type, which defines the kind of data it can store. The id

field has a type of integer, title has a type of varchar, and body is a text field. Although

it may sound strange, a type of varchar means the field has a variable number of

characters up to a defined maximum.

The id column is the one to pay attention to here. It’s the primary key—a unique

identifier for a particular row. Because this key is essential, it absolutely needs to be not

null, and it must be unique; instead of managing these requirements in our application

code, we let the database manage its value by automatically incrementing its number

each time a new row is created. Many databases also choose to index records by their

primary key, which makes retrieving the record much quicker. Notice how this is

specified in the articles table column description: NOT NULL PRIMARY KEY. These are

special commands that tell SQLite how to handle this particular field.

Let’s look at some data from the articles table:

sqlite> SELECT * FROM articles;

1|Advanced Active Record|2020-04-19 00:00:00|2020-04-19...

2|One-to-many associations|2020-04-19 00:00:00|2020-04-19...

3|Associations|2020-04-19 00:00:00|2020-04-19 23:10:10.283152...

Here, instead of using an SQLite command (which starts with a “ . ”), we’re using the

SQL SELECT statement to view this table’s data. SQL statements are largely compatible

between different database engines. As you can see in this example, this table has three

records. You probably have different records in your database; the main point here is

understanding the commands to see the data, not the data itself.

 Working with Tables
The most common use of databases (not only in the context of Rails) is to implement

CRUD functionality: create, read, update, and delete. Corresponding to the CRUD

components are the most commonly used SQL commands: INSERT, SELECT, UPDATE, and

DELETE, as shown in Table A-1.

AppendIx A dATAbAses 101

522

The following sections use the articles table presented in the previous section to

show some examples of how these commands work. Remember that it’s not necessary

to have a complete understanding of SQL to work with Rails. The whole point of Active

Record is to alleviate the tedium of needing to construct complex SQL statements to view

and otherwise manipulate your data.

 Selecting Data
The SELECT statement is a powerful and useful SQL command. Using SELECT, you can

query (or request information from) the database and mine it for information. You can give

SELECT any number of fields, a set of conditions to be applied to the data to be returned, a

limit on the number of rows it returns, and instructions on how to order its results.

Earlier, you used the SELECT statement to see the data in the articles table:

SELECT * FROM articles;

The asterisk (*) character is a wildcard that means every column. This statement

says, “Show me the values in every column for every row in the articles table.” This is

the easiest way to look at the contents of a table. But you don’t often need to see every

single row; and for tables with a lot of data, you could end up with a really large list. So,

sometimes it isn’t very efficient to select everything. Fortunately, you can also select

specific columns by name. For example, to select only the title column, do this:

sqlite> SELECT title FROM articles;

Advanced Active Record

One-to-many associations

Associations

Table A-1. Common SQL Commands

Operation SQL Command

Create INSERT

Read SELECT

Update UPDATE

delete DELETE

AppendIx A dATAbAses 101

523

Instead of returning all fields, this command returns only the one requested: title.

To return both the title and the published_at fields, add published_at to the list of

columns to select:

sqlite> SELECT title, published_at FROM articles;

Advanced Active Record|2020-04-19 00:00:00

One-to-many associations|2020-04-19 00:00:00

Associations|2020-04-19 00:00:00

In both cases, the command returns all rows. If there were 100 rows in the table, they

would all be returned. But what if you need to find a particular row? This is where conditions

come into play. To supply conditions to a SELECT statement, you use the WHERE clause:

SELECT fields FROM table WHERE some_field = some_value;

Let’s apply this to the articles table by finding a row by its primary key:

sqlite> SELECT * FROM articles WHERE id = 1;

1|Advanced Active Record|2020-04-19 00:00:00|2020-04-19 23:10:10.223714...

This query returns only the row whose primary key, id, matches the condition.

You can use this technique on any field—id, title, or published_at—or all of them

combined. Conditions can be chained together using AND and further modified using

OR. For example, the following query returns only records whose titles match the word

“associations” and whose published_at date is after a certain value:

 SELECT * FROM articles WHERE title LIKE "%active%" AND published_at >

"2020-04-01"

 Inserting Data
To insert a row into a table, you use the INSERT command. INSERT requires a table

name, a list of fields, and a list of values to insert into those fields. Here’s a basic INSERT

statement for the articles table:

sqlite> INSERT INTO articles(title, created_at, updated_at) VALUES('Intro

to SQL', datetime("now"), datetime("now"));

AppendIx A dATAbAses 101

524

This INSERT command creates a new record in the articles table with the title “Intro

to SQL” and the created_at and updated_at columns set to the current timestamp, since

we used the SQLite function datetime("now") for those values.

SQLite doesn’t give any indication that any happened, which means your command

was accepted and didn’t generate any errors. To see what was inserted, you again use the

SELECT command:

sqlite> SELECT * FROM articles;

1|Advanced Active Record|2020-04-19 00:00:00|2020-04-19 23:10:10.223714...

2| One-to-many associations|2020-04-19 00:00:00|2020-04-19

23:10:10.270343...

3|Associations|2020-04-19 00:00:00|2020-04-19 23:10:10.283152|2020-04-19...

4|Intro to SQL||2020-04-26 20:57:35|2020-04-26 20:57:35|||

We now have four rows in our table. Notice that in the INSERT statement, we didn’t

specify the id field. That’s because, as you recall, it’s handled automatically by the

database. If we were to specify a value for the id, we wouldn’t have a reliable way to

guarantee its uniqueness and could cause an error if we attempted to insert a duplicate

value. The database automatically inserts an id value into the field that’s greater than the

largest existing id.

 Updating Data
If you want to change the values in a row, you use the UPDATE statement. UPDATE is similar

to INSERT, except that like SELECT, it can be modified (or constrained) by conditions. If

you want to change the title for the “Intro to SQL” article, you can do so like this:

sqlite> UPDATE articles SET title = 'Introduction to SQL' WHERE id = 4;

Again, SQLite is silent, which means the command has been accepted. The fact

that you use the primary key to find and update the row is significant. Although you can

match any value in any column, the only surefire way to ensure you’re updating the row

you want is to use the primary key. You can confirm that the value was updated with

another query:

AppendIx A dATAbAses 101

525

sqlite> SELECT title FROM articles WHERE id = 4;

Introduction to SQL

Sure enough, the title field has been updated.

 Deleting Data
Of course, not all information in a database will stay there forever. Sometimes you need to

delete records, such as when a product goes out of stock or a user cancels their account.

That’s the purpose of the DELETE statement. It works a lot like the UPDATE statement, in that

it accepts conditions and deletes the rows for any records that match the conditions. If you

want to delete the article with the id of 4, the DELETE statement is as follows:

sqlite> DELETE FROM articles WHERE id = 4;

SQLite receives the command and deletes the record identified by the id you

specified. And, of course, if you subsequently search for the record, you find that it no

longer exists:

sqlite> SELECT * FROM articles WHERE id = 4;

sqlite>

Caution When you use either the UPDATE or DELETE command, you’re making
changes to existing data; so be careful to use a WHERE clause to limit the records
you’re updating or deleting. A good practice is to always run a SELECT command
first to make sure your query returns the records you’re expecting; then, later run
the UPDATE or DELETE command with the same conditions.

 Understanding Relationships
It’s good practice to avoid duplication in your database by creating distinct tables to store

certain kinds of information. Then, you can relate records from these two tables to each

other using an association. This makes more sense when you see it in action, so let’s use

the articles table for our example again.

AppendIx A dATAbAses 101

526

First, let’s add a new column to the articles table named author. First, we’ll use it to

store the author name, so we’ll make it a varchar data type:

sqlite> ALTER TABLE articles ADD COLUMN author varchar;

sqlite> SELECT id, title, author FROM articles;

1|Advanced Active Record|

2|One-to-many associations|

3|Associations|

We don’t have any data for our authors, so let’s change that:

sqlite> UPDATE articles SET author = "Brady Summerville";

sqlite> SELECT id, title, author FROM articles;

1|Advanced Active Record|Brady Summerville

2|One-to-many associations|Brady Summerville

3|Associations|Brady Summerville

There’s quite a bit of duplication in the author field. This can potentially create

problems. Although you could search for all articles by a particular author using a

standard SELECT query, what would happen if someone’s name were misspelled? Any

articles by the misspelled author wouldn’t show up in the query. And if there were such a

typo, you’d need to update a lot of records in order to fix it. Moreover, searching on a text

field like "author" is rather slow when compared with searching using an integer type.

We can improve this design significantly by putting authors in their own table and

referencing each author’s unique id (primary key) in the articles table instead of the

name. Let’s do that now. Let’s create a new table called authors and add the author_id

field to the articles table so it can store an integer instead of text.:

sqlite> CREATE TABLE "authors" ("id" integer NOT NULL PRIMARY KEY, "name"

varchar);

sqlite> ALTER TABLE articles ADD COLUMN author_id integer;

At this point, our articles table has both an author field (for the author’s name) and

an author_id field (to point to a record in the authors table), and we have an empty

authors table. First, let’s populate the authors table from the data in the articles table:

sqlite> INSERT INTO authors SELECT NULL, author FROM articles GROUP BY

author;

AppendIx A dATAbAses 101

527

This command is a little more complex; instead of specifying values for the INSERT

statement to use, we supplied a SELECT statement to dynamically get those values. The

authors table expects an id and a name, so we SELECT NULL (a keyword for nothing) for

the id, so that the primary key will be generated automatically, and we select the author

field from articles. To make sure we don’t create duplicate records in the authors table,

we used “GROUP BY author” in our SELECT statement to ensure each author’s name is

only used once. Now, we can verify our authors table has the data we expect:

 sqlite> select * from authors;

1|Brady Summerville

Next, we would want to get rid of the author field from the articles table, but we

shouldn’t do that yet since we haven’t yet populated our author_id column to store the

associations. So let’s do that next:

sqlite> UPDATE articles SET author_id = (SELECT id FROM authors WHERE name

= author);

sqlite> SELECT id, title, author, author_id FROM articles;

1|Advanced Active Record|Brady Summerville|1

2|One-to-many associations|Brady Summerville|1

3|Associations|Brady Summerville|1

First, we set the author_id column for each record in the articles table using the

UPDATE command combined with a subquery. Instead of needing to hardcode which

id to use for the author_id column, we selected the id from the authors table where its

name value matched the article’s author value.

Then, to verify our work, we selected the fields we’re interested in and saw that our

articles table now has the correct author_id values for each articles record.

Now that our articles table has the author_id field, it no longer needs to store the

name of the author, since the authors table now stores that. So let’s remove the author

column from the articles table:

sqlite> CREATE TABLE "articles_temp" ("id" integer NOT NULL PRIMARY KEY,

"title" varchar DEFAULT NULL, "published_at" datetime DEFAULT NULL,

"created_at" datetime(6) NOT NULL, "updated_at" datetime(6) NOT NULL,

"excerpt" varchar DEFAULT NULL, "location" varchar DEFAULT NULL, author_id

integer);

AppendIx A dATAbAses 101

528

sqlite> INSERT INTO articles_temp (id, title, published_at, created_at,

updated_at, excerpt, location, author_id) SELECT id, title, published_at,

created_at, updated_at, excerpt, location, author_id FROM articles;

sqlite> ALTER TABLE articles RENAME TO articles_old;

sqlite> ALTER TABLE articles_temp RENAME TO articles;

That was a lot, so let’s explain; many database engines support a simple command to

drop a column, but SQLite does not—so our only option is to create a new table without

the column we want.

So first, we created a new table called “articles_temp” with all the columns except

for the author column we wanted to remove. Then, we used an INSERT …. SELECT

statement to copy the data from articles to articles_temp. Next, we renamed articles to

articles_old. (We could have used DROP TABLE articles, but maybe it’s a good idea to

keep the original articles table until we make sure things went according to plan.) And

finally, we renamed articles_temp to articles:

sqlite> SELECT * FROM articles;

1|Advanced Active Record|2020-04-19 00:00:00|2020-04-19

23:10:10.223714|2020-04-19 23:10:10.233432|||1

2|One-to-many associations|2020-04-19 00:00:00|2020-04-19

23:10:10.270343|2020-04-19 23:10:10.273669|||1

3|Associations|2020-04-19 00:00:00|2020-04-19 23:10:10.283152|2020-04-19

23:10:10.286340|||1

We can see now that our new articles table still has the data we expected—and

our unwanted author field has been replaced with author_id. But how can we use the

author_id to get the author’s name for each article?

The author_id column is considered to be a foreign key, because it references the

primary key of the table it relates to: in this case, the author who wrote the article. If you

now look at the data from both tables, you’ll see that we’ve eliminated the duplication:

sqlite> SELECT id, author_id, title FROM articles;

AppendIx A dATAbAses 101

529

sqlite> SELECT id, author_id, title FROM articles;

1|1|Advanced Active Record

2|1|One-to-many associations

3|1|Associations

sqlite> SELECT * FROM authors;

1|Brady Summerville

We can now use this relationship in our SELECT queries by joining the two tables

together using their association. In this association, the author_id in the articles table

is equal to the id column in the authors table. Adding the JOIN directive requires only a

slight change to the SQL:

sqlite> SELECT articles.id, title, name FROM articles

JOIN authors ON articles.author_id = authors.id;

1|Advanced Active Record|Brady Summerville

2|One-to-many associations|Brady Summerville

3|Associations|Brady Summerville

By using JOIN, we’re able to combine the two tables and get the author names

returned with the articles’ information. This is the crux of relational databases. Updating

an author’s name is now easy because there is only one instance of a given author.

It turns out that our author name does have a typo; before we moved the author

names to the authors table, we would’ve had to update every instance of the misspelled

name in the articles table. But now, we can simply update the appropriate author record

to correct the mistake:

sqlite> UPDATE authors SET name = 'Brady Somerville' WHERE id = 1;

This changes the name of the author with the id of 1 to "Brady Somerville." When

we run the JOIN query again, we’ll see that all instances of the author’s name have been

updated:

AppendIx A dATAbAses 101

530

sqlite> SELECT articles.id, title, name FROM articles

JOIN authors ON articles.author_id = authors.id;

1|Advanced Active Record|Brady Somerville

2|One-to-many associations|Brady Somerville

3|Associations|Brady Somerville

 SQL and Active Record
This brings this database crash course to a close. This was by no means a complete

reference, nor was it intended to be. Its purpose was to illustrate the basics of how

databases work and to introduce you to their native language: SQL. Now that you have a

taste, you can safely enter the world of Active Record, where most of this tedious work is

handled for us.

Why did we bother showing you this if Active Record takes care of most of it for

you? Because it’s important to know what Active Record is doing behind the scenes.

Although you can effectively use Active Record like a black box, you’ll eventually need

to debug your programs and figure out why something isn’t working the way you expect.

Having a basic understanding of SQL helps. Moreover, every bit of SQL that Active

Record generates is logged by Rails. You can find the logs in the log/ directory of your

application. Now, when you see these SQL commands in the logs, you’ll have a good

idea what they mean.

AppendIx A dATAbAses 101

531
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6

APPENDIX B

 The Rails Community
Rails development is driven by a vibrant and passionate community of open source

developers. The Rails community encourages its members to participate actively in Rails

development. You can start by asking questions and discussing new features. As your

knowledge increases, you can help others by writing about your own experiences in a

personal blog, answering questions on the mailing list, contributing to the Wiki, and

fixing bugs and writing patches to make Rails even better. Whatever your intention, rest

assured that participating in the community will help you get the most out of Rails.

 Beginning Rails 6 Mailing List
As a companion to this book, we’re establishing a mailing list for those interested in

exchanging ideas or asking questions to the authors or other Rails developers. You can

discuss changes in the Rails framework; or, if you find a bug in the framework, you can

discuss proposed solutions. You can subscribe to this list at https://groups.google.

com/group/beginning-rails.

 Rails Discussion Forums
You can browse and join several Rails-related discussion forums:

• Ruby on Rails Discussions: A forum with categories for general

discussion about using Rails, as well as discussion about technical

aspects of Rails core. For more information, visit https://discuss.

rubyonrails.org/ and become an active member of the community.

• Ruby on Rails Security: A Google Group for those who want to keep

abreast of Rails security concerns. You can subscribe to this group at

https://groups.google.com/group/rubyonrails-security.

https://doi.org/10.1007/978-1-4842-5716-6#DOI
https://groups.google.com/group/beginning-rails
https://groups.google.com/group/beginning-rails
https://discuss.rubyonrails.org/
https://discuss.rubyonrails.org/
https://groups.google.com/group/rubyonrails-security

532

• Ruby on Rails @ StackOverflow: View questions and answers

tagged with ruby-on-rails on one of the most widely used forums by

developers from around the world at https://stackoverflow.com/

questions/tagged/ruby-on-rails.

• Ruby Weekly: Sign up at https://rubyweekly.com/ and receive a

weekly email with Ruby-related news, articles, job postings, and

more.

• reddit for rubyists: Visit www.reddit.com/r/ruby/ for an infinitely

scrollable feed of all things pertaining to Ruby development.

• Medium: While https://medium.com/ hosts articles on a wide range

of topics, many useful guides and interesting articles about Ruby and

Rails development are hosted there.

 Rails Chat
If you prefer real-time discussions about Rails, you may want to check out

• Ruby on Rails Link: A Slack channel which joins Rails developers

from around the world, with dozens of channels for topic-specific

conversations. For more information, visit www.rubyonrails.link.

• #rubyonrails Internet Relay Chat (IRC) channel: Hosted on the

Freenode IRC network, the #rubyonrails channel hosts discussion

centered around the Rails framework.

Whether in forums, chat, StackOverflow posts, or wherever, remember to be kind

when asking for help, or when helping others.

If asking for help, be sure to provide as much information as you can, and be patient

while waiting for a response. Remember that help usually comes from volunteers who

aren’t getting paid to help you, so show them the same courtesy you’d expect.

And if giving help, it’s equally important to be kind! We were all once beginners and

sometimes didn’t even know how to ask the right question! Don’t discourage beginners

by being harsh; gently correct them and encourage them.

Appendix B The RAils CommuniTy

https://stackoverflow.com/questions/tagged/ruby-on-rails
https://stackoverflow.com/questions/tagged/ruby-on-rails
https://rubyweekly.com/
http://www.reddit.com/r/ruby/
https://medium.com/
http://www.rubyonrails.link

533

Note internet Relay Chat (iRC) is a type of real-time internet chat, where users
talk about their interests in topic-specific areas called channels. All you need to
connect to iRC is iRC client software. The most commonly used iRC clients are the
shareware miRC (www.mirc.com/) for Windows and the open source Colloquy
(https://colloquy.app/) for mac.

 Rails Blogs and Podcasts
The number of blogs dedicated to Rails information is rapidly growing, and most of the

new Rails features are covered in blogs or podcasts even before they’re released to the

public. You can subscribe to the blogs of your choice to keep up with news in the Rails

world.

The following are some of the more rewarding Rails-related blogs you can visit,

including the official Rails podcast:

• https://weblog.rubyonrails.org: The official Rails blog. You’ll find

information about upcoming releases, new functionality in Rails, and

news that’s considered important (such as documentation updates

and Rails adoption worldwide).

• www.rubyflow.com: A Ruby community site where people post

interesting and new things about Ruby or Rails.

• https://5by5.tv/rubyonrails: A weekly podcast covering

topics related to Ruby on Rails, open source programming, and

development in general.

 Rails Guides
The Rails community has an excellent set of documentation called Rails guides, which

you can find at https://guides.rubyonrails.org. We’ve referred to it several times

throughout this book. It’s a great effort to document various parts of the frameworks,

from basic beginner-oriented documentation to more advanced material.

Appendix B The RAils CommuniTy

http://www.mirc.com/
https://colloquy.app/
https://weblog.rubyonrails.org
http://www.rubyflow.com
https://5by5.tv/rubyonrails
https://guides.rubyonrails.org

534

 Rails APIs
It’s close to impossible to remember the names, methods, and possible parameters

of all the functions and classes in Ruby and Rails. To help you with your coding tasks,

we recommend that you keep the Ruby and Rails application programming interface

(API) documentation open or at least that you put them in your favorites. The API

documentation contains all the information about specific functions you’re trying to use,

including the function source code.

You can find the Rails API documentation at https://api.rubyonrails.org. The

Ruby API is at https://ruby-doc.org/core. For more user-friendly and searchable API

documentation, go to https://apidock.com/rails.

 Rails Source and Issue Tracking
The Rails source code can be found at https://github.com/rails/rails. It’s powered

by the GitHub, a hosting service for projects using the Git revision control system.

GitHub allows you to download the Rails source code using a web interface. You can

subscribe to the Git change log using RSS to be notified about changes to the Rails

source code.

You can also participate in the development of Rails by submitting bug reports and

patches to the GitHub account at www.github.com/rails/rails or by looking at existing

issues and trying to fix them. It might seem overwhelming, but don’t let that deter you;

the more time you spend reading code you don’t understand, the more you begin to

understand it. Soon, you could be a contributing member of the Rails project and not

just a user of it!

Appendix B The RAils CommuniTy

https://api.rubyonrails.org
https://ruby-doc.org/core
https://apidock.com/rails
https://github.com/rails/rails
http://www.github.com/rails/rails

535
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6

 APPENDIX C

Git
Developers normally work in teams. You write plenty of code; sometimes you test some

and decide to delete it, and other times you decide to stick to it. Managing this can be a

painful process, which is why you can use Source Control Management (SCM) software

to help you focus on what you do best—writing beautiful code. Git is rapidly becoming

the preferred SCM of developers everywhere.

 What Is Source Control Management?
SCM software helps you keep track of code changes and gives you the ability to easily

collaborate on that code with your teammates. The two main features of many SCMs are

• Versioning: When you’re using SCM for your project, files and

directories in the project are tracked. Every time you make changes to

your files, you can save those changes as a new version. Your project

then has several versions—one for every change set—giving you the

ability to browse those changes and revert to any one at any time.

• File merging: Let’s say you worked on a file and your colleague,

John, worked on that same file and you both committed (submitted)

your files to the SCM system. Both files are merged by SCM of your

involvement; if SCM can’t handle the merge for any reason, it lets you

know and gives you some useful information about how to manually

merge conflicting changes yourself.

https://doi.org/10.1007/978-1-4842-5716-6#DOI

536

 How Does It Work?
Generally, when you add your code base to an SCM system, a repository is created,

which is the store of all the versions of your code base. Then, you can take a copy of

that repository and work on it; this is normally called your working copy. You can add

files, change or delete some, and then commit those changes and send them back to the

repository as a new revision. If your colleague John is working with you on the same code

base, he can check out or pull those changes from the repository to update his working

copy, letting the SCM take care of any necessary file merging (Figure C-1).

 Git
The Git SCM was developed by Linus Torvalds for managing the Linux kernel source

code. It’s also been used for several million open source projects, including Rails.

Git is different from other SCMs because it’s a distributed source control system. This

means that instead of having a single repository on your server that all your teammates

use to check out working copies (client-server or centralized SCM), each team member

has their own repository along with a working copy, and you all push a copy of that

repository to a remote repository.

Figure C-1. SCM workflow

Appendix C Git

537

This approach has some great benefits, such as the ability to work and commit your

code, even if you’re offline, and being able to operate on your repository more quickly.

Now that you have a good understanding of what an SCM is and how it works, let’s

install Git and try it.

 Installing Git
Installing Git is relatively easy. Thanks to open source contributions, several Git

installation packages are available to facilitate a quick installation for most platforms.

 Installing on Windows

If you’re on Windows, one option for installing Git is from the official source: https://

git-scm.com/download/win. Simply download the installer, accept the default options,

and you’ll end up with Git Bash for command-line usage, as well as Git GUI for a

graphical interface. Use the Git Bash tool for executing commands mentioned in this

appendix.

 Installing on macOS

To install Git on macOS, there are a few easy options.

If you’ve already installed the Xcode Command-Line Tools, you may already have

it. Try running git --version from your terminal. It should either report the version of Git

that’s already installed or offer to install it for you.

It’s also possible to install Git using the Homebrew package manager, via brew install

git. If you don’t yet have Homebrew installed, visit https://brew.sh/ for installation

instructions, or consult Chapter 2.

 Installing on Linux

Most Linux distributions ship with a package manager. The most common one is the

Debian package manager apt, and Git is part of its library.

To install Git using apt, run the following apt-get command from the terminal:

sudo apt-get install git

Accept if the package manager asks your permission to use additional disk space for

this installation. When the installation is complete, Git is ready to use.

Appendix C Git

https://git-scm.com/download/win
https://git-scm.com/download/win
https://brew.sh/

538

 Setting Global Parameters
Every commit you make in your repository has flags for the user who executed the

commit; those flags are the user’s name and email address. Now that you have Git

installed on your system, it’s important to set a global username and email address for

Git to use for any new repository you work on.

To set global parameters, you use the git config command with the --global

option, followed by the parameters you want to set. Listing C-1 shows the command to

set up both the user.name and user.email parameters.

Listing C-1. Setting the Global Git Username and Email

git config --global user.name "dude"

git config --global user.email my.email@example.com

These parameters can be set on a repository level as well; you can do that by using the

same commands but without the --global option in your repository’s working directory.

 Initializing a Repository
Often, we need to initialize a new repository for our application. Let’s begin by creating

a test application, making sure to be outside of any directories which are already under

version control:

$ rails new testapp

 create

 create README.md

 create Rakefile

 create .ruby-version

 create config.ru

 create .gitignore

 create Gemfile

 run git init from "."

Initialized empty Git repository in /Users/brady/Sites/testapp/.git/

 create package.json

 ...

Appendix C Git

539

Notice that rails new took care of initializing a new Git repository for us! If it hadn’t or

if we wanted to initialize a new Git repository for a project which didn’t already have one,

we could have done the following:

$ cd testapp

$ git init

Initialized empty Git repository in /Users/brady/Sites/testapp/.git/

The git init command initializes an empty local repository for the application,

but it doesn’t add any files to the repository. To determine which files we can add to the

repository, we can use the git status command:

$ git status

On branch master

No commits yet

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 .browserslistrc

 .gitignore

 .ruby-version

 Gemfile

 Gemfile.lock

 README.md

 Rakefile

 app/

 babel.config.js

 bin/

 config.ru

 config/

 db/

 lib/

 log/

 package.json

Appendix C Git

540

 postcss.config.js

 public/

 storage/

 test/

 tmp/

 vendor/

 yarn.lock

nothing added to commit but untracked files present (use "git add" to track)

As you can see, all the folders and files of the Rails application are in the untracked

files list, which means that they’re not under Git’s control. To start tracking those files, we

need to add them to the track list; as this indicates, we can do this by using the git add

command. (While sometimes git may seem a bit perplexing to use, you’ll find it often

includes helpful hints in its output—so read closely!)

 Ignoring Files
Before we add those files, let’s think a little: Do we want all of our files to be tracked? Are

there any files we don’t want to track? Normally, those would be configuration files that

contain passwords, such as database.yml, the tmp folder, log files, and SQLite databases.

If we add those files, our teammates will have this information, and it may even conflict

with their files. A worst-case scenario involves our Git repository becoming public and

sensitive secrets falling into the hands of malicious users.

To skip those files in any git add and git status commands and to tell Git to

never bother you about them again, we must configure Git to ignore them. We can do

that by declaring those files in a hidden configuration file called .gitignore, which

is normally stored at the root of your working copy (in this case, at the root of the

testapp directory). The .gitignore file is a regular text file; it is generated by Rails in

all new projects. View it using the text editor of your choice, and you’ll see that it looks

like the code in Listing C-2.

Appendix C Git

541

Listing C-2. The .gitignore File Content in testapp/.gitignore:

https://gist.github.com/nicedawg/085165a26189b3913ee1fdca860ae1e9

Ignore bundler config.

/.bundle

Ignore the default SQLite database.

/db/*.sqlite3

/db/*.sqlite3-journal

/db/*.sqlite3-*

Ignore all logfiles and tempfiles.

/log/*

/tmp/*

!/log/.keep

!/tmp/.keep

Ignore uploaded files in development.

/storage/*

!/storage/.keep

/public/assets

.byebug_history

Ignore master key for decrypting credentials and more.

/config/master.key

/public/packs

/public/packs-test

/node_modules

/yarn-error.log

yarn-debug.log*

.yarn-integrity

As you can see, the files and folders listed in the .gitignore file weren’t listed in

the git status command you issued earlier. To help make sure we don’t commit any

unwanted or sensitive information to our Git repository, Rails initializes new projects

with a preconfigured .gitignore, especially made for Rails projects.

There may be times when we need to modify which files should or shouldn’t be

tracked by Git; simply add a pattern to exclude the file(s) you wish to exclude, and that’s it!

Appendix C Git

https://gist.github.com/nicedawg/085165a26189b3913ee1fdca860ae1e9

542

 Adding and Committing
We can add all of the untracked files to our repository by using the git add command

and passing a dot to it, which refers to the current directory and all its content. Be

cautious when using "git add ." to make sure you aren’t adding files that don’t belong

in the repository:

$ git add .

Try the git status command again:

$ git status

On branch master

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: .browserslistrc

 new file: .gitignore

 new file: .ruby-version

 new file: Gemfile

 new file: Gemfile.lock

 new file: README.md

 new file: Rakefile

 ...

The git status command still shows all the files, because the git add command

just added those files to be committed, but they aren’t committed yet. Notice how

instead of being shown in the “untracked files” list, they’re now included in the “changes

to be committed.” Another way of phrasing this using Git terminology is that these

changes have been “staged.” (Notice the helpful command to unstage a file. Running this

command won’t delete the file from your filesystem; it will simply remove the file from

the list of changes to be committed.)

In order to commit the changes you added to the commit list, we use the git commit

command. Use the –m argument to include a message describing the purpose of and the

changes in this commit:

Appendix C Git

543

$ git commit -m "Empty Rails application"

master (root-commit) 15c012e] Empty Rails application

 91 files changed, 9213 insertions(+)

 create mode 100644 .browserslistrc

 create mode 100644 .gitignore

 create mode 100644 .ruby-version

 create mode 100644 Gemfile

 create mode 100644 Gemfile.lock

 create mode 100644 README.md

 create mode 100644 Rakefile

Congratulations! You’ve completed your first commit to your local repository! If we

check the git status command now, we’ll see that there are no changes to be added or

committed:

$ git status

On branch master

nothing to commit, working tree clean

Now, let’s change a file. For example, let’s edit app/views/layouts/application.html.

erb to include <p>Hey!</p> in the body of the page. Save the file, and now let’s check our

status again:

$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: app/views/layouts/application.html.erb

no changes added to commit (use "git add" and/or "git commit -a")

Appendix C Git

544

Git knows that we changed the file since the last time we committed changes, so

shows the file as modified, but not yet staged for commit.

Instead of using “git add .”, like we did before, we can add this specific file:

$ git add app/views/layouts/application.html.erb

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: app/views/layouts/application.html.erb

Now, the file is still modified, but labeled as to be committed. You could then run the

git command -m "Updated layout" command to commit the change. When reasonable,

it’s best to carefully add specific files; using “git add .” without looking at your git status

closely will inevitably lead to unwanted files being added to your repository.

 Branching and Merging
Let’s say you decide to test out a major refactor on your project and you’re not sure if it

will work out and don’t want to break the code for everyone else. Meanwhile, you need

to be able to keep working on the main project without changes from your experiment

breaking your application. To have a safe place to experiment with your project’s code,

you need to create a branch. A branch is a duplicate of your project’s code that you can

work on in parallel with the master copy of the same project.

When you called the git init command earlier, Git initialized a new repository

for your application with a default branch called master. To create a new branch in the

repository, use the git checkout –b command followed by the name of the new branch

you want to create:

$ git checkout -b articles

This command creates a new branch named articles as a duplicate of the current

branch—master—and then switches to the newly created branch. To see a list of the

branches in your project, we can use the git branch command:

Appendix C Git

545

$ git branch

* articles

 master

The output indicates we have two branches—articles and master. The asterisk in

front of articles indicates that it’s the current branch you’re working on. To switch

branches, use the git checkout command followed by the name of the branch you want

to switch to:

$ git checkout master

Switched to branch 'master'

$ git checkout articles

Switched to branch 'articles'

The articles branch is the current branch again. We can confirm this by listing the

branches again:

$ git branch

* articles

 master

Now, let’s implement a new feature—an articles scaffold:

$ rails generate scaffold Article title:string body:text

 invoke active_record

 create db/migrate/20200427012944_create_articles.rb

 create app/models/article.rb

 invoke test_unit

 create test/models/article_test.rb

 create test/fixtures/articles.yml

Appendix C Git

546

 invoke resource_route

 route resources :articles

 invoke scaffold_controller

 create app/controllers/articles_controller.rb

 invoke erb

 create app/views/articles

 create app/views/articles/index.html.erb

 create app/views/articles/edit.html.erb

 create app/views/articles/show.html.erb

 create app/views/articles/new.html.erb

 create app/views/articles/_form.html.erb

 invoke test_unit

 create test/controllers/articles_controller_test.rb

 create test/system/articles_test.rb

 invoke helper

 create app/helpers/articles_helper.rb

 invoke test_unit

 invoke jbuilder

 create app/views/articles/index.json.jbuilder

 create app/views/articles/show.json.jbuilder

 create app/views/articles/_article.json.jbuilder

 invoke assets

 invoke scss

 create app/assets/stylesheets/articles.scss

 invoke scss

 create app/assets/stylesheets/scaffolds.scss

Let’s say we’re done with the new feature changes. It’s time to add the changes and

commit them to the articles branch:

$ git add .

$ git commit -m "Adding Article scaffold"

Appendix C Git

547

[articles cb4bed1] Adding Article scaffold

 19 files changed, 351 insertions(+)

 create mode 100644 app/assets/stylesheets/articles.scss

 create mode 100644 app/assets/stylesheets/scaffolds.scss

 create mode 100644 app/controllers/articles_controller.rb

 create mode 100644 app/helpers/articles_helper.rb

 create mode 100644 app/models/article.rb

 create mode 100644 app/views/articles/_article.json.jbuilder

 create mode 100644 app/views/articles/_form.html.erb

 create mode 100644 app/views/articles/edit.html.erb

 create mode 100644 app/views/articles/index.html.erb

 create mode 100644 app/views/articles/index.json.jbuilder

 create mode 100644 app/views/articles/new.html.erb

 create mode 100644 app/views/articles/show.html.erb

 create mode 100644 app/views/articles/show.json.jbuilder

 create mode 100644 db/migrate/20200427012944_create_articles.rb

 create mode 100644 test/controllers/articles_controller_test.rb

 create mode 100644 test/fixtures/articles.yml

 create mode 100644 test/models/article_test.rb

 create mode 100644 test/system/articles_test.rb

When you check the git status command now, you see that you have nothing to

commit in the articles branch:

$ git status

On branch articles

nothing to commit, working tree clean

The articles branch now has an articles scaffold, and the master branch doesn’t. If

you switch back to the master branch, notice that none of the articles scaffold files exist

there:

$ git checkout master

Switched to branch 'master'

Appendix C Git

548

For fun, you could switch back to the articles branch and watch your articles scaffold

files magically reappear. Hopefully the magic is a little clearer now; your branches can

have different files in them, and depending on which branch is currently checked out,

your filesystem will reflect the committed changes for that branch.

We could go on modifying the code in the master branch completely in isolation

from the articles branch. But at some point, the feature being developed in the articles

branch will be ready to be added to the “main” code branch, master. In Git terminology,

that’s a merge. Let’s merge the articles branch into the master branch. We’ll do that

using the git merge command followed by the branch name you want to merge into the

current branch:

$ git checkout master

$ git merge articles

Updating 15c012e..cb4bed1

Fast-forward

 app/assets/stylesheets/articles.scss | 3 +++

 app/assets/stylesheets/scaffolds.scss | 65

+++++++++++++++++++++++++++

 app/controllers/articles_controller.rb | 74

+++++++++++++++++++++++++++++

 app/helpers/articles_helper.rb | 2 ++

 app/models/article.rb | 2 ++

 app/views/articles/_article.json.jbuilder | 2 ++

 app/views/articles/_form.html.erb | 27

+++++++++++++++++++++++++++

 app/views/articles/edit.html.erb | 6 ++++++

 app/views/articles/index.html.erb | 29

+++++++++++++++++++++++++++++

 app/views/articles/index.json.jbuilder | 1 +

 app/views/articles/new.html.erb | 5 +++++

 app/views/articles/show.html.erb | 14 ++++++++++++++

 app/views/articles/show.json.jbuilder | 1 +

 config/routes.rb | 1 +

 db/migrate/20200427012944_create_articles.rb | 10 ++++++++++

Appendix C Git

549

 test/controllers/articles_controller_test.rb | 48

++++++++++++++++++++++++++++

 test/fixtures/articles.yml | 9 +++++++++

 test/models/article_test.rb | 7 +++++++

 test/system/articles_test.rb | 45

+++++++++++++++++++++++++++++++

 19 files changed, 351 insertions(+)

 create mode 100644 app/assets/stylesheets/articles.scss

 create mode 100644 app/assets/stylesheets/scaffolds.scss

 create mode 100644 app/controllers/articles_controller.rb

 create mode 100644 app/helpers/articles_helper.rb

 create mode 100644 app/models/article.rb

 create mode 100644 app/views/articles/_article.json.jbuilder

 create mode 100644 app/views/articles/_form.html.erb

 create mode 100644 app/views/articles/edit.html.erb

 create mode 100644 app/views/articles/index.html.erb

 create mode 100644 app/views/articles/index.json.jbuilder

 create mode 100644 app/views/articles/new.html.erb

 create mode 100644 app/views/articles/show.html.erb

 create mode 100644 app/views/articles/show.json.jbuilder

 create mode 100644 db/migrate/20200427012944_create_articles.rb

 create mode 100644 test/controllers/articles_controller_test.rb

 create mode 100644 test/fixtures/articles.yml

 create mode 100644 test/models/article_test.rb

 create mode 100644 test/system/articles_test.rb

The output shows the effects of our merge; it shows which files have been updated

and how many lines in each file were added or removed. (In our case, they were all

additions.)

The task is complete: we “developed” a new feature in a separate branch without

affecting the master branch; and when we finished, we merged those changes back into

master.

There’s much more to learn about these git commands; this is merely a brief

introduction.

Appendix C Git

550

 Remote Repositories and Cloning
As stated previously, Git is a distributed SCM; therefore, your repository is hosted locally

on your machine, hidden inside your working copy directory. No one else has access to it.

However, if you want to set up a repository that you and your team can work on,

you may want to create a remote repository that all of you can access and clone from.

Your remote repository can be hosted on any machine that is available to all developers

who need access to the repository and have Git installed. It can be hosted on your local

network, online, or with a third-party Git hosting provider like the famous GitHub

(https://github.com), which hosts Rails, as well as many, many other projects.

We used Git for this book’s blog application, and we hosted the repository on

GitHub. It’s publicly available for you to browse and use; simply point your browser at

https://github.com/nicedawg/beginning-rails-6-blog. This means you can clone a

copy of the blog repository to your machine and browse the code locally. To do that, you

need the Public Clone URL, which you find from the “Clone or download” button on the

GitHub page for the repo. Let’s clone the blog application repository using the git clone

command:

$ git clone git@github.com:nicedawg/beginning-rails-6-blog.git

Cloning into 'beginning-rails-6-blog'...

remote: Enumerating objects: 499, done.

remote: Counting objects: 100% (499/499), done.

remote: Compressing objects: 100% (243/243), done.

remote: Total 1023 (delta 300), reused 424 (delta 253), pack-reused 524

Receiving objects: 100% (1023/1023), 265.83 KiB | 1.53 MiB/s, done.

Resolving deltas: 100% (537/537), done.

Now you have a local copy of the blog application repository cloned to your machine.

You can change files and even commit them to your own local repository, but what you

cannot do is share those commits with others. In order to push your changes, you need

write access to the remote repository, which you don’t have.

If you want to try that, sign up for a free account on GitHub and create a repository of

your own there. You then have two URLs: a public URL that everyone can see and your

clone URL, which gives you full access to this remote repository.

Appendix C Git

https://github.com
https://github.com/nicedawg/beginning-rails-6-blog

551

The concept is simple: after you clone your own repository using your own URL, you

can work normally in your working copy, commit changes, and add and remove files.

Whenever you want to share those commits with the rest of the world, you push them to

the remote repository on GitHub using the git push command. If you have teammates

pushing changes to the same repository, you can retrieve those changes by using the git

pull command.

To sum up, you create a remote repository to allow more than one developer to work

on the same repository. Although all developers on the team have their own copies, they

still need to push their copies to the remote repository to allow the rest to pull from it

and stay in sync.

When you sign up for a free account on GitHub, the repositories you create can be

made publicly available for everyone to clone from. Or, if you want your repositories to

be private, so only you and your teammates can access them, you can choose to make

them private on GitHub, or you could host them on your own server with your own

setup.

 Learning More
Git is a great tool and has a lot of commands; however, this appendix has covered only

the basic features and commands. We highly encourage you to read more. You can see a

list of the most used Git commands using the git help command:

$ git help

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]

 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]

 [-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]

 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

 <command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)

 clone Clone a repository into a new directory

 init Create an empty Git repository or reinitialize an

existing one

Appendix C Git

552

work on the current change (see also: git help everyday)

 add Add file contents to the index

 mv Move or rename a file, a directory, or a symlink

 restore Restore working tree files

 rm Remove files from the working tree and from the index

 sparse-checkout Initialize and modify the sparse-checkout

examine the history and state (see also: git help revisions)

 bisect Use binary search to find the commit that introduced a

bug

 diff Show changes between commits, commit and working tree,

etc

 grep Print lines matching a pattern

 log Show commit logs

 show Show various types of objects

 status Show the working tree status

grow, mark and tweak your common history

 branch List, create, or delete branches

 commit Record changes to the repository

 merge Join two or more development histories together

 rebase Reapply commits on top of another base tip

 reset Reset current HEAD to the specified state

 switch Switch branches

 tag Create, list, delete or verify a tag object signed

with GPG

collaborate (see also: git help workflows)

 fetch Download objects and refs from another repository

 pull Fetch from and integrate with another repository or a

local branch

 push Update remote refs along with associated objects

'git help -a' and 'git help -g' list available subcommands and some

concept guides. See 'git help <command>' or 'git help <concept>'

to read about a specific subcommand or concept.

See 'git help git' for an overview of the system.

Appendix C Git

553

To learn more about a specific command, you can use git help COMMAND, which

shows that command’s documentation and how to use the command.

 Other SCM Systems
Although Git is the most talked-about SCM nowadays, you may either be required to use

a different SCM or may want to investigate the alternatives. Here’s a list of other SCMs

you could choose:

• Mercurial: Just like Git, Mercurial is a distributed SCM. Mercurial is

often compared with Git because of their similarities; feel free to try

it if you want to explore another option. You can find out more about

Mercurial from its official website: www.mercurial-scm.org/.

• SVN (Subversion): This was the most prominent SCM for a while,

but it has since been overtaken by Git. You can find out more about

Subversion from its official website: https://subversion.apache.

org/.

• CVS (Concurrent Versions System): This was one of the earliest SCM

systems (initial release in 1990). It’s still popular, although because

of some limitations, such as sparse Unicode support and expensive

branching operations, developers have begun moving toward other

version control systems like Subversion and Git. You can find out

more about CVS from its official website: www.nongnu.org/cvs/.

 Online Resources
After the beta launch of GitHub, Git received huge interest from developers, including

the Rails core team; they decided to switch from Subversion to Git and host the official

Rails repository on GitHub. This attention to Git encouraged more developers to try it,

and a number of tutorials and blog posts began to appear in the community.

Appendix C Git

http://www.mercurial-scm.org/
https://subversion.apache.org/
https://subversion.apache.org/
http://www.nongnu.org/cvs/

554

The following are some resources you can visit to dig deeper and learn more about Git:

• http://gitimmersion.com: A clean, organized step-by-step tutorial

that shows how to use many of Git’s commands

• https://learngitbranching.js.org: An interesting browser-based

environment that helps you visualize what’s happening with Git

branches while you execute commands on them.

• https://git-scm.com/doc: An official list of resources, including a

link to the excellent 2014 Apress book, Pro Git, by Scott Chacon and

Ben Straub

Git is an amazing tool. It’s tempting to primarily focus on developing mastery of

your preferred programming language or framework, but don’t neglect sharpening your

Git skills; time you invest in learning Git will pay dividends through improving your

efficiency and making your commits clearer and more understandable.

Appendix C Git

http://gitimmersion.com
https://learngitbranching.js.org
https://git-scm.com/doc:

555
© Brady Somerville, Adam Gamble, Cloves Carneiro Jr and Rida Al Barazi 2020
B. Somerville et al., Beginning Rails 6, https://doi.org/10.1007/978-1-4842-5716-6

Index

A
Account model, 160
Action Cable

broadcasting, 419
channel, 418
client side changes, 427, 428
configuration, 420, 421
connection, 418
New article notification, 429
Rails, 418, 419
server side changes

ApplicationCable, 422, 423
ArticlesChannel, 423–426

streams, 419
subscriptions, 419
web development, 417
WebSockets, 417

ActionCable::Channel, 418
ActionCable::Connection, 418
Action Mailer

components, 336
configuration, 336
configuring application

settings, 342
email (see Receiving emails)
ISP, 336
rails app, 335
server connection strings, 337
storing sensitive settings, 337–341
web-based email application, 336

ActionMailer::MessageDelivery, 352
Action Pack

action view helpers, 258, 260
adding edit controls, 262–264
articles have owners, 265–267
controllers/templates, improving

applying filters, 254,
255, 257, 258

article form, 248, 250, 252
article index page, 247, 248
authentication, filters, 253
collection_check_boxes, 250
filters, 252, 253

custom helpers, 267–270
formatting body field, 262
generating controller (see Controller

generator)
HTML templates, 260
layout, 271, 272, 279
logging in user, 243–245
logging out user, 245, 246
nested resources (see Nested

resources)
session resources

adding session, 241, 243
path, 242
sessions controller, 241
named routes, 241, 242

state, 240
style sheet, 272, 274–278

https://doi.org/10.1007/978-1-4842-5716-6#ESM

556

Action Pack
components

action controller, 180–183
Action View library, 184, 185
ERb, 185
helpers, 186
RESTful resources, 188
routing, 186, 187

controller (see Controller)
request cycle, 189, 190, 192

Action Text
blog (see Blog application)
CSS

actiontext.scss file, 316, 318
excerpt from, main

style sheet, 315, 316
node_modules directory, 318
require_tree, 316

database migrations, 315
database storage

action_text_rich_texts table, 320
db/schema.rb, 320
record_id column, 320
record_type column, 320
sample data, 321

installation, 313–315
JavaScript, 318, 319

ActionText::Content class, 325
action_text:install command, 315
ActionText::RichText class, 325
actiontext.scss file, 316
Action View library, 184
Active Job

ApplicationJob, 384
blog (see Blog application)
configuration, 382, 383
creation, 384
failed

discarding, 388, 389
retrying, 386–388

performing, 385
perform_later, 385, 386
queue_as, default, 385

Active Model
constructor, 397
controllers/views, 411, 413, 414
EmailAFriend model, 410, 411
error messages, 415
modules, 396
paint method, 396
simple car class, 396
source code, 415

ActiveModel::Callbacks, 399, 401
ActiveModel::AttributeAssignment, 397–399
ActiveModel::Dirty module, 402, 403, 426
ActiveModel::ForbiddenAttributesError, 231
ActiveModel::Model, 407–409, 415
ActiveModel::Validations, 405, 406
Active record

adding methods, 119–121
advanced finding

array condition syntax, 151, 153
association proxies, 153
default scope, 156
methods, 154
named scope, 157–159
SQL fragment, 150
using where method, 149

applying validations (see Built-in
validations)

article, 94
association (see Associations)
base class, 90
benefits, 395
books, 90
callbacks, 168

INDEX

557

after_create method, 168
email_article_author method, 169
reviewing updated models, 177, 178
user model, updating,

170, 171, 173–175
column_names class method, 95
console command, 94
conventions, 93, 94
creation (see New records creation)
CRUD, 98
database abstraction, 89
database software, 91
errors, 115
full_messages method, 116
ORM, 89, 90
reading (see Reading (finding) records)
SQL, 91, 92
SQLite, 91
updation, 110
validations, 114

Active Server Pages (ASP), 6
Active Storage

configuration, 300, 301
imagemagick

MacOS Catalina, 299
Ubuntu Linux, 300
Windows, 300

upload images (see Uploading images)
after_create method, 168, 169, 361
Agile Manifesto, 7
Ajax, 285
Ajax, delete comment, 295, 297, 298
@article instance variable, 235
Article model, 250

adding, create test, 438, 439
assertions, 439–441
CRUD operations, 436
destroying, 443, 444

finding, 441, 442
fixtures creation, 437
updating, 442, 443

Article page, 289, 290
articles branch, 548
articles_categories, 141
article_should_be_published

method, 166, 167
assert_raise assertion, 444
assert_response assertion, 452
assert_selector, 472
Asset locations, 283
Asset Pipeline concatenates, 282
Associations

applying options, 139–141
declaration, 125
foreign key reference, 123, 124
many-to-many, 141, 146–148
one-to-one, 125

Association proxy, 153
asterisk (*) character, 522
author_id field, 526
Automated testing

code quality, 431
opening browser, 432
sign-up procedure, 432

B
before_save method, 168
Berkeley Software Distribution (BSD), 4
Blog application

adding more fields, 55, 56
adding validations, 58, 59
Agile methodology, 40
article model, 46, 47, 321–323
article view, 326, 327
asynchronous delivery, 391

INDEX

558

comment added, 392, 393
config/database.yml file, 43
controller generator, 50–52
database creation, 44–46
database management system, 43
development mode, 43
draft article created, 393, 394
flow, 39
generating files, 60–61
migration

action_text_rich_texts, 324
Article.first.body, 325
articles table, 323
generation, 323, 324
rails command, 326
rails console, 325
rails db, 326
run, 324
sqlite commands, 325
up and down methods, 324

N+1 queries
ArticlesController, 332, 333
elimination, 333
loading articles, 333, 334
SQL, 331, 332
tables, 332

notify_friend request, 392
rails directory structure, 41, 42
request time, 391
response time, 391, 392
scaffolding, 52–54
skeleton and base files, 40
users, 39
WordPress/Blogger, 39

Built-in validations
attribute, format, 163, 164
confirmation, 164, 165

custom validation methods, 165–167
default options, 160
unique value, 161, 162
validating length, or size, 162, 163
value entered, 161

C
Callback mechanisms, 395
Capybara method, 472
Cascading Style Sheets (CSS), 3
category_ids method, 250
Code quality, 431
Command-line interface

(CLI), 338, 520
Comment and Article models, 147
Comment Form, 292
Comment model, 395
Complete mental model, 431
config.active_job.queue_adapter, 382, 383
Control-flow statements, 78
Controller

article form, 206–209
edit and update actions, 218
helpers, 210–214
layouts, 204, 205
partials, 221
redirects, 201, 202
rendering responses, 200
request parameters, 215
revisiting controller, 215, 216
revisiting views, 219, 221
scaffold generator, 196–199
setting up routes

blog application, 195, 196
named routes, 193
priority, 193
RESTful and resources, 194, 195

Blog application (cont.)

INDEX

559

templates, 202, 203
templates, displaying error

messages, 217, 218
Controller generator

app/controllers/users_
controller.rb, 226–228

controller name, 226
form partial, 229, 230
new user, 230, 231
params, 231
routes file, 230
syntax, 225
templates, 228
users controller, 226

create.js.erb template, 294
create_profile method, 130
Create, read, update, and delete

(CRUD), 188
create_table method, 127
Cron jobs, 382
current_user method, 254

D
db:migrate Rails command, 127
Delayed::Job, 382
DELETE statement, 525
Deleting records

DELETE method, 113
delete_by class method, 114
destroy method, 112, 113
instance, 111

deliver_later method, 390
destroy method, 245
Document Object Model (DOM), 285

Ajax, 287
elements, 286
HTML, 288

load elements, 287
users comment, 286
working, 286

Domain-specific language (DSL)., 6
Don’t repeat yourself (DRY), 8

E
Edge cases

controller test, 461, 462
fix bug, 462
handling security, 457, 459
logged-in user, 457
notify_friend, 460
scenarios, 463

Embedded Ruby (ERb), 37, 185
encrypt_new_password

method, 173
en.yml, 480
ERb templating library, 36
Error message, display, 295

F
fail_create.js.erb template, 295
Fat models, 122
File.read method, 360
Files ignore, 540, 541
Framework

abstraction layer, 4
cross-platform, 4
definition, 3
full stack, 4
open source, 4

Functional testing
adding login_as, 455–457
assert_response, 453, 455
controllers, 447–449

INDEX

560

effects, 453
test helper method, 449
update setup method, 450, 452

G
Gherkin, 478
git add command, 542
git branch command, 544
git committed command, 544
git help command, 551
git merge command, 548
git status command, 539
Global parameters, 538
GuessANumberBetweenOneAnd

TenJob, 384
GuessedWrongNumber, 387

H
has_many :through, 146
has_one declaration, 128
helper_method method, 254

I
I18n.default_locale= methods, 482
I18n.locale method, 481
I18n.translate method, 486
Index records, 521
Initialize method, 398
INSERT command, 523, 524
INSERT statement, 527
Installing Git

Linux, 537
macOS, 537
Windows, 537

Integrated Development Environment
(IDE), 11

Integration tests, 468
Interactive Ruby (irb), 66
Internationalization

Bilingual Blog, 499–503
definition, 479
localize blog application, Brazilian

Portuguese, 493–495, 497, 498
rails, 479

config/application.rb, 482
config/locales, 483
console, 485
en.yml file, 480, 481
I18n module, 481, 482
pt-br.yml, 484
translate method, 484

setting up i18n, blog application, 486,
487, 489, 490, 492

Internet Relay Chat (IRC) channel, 532
Internet service provider (ISP), 336

J
JavaScript code, 288

K
klass argument, 440

L
language_selector, 499
Linux, installation

apt-get update command, 28
Node.js, 30
package manager, 28
Rails, 29

Functional testing (cont.)

INDEX

561

Ruby, 28
SQLite, 30
Yarn, 31

load_article method, 234, 235
long_title, 121

M
macOS Catalina, installation

command line tools, 21
Node.js, 22
Rails, 22
RVM, 21
Yarn, 23

Mailers
assertions, 468
default_url_options setting, 466, 467
email_friend method, 464
generated tests, 464
NotifierMailer test, 467
setup method, 465
test, 466

Many-to-Many associations
articles_categories, 141
create_join_table, 142
create_table, 142
has_and_belongs_to_many

declarations, 143, 144
seeding data, 144–146

Massachusetts Institute of Technology
(MIT), 4

member method, 347
message_id, 125
Migration, 48
MixedCase, 225
Model enhancement, 119
Modifiers, 79
MVC cycle

concept, 14
control flow, 13
controller layer, 15
layers, 14
library, 17
model layer, 14
view layer, 16

MVC pattern, 18

N
Nested resources

adding comments, 232
application layout, 235, 236
@article.comments, 235
Article partial, 236, 237
Article show page, 238, 239
comment partial, 237
controller comments, 233, 234
named routes, 232, 233
new comment template, 238
templates, 235

New records creation
methods, 103
new constructor, 99–102
resetting database, 99

notify_dmv method, 403
NumberHelper module, 258

O
Object-oriented programming, 96
Object-relational mapping (ORM), 89
One-to-Many associations

between users and articles, 133, 134,
136, 137

create object, 135, 136
has_many options, 138

INDEX

562

One-to-one associations
belongs_to, 129
db:migrate Rails, 127
definition, 125
has_one declaration, 128, 131, 132
user and profile models, 126–129
create the users Table, 126

P, Q
Partial templates

arguments, 222
definition, 221
local variables, 222
rendering collection, 223
rendering object, 223

password_confirmation attribute, 165
Perform method, 385
Plain Old Ruby Objects (POROs), 395
Platform as a Service. Services (PAAS), 506
PostgreSQL

installation, 510, 511
switching, 511–513

Preprocessing assets, 281
Previewing email

HTML and plain-text variations, 356
HTML templates, 357, 359
NotifierMailer class, 356
NotifierMailer#email_friend, 357

Principle of least surprise (POLS), 9
Process method, 371
Pseudolanguage, 132

R
Rails

agility, 7
application, 31

basic principles, 7
benefits, 18
built-in web server, 32–34
chat, 532
command-line tool, 20
convention over configuration, 8, 9
creating action, 35
database abstraction layer, 5
design pattern, 12
directory, 32
DRY principle, 8–10
generating controller, 34
installation steps, 20
less software, 8
modularity, 17
MVC pattern, 12
open source, 11
opinionated software, 5, 10
quality assurance, 2
Ruby, 6, 7
template (see Template creation)
web application framework, 1, 2
web applications, 19
web-based software market, 2

Rails API documentation, 534
Rails applications

Git repository, 508
Heroku

creating app, 509
deploying, 513, 514, 516–518
set up account, 507

hosting web applications, 505, 506
local development environment, 505
SQLite, 517

Rails blogs, 533
Rails community, 531
rails-controller-testing, 454
rails g controller command, 225

INDEX

563

rails generate command, 128
Rails guides, 533
Rails podcast, 533
Rails project, 534
Rails-related discussion forums, 531
Rails @ StackOverflow, 532
rails test command, 463
Reading (finding) records

all method, 107
article, 108
class method, 104
with conditions, 109, 110
first record, 106
id option, 104, 105
index, 107
lazy loading, 109
model class, 104

Receiving email
ActionMailbox::InboundEmail

records, 375
configuration options, 365, 366
development mode, 364
format, 374
installation command, 365
mailer action, 373
memoization, 373
process method, 371, 372
Rails command, 371
routing, 375
signing up, 364
testing, 376
unique address, 367, 369, 371

Receiving emails, 377–380
RecordNotFound exception, 105
redirect_to method, 201
Refactoring, 432
Remote repository, 550
Repository initialize, 538, 539

Representational State Transfer (REST), 188
reset_session method, 245
respond_to helper, 294
Resque, 382
Ruby, 6

arrays, 71, 72
blocks, 76, 77
class, 82, 83, 85
comments, 77, 78
control structures, 78, 79
documentation, 86
features, 65
hashes, 72
irb, 66, 67
methods, 79, 80
object-oriented programming

language, 65
objects, 81, 82
operators, 75
strings, 68, 69
symbols, 70
variables, 73–75

RubyGems, 19
Ruby Version Manager (RVM), 21

S
Scaffolding, 52
Schema, 48
Secondary languages, 282
SELECT command, 524
SELECT query, 526
SELECT statement, 522, 523
SELECT NULL, 527
Sending email

ActionMailer::Base class, 344
ApplicationMailer class, 344
article’s show view, 347

INDEX

564

attachments, 359, 360
before_action, 351
call deliver, 354
comment model, 361–364
email_friend method, 345
implicit parts, 380
layout, 345
mailer generator, 343
method options, 346
NotifierMailer class, 344, 345
notify_friend method, 346, 350, 351
spam-blocking feature, 355
template files, 344
user’s inbox, 355

shiny.scss file, 316
Sidekiq, 382
Source Control Management (SCM), 535

file merge, 535
Git, 536
list, 553
resources, 554
working, 536

SQL commands, 521, 522
SQLite command, 521
SQLite utility tool, 520
Structured Query Language (SQL), 519
System testing

article fixture reference, 471
Capybara method, 472, 473
fill_in_rich_text, 476
fixing articles, 473, 474
page.accept_confirm method, 476, 477
Puma, 469
sign_in method, 476
switch, headless Chrome, 470
test/system/articles_test.rb file, 468
web application, 468

T
Technical debt, 431
Template creation

config/routes.rb file, 37
controllers, 36
ERb, 37
Hello World application, 38
MVC pattern, 35
salutation, 36

Test-driven development (TDD), 447
Testing

fixtures, 433, 434
Rails, 433
SQLite application, 434
types, 433

TextHelper module, 259
ThatsNotFair, 389
translate method, 481, 484
Trix editor, 315
Turbolinks, 284

U
Unit testing

Article model (see Article model)
generated Article, 435
directory, 436
elements, 435
rails test, models command, 435
seed value, 436
validations, 445–447

update statement, 524
UPDATE command, 527
Updated Comments Controller, 293
Uploading images

attaching image, 302
removing

attr_accessor, 311

Sending email (cont.)

INDEX

565

cover image/checkbox, 306–308
deleting attachment, 310, 311
remove_cover_image, 308–310

saving
article.cover_image, 302
article form, 302, 303
attaching image, 301
displaying, 304, 305
permitting cover_image, 303
polymorphic table, 302

URL helpers module, 259
User.authenticate method, 244
UserFavoritesController, 226
user_params method, 231

V
validates_presence_of method, 166
variant() method, 305

W, X
Web application, 3
Web-based software, 3
webpacker gem, 281
What You See Is What You Get

(WYSIWYG), 313
Windows, installation

Node.js, 27
Rails, 25
Ruby, 23, 24
SQLite, 26
Yarn, 27

Y, Z
YAML, 44
You ain’t gonna

need it (YAGNI), 8

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	What Is This Book About?
	Chapter 1: Introducing the Rails Framework
	The Rise and Rise of the Web Application
	The Web Isn’t Perfect
	Why Use a Framework?
	Why Choose Rails?
	Rails Is Ruby
	Rails Encourages Agility
	Less Software
	Convention over Configuration
	Don’t Repeat Yourself

	Rails Is an Opinionated Software
	Rails Is Open Source
	Rails Is Mature

	A High-Level Overview of Rails
	The MVC Cycle
	The Layers of MVC
	Models
	Controllers
	Views

	The Libraries That Make Up Rails
	Rails Is Modular
	Rails Is No Silver Bullet
	Summary

	Chapter 2: Getting Started
	An Overview of Rails Installation
	Installing on macOS Catalina
	Installing the Command Line Tools for Xcode
	Installing Homebrew
	Installing RVM
	Installing Rails
	Installing Node.js
	Installing Yarn

	Installing on Windows
	Installing Ruby
	Installing Rails
	Installing SQLite
	Installing Node.js
	Installing Yarn

	Installing on Linux
	Installing Ruby
	Installing Rails
	Installing SQLite
	Installing Node.js
	Installing Yarn

	Creating Your First Rails Application
	Starting the Built-In Web Server
	Generating a Controller
	Creating an Action
	Creating a Template

	Summary

	Chapter 3: Getting Something Running
	An Overview of the Project
	Creating the Blog Application
	Creating the Project Databases
	Creating the Article Model
	Creating a Database Table
	Generating a Controller
	Up and Running with Scaffolding
	Adding More Fields
	Adding Validations
	Generated Files

	Summary

	Chapter 4: Introduction to the Ruby Language
	Instant Interaction
	Ruby Data Types
	Strings
	Numbers
	Symbols
	Arrays and Hashes

	Language Basics
	Variables
	Operators
	Blocks and Iterators
	Comments
	Control Structures
	Methods

	Classes and Objects
	Objects
	Classes

	Ruby Documentation
	Summary

	Chapter 5: Working with a Database: Active Record
	Introducing Active Record: Object-Relational Mapping on Rails
	What About SQL?
	Active Record Conventions

	Introducing the Console
	Active Record Basics: CRUD
	Creating New Records
	Resetting the Database
	Using the new Constructor
	Using the create Method

	Reading (Finding) Records
	Finding a Single Record Using an ID
	Finding a Single Record Using first
	Finding All Records
	Finding with Conditions

	Updating Records
	Deleting Records
	Using destroy
	Using delete
	Deleting with Conditions

	When Good Models Go Bad
	Summary

	Chapter 6: Advanced Active Record: Enhancing Your Models
	Adding Methods
	Using Associations
	Declaring Associations
	Creating One-to-One Associations
	Adding the User and Profile Models

	Creating One-to-Many Associations
	Associating User and Article Models
	Creating a New Associated Object

	Applying Association Options
	Specifying a Default Order
	Specifying Dependencies

	Creating Many-to-Many Associations
	Seeding Data

	Creating Rich Many-to-Many Associations

	Advanced Finding
	Using the where Method
	Using an SQL Fragment
	Using an Array Condition Syntax
	Using Association Proxies
	Other Finder Methods
	Default Scope
	Named Scope

	Applying Validations
	Using Built-in Validations
	Validating That a Value Has Been Entered
	Validating That a Value Is Unique
	Validating Length or Size
	Validating the Format of an Attribute
	Validating Confirmation
	Other Validations

	Building Custom Validation Methods

	Making Callbacks
	Updating the User Model

	Reviewing the Updated Models
	Summary

	Chapter 7: Action Pack: Working with Routes, Controllers, and Views
	Action Pack Components
	Action Controller
	Action View
	Embedded Ruby
	Helpers
	Routing
	RESTful Resources
	Action Pack Request Cycle

	A Controller Walk-Through
	Setting Up Routes
	Routing Basics
	Named Routes
	RESTful Routes and Resources
	Configuring Routes for the Blog Application

	Revisiting the Scaffold Generator
	Rendering Responses
	Redirecting
	Understanding Templates
	Working with Layouts
	Looking at the Article Form
	Using Form Helpers
	Processing Request Parameters
	Revisiting the Controller
	Displaying Error Messages in Templates
	The edit and update Actions
	Revisiting the Views
	Staying DRY with Partials
	Local Variable Assignment in Partials
	Rendering an Object Partial
	Rendering a Collection of Partials

	Summary

	Chapter 8: Advanced Action Pack
	Generating a Controller
	Nested Resources
	Sessions and the Login/Logout Logic
	Lying in State
	Using the Session
	Session As a Resource
	Logging In a User
	Logging Out a User

	Improving Controllers and Templates
	Cleaning Up the Articles Index Page
	Adding Categories to the Article Form
	Using Filters
	Requiring Authentication with Filters
	Applying Filters to Controllers

	Adding Finishing Touches
	Using Action View Helpers
	Escaping HTML in Templates
	Formatting the Body Field
	Adding Edit Controls
	Making Sure Articles Have Owners
	Adding Custom Helpers
	Giving It Some Style
	Updating the Layout
	Applying a Style Sheet

	Summary

	Chapter 9: JavaScript and CSS
	Benefits of Preprocessing Assets
	Asset Concatenation and Compression
	Secondary Languages
	Asset Locations

	Turbolinks
	Let’s Build Something!
	Ajax and Rails
	JavaScript and the DOM
	Moving to Practice
	Not All Users Comment
	Loading a Template via Ajax
	Responding to Requests with JavaScript
	Making a Grand Entrance

	Using Ajax for Forms
	Deleting Records with Ajax

	Summary

	Chapter 10: Active Storage
	ImageMagick
	Installing on MacOS Catalina
	Installing on Windows
	Installing on Linux

	Configuration
	Saving Uploaded Images
	Displaying Uploaded Images
	Removing Uploaded Images
	Summary

	Chapter 11: Action Text
	Installation
	Action Text CSS
	Action Text JavaScript
	Action Text Database Storage
	Using Action Text in Our Blog
	Updating the Article Model
	Migrating Our Data
	Updating the Article View
	Updating the Article Form

	Cleaning Up N+1 Queries
	Summary

	Chapter 12: Sending and Receiving Email
	Setting Up Action Mailer
	Configuring Mail Server Settings
	Storing Sensitive Secrets

	Configuring Application Settings

	Sending Email
	Handling Basic Email
	Previewing Email
	Adding Attachments
	Letting Authors Know About Comments

	Receiving Email via Action Mailbox
	Installation
	Configuration
	Creating Draft Articles via Email
	Assigning Authors a Special Email Address
	Processing the Email
	Responding to the Author

	Summary

	Chapter 13: Active Job
	Configuring Active Job
	Creating an Active Job
	Performing a Job
	Performing a Job Later
	Retrying a Failed Job
	Discarding a Failed Job

	Improving Our Blog with Active Job
	Summary

	Chapter 14: Active Model
	A Tour of Active Model
	ActiveModel::Attributes
	ActiveModel::Callbacks
	ActiveModel::Dirty
	ActiveModel::Validations
	ActiveModel::Model

	Enhancing Our Blog with Active Model
	Create an EmailAFriend Model
	Update Controller/Views to Use Our New Model
	Try It Out

	Summary

	Chapter 15: Action Cable
	Introduction
	Concepts
	Configuration
	Application
	Server-Side Changes
	ApplicationCable::Connection
	ApplicationCable::Channel
	ArticlesChannel

	Client-Side Changes
	Try It Out

	Summary

	Chapter 16: Testing Your Application
	How Rails Handles Testing
	Unit Testing Your Rails Application
	Testing the Article Model
	Creating Fixtures
	Adding a Create Test
	Testing with Assertions
	Adding a Find Test
	Adding an Update Test
	Adding a Destroy Test

	Testing Validations

	Functional Testing Your Controllers
	Testing the Articles Controller
	Creating a Test Helper Method
	Getting ArticlesControllerTest to Pass
	Handling Edge Cases

	Running the “Full” Test Suite
	Mailer Tests

	System Testing
	System Testing the Blog Application

	Summary

	Chapter 17: Internationalization
	Internationalization Logic in Rails
	Setting Up i18n in the Blog Application
	Localizing the Blog Application to Brazilian Portuguese
	Bilingual Blog
	Summary

	Chapter 18: Deploying Your Rails Applications
	Set Up an Account with Heroku
	Preparing Your Git Repository
	Creating Your Heroku App
	Installing PostgreSQL
	Switching to PostgreSQL
	Deploying to Heroku
	That’s It!
	Summary

	Appendix A:Databases 101
	Examining a Database Table
	Working with Tables
	Selecting Data
	Inserting Data
	Updating Data
	Deleting Data

	Understanding Relationships
	SQL and Active Record

	Appendix B:The Rails Community
	Beginning Rails 6 Mailing List
	Rails Discussion Forums
	Rails Chat
	Rails Blogs and Podcasts
	Rails Guides
	Rails APIs
	Rails Source and Issue Tracking

	Appendix C:Git
	What Is Source Control Management?
	How Does It Work?
	Git
	Installing Git
	Installing on Windows
	Installing on macOS
	Installing on Linux

	Setting Global Parameters
	Initializing a Repository
	Ignoring Files
	Adding and Committing
	Branching and Merging
	Remote Repositories and Cloning
	Learning More

	Other SCM Systems
	Online Resources

	Index

